Parallel Running

Total Page:16

File Type:pdf, Size:1020Kb

Parallel Running www.phparch.com October 2020 Volume 19 - Issue 10 Parallel Running Build An All-In-One Application Server Using Swoole More Than Asynchronous I/O, Introduction To Swoole PHP Serverless File Uploading Education Station: The Workshop: Security Corner: Race Conditions and PHP Development with Observable Security Dead Locks Homestead in WSL PHP Puzzles: Community Corner: Sustainable PHP: Improved Directions ALSO INSIDE Larabelles Refactor to Competitive finally{}: Advantage Async Life a php[architect] anthology Learn how a Grumpy Programmer approaches testing PHP applications, covering both the technical and core skills you need to learn in order to make testing just a thing you do instead of a thing you struggle with. The Grumpy Programmer’s Guide To Testing PHP Applications by Chris Hartjes (@grmpyprogrammer) provides help for developers who are looking to become more test-centric and reap the benefits of automated testing and related tooling like static analysis and automation. Available in Print+Digital and Digital Editions. Order Your Copy phpa.me/grumpy-testing-book Build a custom, secure, multilingual website with WordPress WordPress is more than a blogging platform—it powers one-fifth of all sites. Since its release, enthusiastic contributors have pushed the en- velope to use it as a platform for building specialized social networks, e-commerce storefronts, business sites, and more. This guide helps you sort through the vast number of plugins available to find the ones that work for you. You’ll also learn how to use CSS and PHP code to tailor WordPress to your needs further. Written by PHP professionals Peter MacIntyre and Sávio Resende, this book distills their experience building online solutions for other Word- Press site builders, developers, and designers to leverage and get up to speed quickly. Read a sample and purchase your copy at the link below. Order Your Copy http://phpa.me/wpdevdepth-book FEATURE More Than Asynchronous I/O, Introduction To Swoole PHP Bruce Dou Swoole PHP is a coroutine based asynchronous network application framework. It is a PHP extension that extends PHP core and utilizes more power provided by Linux OS. Unlike the callback style single thread asynchronous I/O provided by the other networking libraries like Node.js, Swoole PHP has multiple asynchronous I/O threads and native coroutines to manage the execution of concurrent tasks. Other than asynchronous I/O and coroutine, we can also use the Linux system API and interface exposed by Swoole PHP, such as process management, system signals handling, timer and scheduler, poll and epoll I/O, memory management, etc. What Problem Does Swoole PHP Solve? The First Glance: HTTP Echo Server Swoole PHP1 is designed for building large scale concur- Let’s start with an echo server with HTTP protocol shown rent systems. The system needs to manage more than 10K in Listing 1, which processes an HTTP request and sends concurrent connections. It is a solution to the famous C10K back a hello world HTTP response to a browser or HTTP problem with PHP and a stateful architecture. client. It is executed as a PHP CLI application. Use a port We cannot use PHP-FPM’s stateless nature to build a number more than 1024 if you like to run the application as system with modern web protocols like WebSockets, which a non-root user. require establishing persistent connections with every user Compared with PHP-FPM applications we are familiar and sending, receiving data in real-time. with, there is a bit more boilerplate code. We have to define With Swoole PHP, building a real-time service is as simple a server with an IP address, port to bind on first, and then as building PHP-FPM applications we are familiar with. You define how we process the HTTP request. It gives us more can define how to respond to requests in the predefined call- flexibility since we can choose the IP address, port, protocol back functions to build a WebSocket server or TCP/UDP at the PHP application layer. Traditional PHP applications server with only several lines of code. that sit behind a web server couldn’t change those values. Compared with the other single thread callback style When the server starts, it initializes several reactor threads asynchronous I/O frameworks built with PHP or JavaScript, implemented with epoll in Linux or kqueue in OSX to Swoole is released as a PHP extension, including high-per- perform non-blocking I/O operations. Event loops manage formance protocol parsers written with C/C++, multiple the status of file descriptors in these reactor threads. Swoole asynchronous I/O handling threads, native lightweight thread coroutine, and multiple processes architecture. Listing 1. Swoole PHP also exposes the under layer Linux API to 1. <?php the PHP layer. With it, we can use PHP to build system-level 2. declare(strict_types=1); software. 