The Spindle Assembly Checkpoint Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary - Cellbiology
1 Glossary - Cellbiology Blotting: (Blot Analysis) Widely used biochemical technique for detecting the presence of specific macromolecules (proteins, mRNAs, or DNA sequences) in a mixture. A sample first is separated on an agarose or polyacrylamide gel usually under denaturing conditions; the separated components are transferred (blotting) to a nitrocellulose sheet, which is exposed to a radiolabeled molecule that specifically binds to the macromolecule of interest, and then subjected to autoradiography. Northern B.: mRNAs are detected with a complementary DNA; Southern B.: DNA restriction fragments are detected with complementary nucleotide sequences; Western B.: Proteins are detected by specific antibodies. Cell: The fundamental unit of living organisms. Cells are bounded by a lipid-containing plasma membrane, containing the central nucleus, and the cytoplasm. Cells are generally capable of independent reproduction. More complex cells like Eukaryotes have various compartments (organelles) where special tasks essential for the survival of the cell take place. Cytoplasm: Viscous contents of a cell that are contained within the plasma membrane but, in eukaryotic cells, outside the nucleus. The part of the cytoplasm not contained in any organelle is called the Cytosol. Cytoskeleton: (Gk. ) Three dimensional network of fibrous elements, allowing precisely regulated movements of cell parts, transport organelles, and help to maintain a cell’s shape. • Actin filament: (Microfilaments) Ubiquitous eukaryotic cytoskeletal proteins (one end is attached to the cell-cortex) of two “twisted“ actin monomers; are important in the structural support and movement of cells. Each actin filament (F-actin) consists of two strands of globular subunits (G-Actin) wrapped around each other to form a polarized unit (high ionic cytoplasm lead to the formation of AF, whereas low ion-concentration disassembles AF). -
Meiotic Cohesin and Variants Associated with Human Reproductive Aging and Disease
fcell-09-710033 July 27, 2021 Time: 16:27 # 1 REVIEW published: 02 August 2021 doi: 10.3389/fcell.2021.710033 Meiotic Cohesin and Variants Associated With Human Reproductive Aging and Disease Rachel Beverley1, Meredith L. Snook1 and Miguel Angel Brieño-Enríquez2* 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States, 2 Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States Successful human reproduction relies on the well-orchestrated development of competent gametes through the process of meiosis. The loading of cohesin, a multi- protein complex, is a key event in the initiation of mammalian meiosis. Establishment of sister chromatid cohesion via cohesin rings is essential for ensuring homologous recombination-mediated DNA repair and future proper chromosome segregation. Cohesin proteins loaded during female fetal life are not replenished over time, and therefore are a potential etiology of age-related aneuploidy in oocytes resulting in Edited by: decreased fecundity and increased infertility and miscarriage rates with advancing Karen Schindler, Rutgers, The State University maternal age. Herein, we provide a brief overview of meiotic cohesin and summarize of New Jersey, United States the human genetic studies which have identified genetic variants of cohesin proteins and Reviewed by: the associated reproductive phenotypes -
DNA Damage Checkpoint Dynamics Drive Cell Cycle Phase Transitions
bioRxiv preprint doi: https://doi.org/10.1101/137307; this version posted August 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. DNA damage checkpoint dynamics drive cell cycle phase transitions Hui Xiao Chao1,2, Cere E. Poovey1, Ashley A. Privette1, Gavin D. Grant3,4, Hui Yan Chao1, Jeanette G. Cook3,4, and Jeremy E. Purvis1,2,4,† 1Department of Genetics 2Curriculum for Bioinformatics and Computational Biology 3Department of Biochemistry and Biophysics 4Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill 120 Mason Farm Road Chapel Hill, NC 27599-7264 †Corresponding Author: Jeremy Purvis Genetic Medicine Building 5061, CB#7264 120 Mason Farm Road Chapel Hill, NC 27599-7264 [email protected] ABSTRACT DNA damage checkpoints are cellular mechanisms that protect the integrity of the genome during cell cycle progression. In response to genotoxic stress, these checkpoints halt cell cycle progression until the damage is repaired, allowing cells enough time to recover from damage before resuming normal proliferation. Here, we investigate the temporal dynamics of DNA damage checkpoints in individual proliferating cells by observing cell cycle phase transitions following acute DNA damage. We find that in gap phases (G1 and G2), DNA damage triggers an abrupt halt to cell cycle progression in which the duration of arrest correlates with the severity of damage. However, cells that have already progressed beyond a proposed “commitment point” within a given cell cycle phase readily transition to the next phase, revealing a relaxation of checkpoint stringency during later stages of certain cell cycle phases. -
Distinct Functions of Human Cohesin-SA1 and Cohesin-SA2 in Double-Strand Break Repair