3. It is not designed to replace the stateless PHP-FPM but as 4. use Swoole\HTTP\Server; a different and additional stateful programming model for 5. use Swoole\Http\Request; 6. use Swoole\Http\Response; PHP developers and system architects. Unlike PHP-FPM, 7. a Swoole application is started as a Linux process you can 8. $server = new Server("0.0.0.0", 9900); define with PHP code. If you are not deploying it with Docker, 9. you can use a Linux process manager such as supervisord or 10. $server->on("request", systemd to manage the Swoole application. 11. function (Request $request, Response $response) { 12. $response->header("Content-Type", "text/plain"); Swoole PHP provides coroutine and asynchronous I/O for 13. $response->end("Hello World\n"); concurrent programming, which we can use to manage thou- 14. } sands of persistent concurrentSample connections either as a server 15. ); or as a client with only one process. 16. 17. $server->start(); 1 Swoole PHP: https://www.swoole.co.uk 8 \ October 2020 \ www.phparch.com More Than Asynchronous I/O, Introduction To Swoole PHP doesn’t support Windows OS unless you run it inside a Linux Listing 2. environment with Docker. To better utilize the power of the multiple CPU cores, we 1. <?php create numerous worker processes to serve the requests 2. declare(strict_types=1); sent to the server. The data received by reactor threads are 3. 4. use Swoole\Server; dispatched to the callback functions in the worker processes 5. registered on the server. 6. $server = new Server("0.0.0.0", 9900); We can also write similar code to create a Server speaking 7. with other protocols such as TCP, UDP, WebSocket, MQTT, 8. $server->on("receive", etc. The code in Listing 2 is a similar server with TCP protocol. 9. function (Server $server, int $fd, 10. int $reactor_id, string $data) { If we build a similar TCP server with socket API provided 11. $server->send($fd, "Hello: {$data}"); by PHP, there will be much more boilerplate code, and 12. $server->close($fd); you have to understand how Linux sockets work. You can 13. } compare the above code with the PHP sockets example2. 14. ); 15. You can send a TCP package hey to the server with Netcat nc 16. $server->start(); and receive the response generated by the server: Hello: hey. (echo 'hey'; sleep 1) | nc 127.0.0.1 9900 Listing 3. You can define a custom protocol using the TCP protocol specifically fitting for your application to reduce HTTP overhead. 1. <?php 2. declare(strict_types=1); Event Emitter And Timer 3. 4. use Swoole\HTTP\Server; When thinking about web applications, the execution 5. use Swoole\Http\Request; can be triggered by an HTTP request or triggered by some 6. use Swoole\Http\Response; predefined events or rules. 7. For example, many PHP applications perform house- 8. $server = new Server("0.0.0.0", 9900); 9. keeping jobs with fixed intervals like sending the daily email, 10. $server->on("workerStart", sending a queued email, refreshing caches, recalculating a 11. function (Server $server, int $worker_id) { billboard, or pushing fresh data to the user’s browser. 12. if ($worker_id === 0) { We can do this with Linux CRON jobs to simulate user 13. $server->tick(1000, function () { requests by sending an HTTP request to the HTTP applica- 14. echo time() . "\n"; tion, or run a PHP CLI script to avoid the HTTP server-side 15. }); timeout limitation. But this approach relies on an external 16. } 17. } system CRON with a minimum minute interval scheduler. To 18. ); CRON sleep schedule second interval tasks with , is required, 19. which is more complex and inconvenient. 20. $server->on("request", In Swoole PHP, we can define a ticker executed every 21. function (Request $request, Response $response) { second or even every millisecond within Server and start the 22. $response->header("Content-Type", "text/plain"); ticker with the Server, see Listing 3. 23. $response->end("Hello World\n"); 24. } worker Notice the ticker only executes in one , which is the 25. ); one with worker_id of 0 (zero). As mentioned before, the 26. server creates multiple worker processes, and we only want 27. $server->start(); the events to be triggered once per second. Otherwise, all the worker threads would fire every second. PHP-FPM helps us to manage multiple PHP processes With the ability to trigger an event every second or every serving the HTTP requests. So, we don’t have to think about millisecond, we can build near-real-time applications. Process Management when writing PHP applications. The downside is that we cannot define or customize how PHP Compare With PHP-FPM processes are launched or managed with PHP. PHP-FPM is a stateless design; the whole context is created Swoole PHP runs as a PHP CLI application.
Recommended publications
  • The Early History of Smalltalk
    The Early History of Smalltalk http://www.accesscom.com/~darius/EarlyHistoryS... The Early History of Smalltalk Alan C. Kay Apple Computer [email protected]# Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. HOPL-II/4/93/MA, USA © 1993 ACM 0-89791-571-2/93/0004/0069...$1.50 Abstract Most ideas come from previous ideas. The sixties, particularly in the ARPA community, gave rise to a host of notions about "human-computer symbiosis" through interactive time-shared computers, graphics screens and pointing devices. Advanced computer languages were invented to simulate complex systems such as oil refineries and semi-intelligent behavior. The soon-to- follow paradigm shift of modern personal computing, overlapping window interfaces, and object-oriented design came from seeing the work of the sixties as something more than a "better old thing." This is, more than a better way: to do mainframe computing; for end-users to invoke functionality; to make data structures more abstract. Instead the promise of exponential growth in computing/$/volume demanded that the sixties be regarded as "almost a new thing" and to find out what the actual "new things" might be. For example, one would compute with a handheld "Dynabook" in a way that would not be possible on a shared mainframe; millions of potential users meant that the user interface would have to become a learning environment along the lines of Montessori and Bruner; and needs for large scope, reduction in complexity, and end-user literacy would require that data and control structures be done away with in favor of a more biological scheme of protected universal cells interacting only through messages that could mimic any desired behavior.
    [Show full text]
  • Object-Oriented Programming in the Beta Programming Language
    OBJECT-ORIENTED PROGRAMMING IN THE BETA PROGRAMMING LANGUAGE OLE LEHRMANN MADSEN Aarhus University BIRGER MØLLER-PEDERSEN Ericsson Research, Applied Research Center, Oslo KRISTEN NYGAARD University of Oslo Copyright c 1993 by Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. All rights reserved. No part of this book may be copied or distributed without the prior written permission of the authors Preface This is a book on object-oriented programming and the BETA programming language. Object-oriented programming originated with the Simula languages developed at the Norwegian Computing Center, Oslo, in the 1960s. The first Simula language, Simula I, was intended for writing simulation programs. Si- mula I was later used as a basis for defining a general purpose programming language, Simula 67. In addition to being a programming language, Simula1 was also designed as a language for describing and communicating about sys- tems in general. Simula has been used by a relatively small community for many years, although it has had a major impact on research in computer sci- ence. The real breakthrough for object-oriented programming came with the development of Smalltalk. Since then, a large number of programming lan- guages based on Simula concepts have appeared. C++ is the language that has had the greatest influence on the use of object-oriented programming in industry. Object-oriented programming has also been the subject of intensive research, resulting in a large number of important contributions. The authors of this book, together with Bent Bruun Kristensen, have been involved in the BETA project since 1975, the aim of which is to develop con- cepts, constructs and tools for programming.