Distinct Functions of Human Cohesin-SA1 and Cohesin-SA2 in Double-Strand Break Repair Xiangduo Kong,a Alexander R. Ball, Jr.,a Hoang Xuan Pham,a Weihua Zeng,a* Hsiao-Yuan Chen,a John A. Schmiesing,a Jong-Soo Kim,a* Michael Berns,b,c Kyoko Yokomoria Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USAa; Beckman Laser Instituteb and Department of Biomedical Engineering, Samueli School of Engineering,c University of California, Irvine, California, USA Cohesin is an essential multiprotein complex that mediates sister chromatid cohesion critical for proper segregation of chromo- somes during cell division. Cohesin is also involved in DNA double-strand break (DSB) repair. In mammalian cells, cohesin is involved in both DSB repair and the damage checkpoint response, although the relationship between these two functions is un- clear. Two cohesins differing by one subunit (SA1 or SA2) are present in somatic cells, but their functional specificities with re- gard to DNA repair remain enigmatic. We found that cohesin-SA2 is the main complex corecruited with the cohesin-loading factor NIPBL to DNA damage sites in an S/G2-phase-specific manner. Replacing the diverged C-terminal region of SA1 with the corresponding region of SA2 confers this activity on SA1. Depletion of SA2 but not SA1 decreased sister chromatid homologous recombination repair and affected repair pathway choice, indicating that DNA repair activity is specifically associated with cohe- sin recruited to damage sites. In contrast, both cohesin complexes function in the intra-S checkpoint, indicating that cell cycle- specific damage site accumulation is not a prerequisite for cohesin’s intra-S checkpoint function. -
Cyclin-Dependent Kinase 5 Decreases in Gastric Cancer and Its
Published OnlineFirst January 21, 2015; DOI: 10.1158/1078-0432.CCR-14-1950 Biology of Human Tumors Clinical Cancer Research Cyclin-Dependent Kinase 5 Decreases in Gastric Cancer and Its Nuclear Accumulation Suppresses Gastric Tumorigenesis Longlong Cao1,2, Jiechao Zhou2, Junrong Zhang1,2, Sijin Wu3, Xintao Yang1,2, Xin Zhao2, Huifang Li2, Ming Luo1, Qian Yu1, Guangtan Lin1, Huizhong Lin1, Jianwei Xie1, Ping Li1, Xiaoqing Hu3, Chaohui Zheng1, Guojun Bu2, Yun-wu Zhang2,4, Huaxi Xu2,4,5, Yongliang Yang3, Changming Huang1, and Jie Zhang2,4 Abstract Purpose: As a cyclin-independent atypical CDK, the role of correlated with the severity of gastric cancer based on tumor CDK5 in regulating cell proliferation in gastric cancer remains and lymph node metastasis and patient 5-year fatality rate. unknown. Nuclear localization of CDK5 was found to be significantly Experimental Design: Expression of CDK5 in gastric tumor decreased in tumor tissues and gastric cancer cell lines, and paired adjacent noncancerous tissues from 437 patients was whereas exogenously expression of nucleus-targeted CDK5 measured by Western blotting, immunohistochemistry, and real- inhibited the proliferation and xenograft implantation of time PCR. The subcellular translocation of CDK5 was monitored gastric cancer cells. Treatment with the small molecule during gastric cancer cell proliferation. The role of nuclear CDK5 NS-0011, which increases CDK5 accumulation in the nucleus, in gastric cancer tumorigenic proliferation and ex vivo xenografts suppressed both cancer cell proliferation and xenograft was explored. Furthermore, by screening for compounds in the tumorigenesis. PubChem database that disrupt CDK5 association with its nu- Conclusions: Our results suggest that low CDK5 expression is clear export facilitator, we identified a small molecular (NS-0011) associated with poor overall survival in patients with gastric that inhibits gastric cancer cell growth. -
The Role of Model Organisms in the History of Mitosis Research
Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press The Role of Model Organisms in the History of Mitosis Research Mitsuhiro Yanagida Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan Correspondence: [email protected] Mitosis is a cell-cycle stage during which condensed chromosomes migrate to the middle of the cell and segregate into two daughter nuclei before cytokinesis (cell division) with the aid of a dynamic mitotic spindle. The history of mitosis research is quite long, commencing well before the discovery of DNA as the repository of genetic information. However, great and rapid progress has been made since the introduction of recombinant DNA technology and discovery of universal cell-cycle control. A large number of conserved eukaryotic genes required for the progression from early to late mitotic stages have been discovered, confirm- ing that DNA replication and mitosis are the two main events in the cell-division cycle. In this article, a historical overview of mitosis is given, emphasizing the importance of diverse model organisms that have been used to solve fundamental questions about mitosis. Onko Chisin—An attempt to discover new truths by checkpoint [SAC]), then metaphase (in which studying the past through scrutiny of the old. the chromosomes are aligned in the middle of cell), anaphase A (in which identical sister chro- matids comprising individual chromosomes LARGE SALAMANDER CHROMOSOMES separate and move toward opposite poles of ENABLED THE FIRST DESCRIPTION the cell), anaphase B (in which the spindle elon- OF MITOSIS gates as the chromosomes approach the poles), itosis means “thread” in Greek. -