    [Show full text]
  • CPS323 Lecture: Concurrency Materials: 1. Coroutine Projectables
    CPS323 Lecture: Concurrency Materials: 1. Coroutine Projectables 2. Handout for Ada Concurrency + Executable form (simple_tasking.adb, producer_and_consumer.adb) I. Introduction - ------------ A. Most of our attention throughout the CS curricum has been focussed on _sequential_ programming, in which a program does exactly one thing at a time, following a predictable order of steps. In particular, we expect a given program will always follow the exact same sequence of steps when run on a given set of data. B. An alternative is to think in terms of _concurrent_ programming, in which a "program" (at least in principle) does multiple things at the same time, following an order of steps that is not predictable and may differ between runs even if the same program is run on exactly the same data. C. Concurrency has long been an interest in CS, but has become of particular interest as we move into a situation in which raw hardware speeds have basically plateaued and multicore processors are coming to dominate the hardware scene. There are at least three reasons why this topic is of great interest. 1. Achieving maximum performance using technologies such as multicore processors. 2. Systems that inherently require multiple processors working together cooperatively on a single task - e.g. distributed or embedded systems. 3. Some problems are more naturally addressed by thinking in terms of multiple concurrrent components, rather than a single monolithic program. D. There are two broad approaches that might be taken to concurrency: 1. Make use of system libraries, without directly supporting parallelism in the language. (The approach taken by most languages - e.g.
    [Show full text]
  • A Low-Cost Implementation of Coroutines for C
    University of Wollongong Research Online Department of Computing Science Working Faculty of Engineering and Information Paper Series Sciences 1983 A low-cost implementation of coroutines for C Paul A. Bailes University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/compsciwp Recommended Citation Bailes, Paul A., A low-cost implementation of coroutines for C, Department of Computing Science, University of Wollongong, Working Paper 83-9, 1983, 24p. https://ro.uow.edu.au/compsciwp/76 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] A LOW-COST IMPLEMENTATION OF COROUTINES FOR C Paul A. Bailes Department of Computing Science University of Wollongong Preprint No. 83-9 November 16, 1983 P.O. Box 1144, WOLLONGONG N.S.W. 2500, AUSTRALIA tel (042)-282-981 telex AA29022 A Low-Cost Implementation of Coroutines for C Paul A. Bailes Department of Computing Science University of Wollongong Wollongong N.S.W. 2500 Australia ABSTRACT We identify a set of primitive operations supporting coroutines, and demonstrate their usefulness. We then address their implementation in C accord­ ing to a set of criteria aimed at maintaining simplicity, and achieve a satisfactory compromise between it and effectiveness. Our package for the PDP-II under UNIXt allows users of coroutines in C programs to gain access to the primitives via an included definitions file and an object library; no penalty is imposed upon non-coroutine users. October 6, 1983 tUNIX is a Trademark of Bell Laboratories. A Low-Cost Implementation of Coroutines for C Paul A.
    [Show full text]
  • Kotlin Coroutines Deep Dive Into Bytecode #Whoami
    Kotlin Coroutines Deep Dive into Bytecode #whoami ● Kotlin compiler engineer @ JetBrains ● Mostly working on JVM back-end ● Responsible for (almost) all bugs in coroutines code Agenda I will talk about ● State machines ● Continuations ● Suspend and resume I won’t talk about ● Structured concurrency and cancellation ● async vs launch vs withContext ● and other library related stuff Agenda I will talk about Beware, there will be code. A lot of code. ● State machines ● Continuations ● Suspend and resume I won’t talk about ● Structured concurrency and cancellation ● async vs launch vs withContext ● and other library related stuff Why coroutines ● No dependency on a particular implementation of Futures or other such rich library; ● Cover equally the "async/await" use case and "generator blocks"; ● Make it possible to utilize Kotlin coroutines as wrappers for different existing asynchronous APIs (such as Java NIO, different implementations of Futures, etc). via coroutines KEEP Getting Lazy With Kotlin Pythagorean Triples fun printPythagoreanTriples() { for (i in 1 until 100) { for (j in 1 until i) { for (k in i until 100) { if (i * i + j * j < k * k) { break } if (i * i + j * j == k * k) { println("$i^2 + $j^2 == $k^2") } } } } } Pythagorean Triples fun printPythagoreanTriples() { for (i in 1 until 100) { for (j in 1 until i) { for (k in i until 100) { if (i * i + j * j < k * k) { break } if (i * i + j * j == k * k) { println("$i^2 + $j^2 == $k^2") } } } } } Pythagorean Triples fun printPythagoreanTriples() { for (i in 1 until 100) { for (j
    [Show full text]
  • Csc 520 Principles of Programming Languages Coroutines Coroutines
    Coroutines Coroutines are supported by Simula and Modula-2. CSc 520 They are similar to Java’s threads, except the programmer has to explicitly transfer control from one Principles of Programming execution context to another. Languages Thus, like threads several coroutines can exist simultaneously but unlike threads there is no central 36: Procedures — Coroutines scheduler that decides which coroutine should run next. Christian Collberg A coroutine is represented by a closure. [email protected] A special operation transfer(C) shifts control to the coroutine C, at the location where C last left off. Department of Computer Science University of Arizona Copyright c 2005 Christian Collberg 520—Spring 2005—36 [1] 520—Spring 2005—36 [2] Coroutines. Coroutines. The next slide shows an example from Scott where two var us, cfs: coroutine; coroutines execute “concurrently”, by explicitly transferring control between each other. coroutine update_screen() { ... In the example one coroutine displays a moving detach screen-saver, the other walks the file-system to check loop { for corrupt files. ... transfer(cfs) ... } } coroutine check_file_system() { ... } main () { ... } 520—Spring 2005—36 [3] 520—Spring 2005—36 [4] Coroutines. Coroutines in Modula-2 coroutine check_file_system() { Modula-2's system module provides two functions to create and transfer ... between coroutines: detach for all files do { PROCEDURE NEWPROCESS( proc: PROC; (* The procedure *) ... transfer(cfs) addr: ADDRESS; (* The stack *) ... transfer(cfs) size: CARDINAL; (* The stack size *) ... transfer(cfs) ... VAR new: ADDRESS); (* The coroutine *) } PROCEDURE TRANSFER( } VAR source: ADDRESS; (* Current coroutine *) VAR destination: ADDRESS); (* New coroutine *) main () { us := new update_screen(); The ®rst time TRANSFER is called source will be instantiated to cfs := new check_file_system(); the main (outermost) coroutine.
    [Show full text]
  • Practical Perl Tools Parallel Asynchronicity, Part 2
    COLUMNS Practical Perl Tools Parallel Asynchronicity, Part 2 DAVID N. BLANK-EDELMAN David Blank-Edelman is elcome back for Part 2 of this mini-series on modern methods the Technical Evangelist at for doing multiple things at once in Perl. In the first part (which I Apcera (the comments/ highly recommend that you read first before reading this sequel), views here are David’s alone W and do not represent Apcera/ we talked about some of the simpler methods for multi-tasking like the use Ericsson) . He has spent close to thirty years of fork() and Parallel::ForkManager. We had just begun to explore using the in the systems administration/DevOps/SRE Coro module as the basis for using threads in Perl (since the native stuff is so field in large multiplatform environments ucky) when we ran out of time. Let’s pick up the story roughly where we left it. including Brandeis University, Cambridge Technology Group, MIT Media Laboratory, Coro and Northeastern University. He is the author As a quick reminder, Coro offers an implementation of coroutines that we are going to use as of the O’Reilly Otter book Automating System just a pleasant implementation of cooperative threading (see the previous column for more Administration with Perl and is a frequent invited picayune details around the definition of a coroutine). By cooperative, we mean that each speaker/organizer for conferences in the field. thread gets queued up to run, but can only do so after another thread has explicitly signaled David is honored to serve on the USENIX that it is ready to cede its time in the interpreter.