Mitosis Vs. Meiosis
Mitosis vs. Meiosis In order for organisms to continue growing and/or replace cells that are dead or beyond repair, cells must replicate, or make identical copies of themselves. In order to do this and maintain the proper number of chromosomes, the cells of eukaryotes must undergo mitosis to divide up their DNA. The dividing of the DNA ensures that both the “old” cell (parent cell) and the “new” cells (daughter cells) have the same genetic makeup and both will be diploid, or containing the same number of chromosomes as the parent cell. For reproduction of an organism to occur, the original parent cell will undergo Meiosis to create 4 new daughter cells with a slightly different genetic makeup in order to ensure genetic diversity when fertilization occurs. The four daughter cells will be haploid, or containing half the number of chromosomes as the parent cell. The difference between the two processes is that mitosis occurs in non-reproductive cells, or somatic cells, and meiosis occurs in the cells that participate in sexual reproduction, or germ cells. The Somatic Cell Cycle (Mitosis) The somatic cell cycle consists of 3 phases: interphase, m phase, and cytokinesis. 1. Interphase: Interphase is considered the non-dividing phase of the cell cycle. It is not a part of the actual process of mitosis, but it readies the cell for mitosis. It is made up of 3 sub-phases: • G1 Phase: In G1, the cell is growing. In most organisms, the majority of the cell’s life span is spent in G1. • S Phase: In each human somatic cell, there are 23 pairs of chromosomes; one chromosome comes from the mother and one comes from the father. -
Cohesin Architecture and Clustering in Vivo Siheng Xiang, Douglas Koshland*
RESEARCH ARTICLE Cohesin architecture and clustering in vivo Siheng Xiang, Douglas Koshland* Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States Abstract Cohesin helps mediate sister chromatid cohesion, chromosome condensation, DNA repair, and transcription regulation. We exploited proximity-dependent labeling to define the in vivo interactions of cohesin domains with DNA or with other cohesin domains that lie within the same or in different cohesin complexes. Our results suggest that both cohesin’s head and hinge domains are proximal to DNA, and cohesin structure is dynamic with differential folding of its coiled coil regions to generate butterfly confirmations. This method also reveals that cohesins form ordered clusters on and off DNA. The levels of cohesin clusters and their distribution on chromosomes are cell cycle-regulated. Cohesin clustering is likely necessary for cohesion maintenance because clustering and maintenance uniquely require the same subset of cohesin domains and the auxiliary cohesin factor Pds5p. These conclusions provide important new mechanistic and biological insights into the architecture of the cohesin complex, cohesin–cohesin interactions, and cohesin’s tethering and loop-extruding activities. Introduction Chromosome segregation, DNA damage repair, and the regulation of gene expression require the tethering or folding of chromosomes (Uhlmann, 2016; Onn et al., 2008). Remarkably, these differ- ent types of chromosome organizations are all mediated by a conserved family of protein complexes *For correspondence: [email protected] called structural maintenance of chromosomes (SMC) (Onn et al., 2008; Nolivos and Sherratt, 2014; Hirano, 2016; Hassler et al., 2018). SMC complexes tether and fold chromosomes by two Competing interests: The activities. -
Kinetochores, Microtubules, and Spindle Assembly Checkpoint
Review Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling 1 1,2,3 Carlos Sacristan and Geert J.P.L. Kops 1 Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands 2 Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands 3 Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands Error-free chromosome segregation relies on stable and cell division. The messenger is the SAC (also known as connections between kinetochores and spindle microtu- the mitotic checkpoint) (Figure 1). bules. The spindle assembly checkpoint (SAC) monitors The transition to anaphase is triggered by the E3 ubiqui- such connections and relays their absence to the cell tin ligase APC/C, which tags inhibitors of mitotic exit cycle machinery to delay cell division. The molecular (CYCLIN B) and of sister chromatid disjunction (SECURIN) network at kinetochores that is responsible for microtu- for proteasomal degradation [2]. The SAC has a one-track bule binding is integrated with the core components mind, inhibiting APC/C as long as incorrectly attached of the SAC signaling system. Molecular-mechanistic chromosomes persist. It goes about this in the most straight- understanding of how the SAC is coupled to the kineto- forward way possible: it assembles a direct and diffusible chore–microtubule interface has advanced significantly inhibitor of APC/C at kinetochores that are not connected in recent years. The latest insights not only provide a to spindle microtubules. This inhibitor is named the striking view of the dynamics and regulation of SAC mitotic checkpoint complex (MCC) (Figure 1). -