    [Show full text]
  • Coroutines and Generators Chapter Three
    Coroutines and Generators Coroutines and Generators Chapter Three 3.1 Chapter Overview This chapter discusses two special types of program units known as coroutines and generators. A coroutine is similar to a procedure and a generator is similar to a function. The principle difference between these program units and procedures/functions is that the call/return mechanism is different. Coroutines are especially useful for multiplayer games and other program flow where sections of code "take turns" execut- ing. Generators, as their name implies, are useful for generating a sequence of values; in many respects generators are quite similar to HLA’s iterators without all the restrictions of the iterators (i.e., you can only use iterators within a FOREACH loop). 3.2 Coroutines A common programming paradigm is for two sections of code to swap control of the CPU back and forth while executing. There are two ways to achieve this: preemptive and cooperative. In a preemptive sys- tem, two or more processes or threads take turns executing with the task switch occurring independently of the executing code. A later volume in this text will consider preemptive multitasking, where the Operating System takes responsibility for interrupting one task and transferring control to some other task. In this chapter we’ll take a look at coroutines that explicitly transfer control to another section of the code1 When discussing coroutines, it is instructive to review how HLA’s iterators work, since there is a strong correspondence between iterators and coroutines. Like iterators, there are four types of entries and returns associated with a coroutine: • Initial entry.
    [Show full text]
  • Deriving Type Systems and Implementations for Coroutines
    Deriving Type Systems and Implementations for Coroutines Konrad Anton and Peter Thiemann Institut f¨urInformatik, Universit¨atFreiburg {anton,thiemann}@informatik.uni-freiburg.de Abstract. Starting from reduction semantics for several styles of corou- tines from the literature, we apply Danvy’s method to obtain equivalent functional implementations (definitional interpreters) for them. By ap- plying existing type systems for programs with continuations, we obtain sound type systems for coroutines through the translation. The resulting type systems are similar to earlier hand-crafted ones. As a side product, we obtain implementations for these styles of coroutines in OCaml. 1 Introduction Coroutines are an old programming construct, dating back to the 1960s [5]. They have been neglected for a while, but are currently enjoying a renaissance (e.g. in Lua [12]), sometimes in the limited form of generators (Python [20], C# [17]) and sometimes under different names (e.g., fibers in .NET). Type systems for coroutines have not been considered in the past. Coroutines without parameters and return values (Simula, Modula 2 [21]), coroutine opera- tions whose effects are tied to the static structure of the program (ACL, [16]), or coroutines lexically limited to the body of one function (C#), could be integrated into said languages without special support in the type system. In an earlier paper [1], we developed the first type system for a simply-typed λ-calculus with coroutines. This development was done in an ad-hoc style for a feature-rich calculus and resulted in a type and effect system with a simple notion of subeffecting to capture the control effects of coroutine operations.
    [Show full text]
  • CS164: Introduction to Programming Languages and Compilers, Spring 2012 Thibaud Hottelier UC Berkeley
    Lecture 5 Implementing Coroutines compile AST to bytecode, bytecode interpreter Ras Bodik Hack Your Language! Shaon Barman CS164: Introduction to Programming Thibaud Hottelier Languages and Compilers, Spring 2012 UC Berkeley 1 What you will learn today Implement Asymmetric Coroutines – why a recursive interpreter with implicit stack won’t do Compiling AST to bytecode - this is your first compiler; compiles AST to “flat” code Bytecode Interpreter - bytecode can be interpreted without recursion - hence no need to keep interpreter state on the call stack 2 PA2 PA2 was released today, due Sunday – bytecode interpreter of coroutines – after PA2, you will be able to implement iterators – in PA3, you will build Prolog on top of your coroutines – extra credit: cool use of coroutines (see L4 reading) HW3 has been assigned: cool uses of coroutines This homework is not graded. While it is optional, you are expected to know the homework material: 1) lazy list concatenation 2) regexes Solve at least the lazy list problem before you start on PA2 3 Code 4 Cal Hackathon Friday, February 3, 9:00pm to Saturday, February 4 5:00pm Soda Hall Wozniak Lounge Grand Prize: $1,500!!! Register @ http://code4cal.eventbrite.com/ More information about the event at http://stc.berkeley.edu. The Student Technology Council (STC), an advisory council for the UC Berkeley CIO, Shel Waggener, is hosting Code 4 Cal, a hackathon for students to create innovative, sustainable, and most of all, useful applications or widgets for Cal students. Student-developed app could be adopted by the University! Cash prizes start at $1,500. 4 Review of L4: Why Coroutines Loop calls iterator function to get the next item eg the next token from the input The iterator maintains state between two such calls eg pointer to the input stream.
    [Show full text]
  • Specialising Dynamic Techniques for Implementing the Ruby Programming Language
    SPECIALISING DYNAMIC TECHNIQUES FOR IMPLEMENTING THE RUBY PROGRAMMING LANGUAGE A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2015 By Chris Seaton School of Computer Science This published copy of the thesis contains a couple of minor typographical corrections from the version deposited in the University of Manchester Library. [email protected] chrisseaton.com/phd 2 Contents List of Listings7 List of Tables9 List of Figures 11 Abstract 15 Declaration 17 Copyright 19 Acknowledgements 21 1 Introduction 23 1.1 Dynamic Programming Languages.................. 23 1.2 Idiomatic Ruby............................ 25 1.3 Research Questions.......................... 27 1.4 Implementation Work......................... 27 1.5 Contributions............................. 28 1.6 Publications.............................. 29 1.7 Thesis Structure............................ 31 2 Characteristics of Dynamic Languages 35 2.1 Ruby.................................. 35 2.2 Ruby on Rails............................. 36 2.3 Case Study: Idiomatic Ruby..................... 37 2.4 Summary............................... 49 3 3 Implementation of Dynamic Languages 51 3.1 Foundational Techniques....................... 51 3.2 Applied Techniques.......................... 59 3.3 Implementations of Ruby....................... 65 3.4 Parallelism and Concurrency..................... 72 3.5 Summary............................... 73 4 Evaluation Methodology 75 4.1 Evaluation Philosophy
    [Show full text]
  • Language Design and Implementation Using Ruby and the Interpreter Pattern
    Language Design and Implementation using Ruby and the Interpreter Pattern Ariel Ortiz Information Technology Department Tecnológico de Monterrey, Campus Estado de México Atizapán de Zaragoza, Estado de México, Mexico. 52926 [email protected] ABSTRACT to explore different language concepts and programming styles. In this paper, the S-expression Interpreter Framework (SIF) is Section 4 describes briefly how the SIF has been used in class. presented as a tool for teaching language design and The conclusions are found in section 5. implementation. The SIF is based on the interpreter design pattern and is written in the Ruby programming language. Its core is quite 1.1 S-Expressions S-expressions (symbolic expressions) are a parenthesized prefix small, but it can be easily extended by adding primitive notation, mainly used in the Lisp family languages. They were procedures and special forms. The SIF can be used to demonstrate selected as the framework’s source language notation because advanced language concepts (variable scopes, continuations, etc.) they offer important advantages: as well as different programming styles (functional, imperative, and object oriented). • Both code and data can be easily represented. Adding a new language construct is pretty straightforward. • Categories and Subject Descriptors The number of program elements is minimal, thus a parser is − relatively easy to write. D.3.4 [Programming Languages]: Processors interpreters, • run-time environments. The arity of operators doesn’t need to be fixed, so, for example, the + operator can be defined to accept any number of arguments. General Terms • There are no problems regarding operator precedence or Design, Languages. associativity, because every operator has its own pair of parentheses.
    [Show full text]