The Emerging Role of Ncrnas and RNA-Binding Proteins in Mitotic Apparatus Formation
non-coding RNA Review The Emerging Role of ncRNAs and RNA-Binding Proteins in Mitotic Apparatus Formation Kei K. Ito, Koki Watanabe and Daiju Kitagawa * Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; [email protected] (K.K.I.); [email protected] (K.W.) * Correspondence: [email protected] Received: 11 November 2019; Accepted: 13 March 2020; Published: 20 March 2020 Abstract: Mounting experimental evidence shows that non-coding RNAs (ncRNAs) serve a wide variety of biological functions. Recent studies suggest that a part of ncRNAs are critically important for supporting the structure of subcellular architectures. Here, we summarize the current literature demonstrating the role of ncRNAs and RNA-binding proteins in regulating the assembly of mitotic apparatus, especially focusing on centrosomes, kinetochores, and mitotic spindles. Keywords: ncRNA; centrosome; kinetochore; mitotic spindle 1. Introduction Non-coding RNAs (ncRNAs) are defined as a class of RNA molecules that are transcribed from genomic DNA, but not translated into proteins. They are mainly classified into the following two categories according to their length—small RNA (<200 nt) and long non-coding RNA (lncRNA) (>200 nt). Small RNAs include traditional RNA molecules, such as transfer RNA (tRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), PIWI-interacting RNA (piRNA), and micro RNA (miRNA), and they have been studied extensively [1]. Research on lncRNA is behind that on small RNA despite that recent transcriptome analysis has revealed that more than 120,000 lncRNAs are generated from the human genome [2–4]. -
Shaping of the 3D Genome by the Atpase Machine Cohesin Yoori Kim1 and Hongtao Yu1,2
Kim and Yu Experimental & Molecular Medicine (2020) 52:1891–1897 https://doi.org/10.1038/s12276-020-00526-2 Experimental & Molecular Medicine REVIEW ARTICLE Open Access Shaping of the 3D genome by the ATPase machine cohesin Yoori Kim1 and Hongtao Yu1,2 Abstract The spatial organization of the genome is critical for fundamental biological processes, including transcription, genome replication, and segregation. Chromatin is compacted and organized with defined patterns and proper dynamics during the cell cycle. Aided by direct visualization and indirect genome reconstruction tools, recent discoveries have advanced our understanding of how interphase chromatin is dynamically folded at the molecular level. Here, we review the current understanding of interphase genome organization with a focus on the major regulator of genome structure, the cohesin complex. We further discuss how cohesin harnesses the energy of ATP hydrolysis to shape the genome by extruding chromatin loops. Introduction dynamic and preferentially form at certain genomic loci to The diploid human genome contains 46 chromosomes regulate gene expression and other DNA transactions. In and 6 billion nucleotides of DNA that, when fully exten- this article, we review our current understanding of the ded, span a length of over 2 m. The genomic DNA has to local and global landscapes of interphase chromatin and fi 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; be folded and con ned in the nucleus, which has a discuss how cohesin structures chromatin. dimension of ~10 μm. The compaction of genomic DNA also needs to be dynamic and orderly to allow myriad Local folding of interphase chromatin biochemical reactions that occur on the DNA template, Until recently, the dominant hypothesis for genome including DNA replication and repair, homologous packaging was the hierarchical folding model. -
The Cell Cycle & Mitosis
The Cell Cycle & Mitosis Cell Growth The Cell Cycle is G1 phase ___________________________________ _______________________________ During the Cell Cycle, a cell ___________________________________ ___________________________________ Anaphase Cell Division ___________________________________ Mitosis M phase M ___________________________________ S phase replication DNA Interphase Interphase is ___________________________ ___________________________________ G2 phase Interphase is divided into three phases: ___, ___, & ___ G1 Phase S Phase G2 Phase The G1 phase is a period of The S phase replicates During the G2 phase, many of activity in which cells _______ ________________and the organelles and molecules ____________________ synthesizes _______ molecules. required for ____________ __________ Cells will When DNA replication is ___________________ _______________ and completed, _____________ When G2 is completed, the cell is synthesize new ___________ ____________________ ready to enter the ____________________ ____________________ ____________________ ____________________ ____________________ Mitosis are divided into four phases: _____________, ______________, _____________, & _____________ Below are cells in two different phases of the cell cycle, fill in the blanks using the word bank: Chromatin Nuclear Envelope Chromosome Sister Chromatids Nucleolus Spinder Fiber Centrosome Centrioles 5.._________ 1.__________ v 6..__________ 2.__________ 7.__________ 3.__________ 8..__________ 4.__________ v The Cell Cycle & Mitosis Microscope Lab: