The Early History of Smalltalk
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Object-Oriented Programming in the Beta Programming Language
OBJECT-ORIENTED PROGRAMMING IN THE BETA PROGRAMMING LANGUAGE OLE LEHRMANN MADSEN Aarhus University BIRGER MØLLER-PEDERSEN Ericsson Research, Applied Research Center, Oslo KRISTEN NYGAARD University of Oslo Copyright c 1993 by Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. All rights reserved. No part of this book may be copied or distributed without the prior written permission of the authors Preface This is a book on object-oriented programming and the BETA programming language. Object-oriented programming originated with the Simula languages developed at the Norwegian Computing Center, Oslo, in the 1960s. The first Simula language, Simula I, was intended for writing simulation programs. Si- mula I was later used as a basis for defining a general purpose programming language, Simula 67. In addition to being a programming language, Simula1 was also designed as a language for describing and communicating about sys- tems in general. Simula has been used by a relatively small community for many years, although it has had a major impact on research in computer sci- ence. The real breakthrough for object-oriented programming came with the development of Smalltalk. Since then, a large number of programming lan- guages based on Simula concepts have appeared. C++ is the language that has had the greatest influence on the use of object-oriented programming in industry. Object-oriented programming has also been the subject of intensive research, resulting in a large number of important contributions. The authors of this book, together with Bent Bruun Kristensen, have been involved in the BETA project since 1975, the aim of which is to develop con- cepts, constructs and tools for programming. -
Learning with Squeak Etoys
Learning with Squeak Etoys Cathleen Galas, Rita Freudenberg VPRI Research Note RN-2010-002 Viewpoints Research Institute, 1025 Westwood Blvd 2nd flr, Los Angeles, CA 90024 t: (310) 208-0524 Constructionism 2010, Paris Learning with Squeak Etoys Cathleen Galas, [email protected] Squeakland Foundation, Galas Consulting Rita Freudenberg, [email protected] Dept of Computer Science, Otto-von-Guericke-University Magdeburg, Squeakland Foundation Abstract This paper serves as introduction and overview of Squeak Etoys, an engaging computer media- authoring environment, and describes how it aids in the constructionist approach to learning, thinking, and education. Etoys development was inspired by LOGO, the constructionist ideas of Seymour Papert, and Piaget, Bruner, and Montessori. It was developed to help student exploration and discovery in learning and thinking deeply about powerful ideas in math and science. The design of Etoys includes a powerful user interface that will run on all platforms and allow users to author in multiple dimensions. Etoys is an object-oriented system that is built in Squeak, an open-source implementation of Smalltalk. The learning environment is an open world, a sandbox, ready for the creative visions of the user, and undisturbed by buttons and toolbars. Resources are readily available, a click away, stored in flaps, hidden windows that open to many new possibilities. Beginning activities involve creating and scripting objects, building collaboration between objects, and building, exploring, and sharing -
S.No. Name of Article Page No. Details of Author(S)
S.NO. NAME OF PAGE DETAILS OF AUTHOR(S) ARTICLE NO. 1. SOCIAL MEDIA, USE, Page 03- Mr. Alfredo M. Ronchi MISUSE, ABUSE, Page 24 General Secretary of the European REGULATION AND Commission-MEDICI Framework THE WAY FORWARD Piazza Leonarda da Vinci, 32, 20133, Milan, Italy 00390223991 [email protected] 2 SOCIAL MEDIA, USE, MISUSE, ABUSE, REGULATION AND THE WAY FORWARD • Abstract As a side effect of globalisation and massive cyber services the number of crimes both perpetrated at local and global level is growing up. Governments and Law Enforcement Agencies are aware of this and look for potential countermeasures not only following traditional solutions. Technological countermeasures are not enough there is a need to foster the Culture of Cyber Security. This paper will start setting the scene and describing the evolutionary path followed by cyber technology. The issue of privacy tightly connected with information and data ownership will open a more general discussion about risks and threats connected with the increasing use of cyber technologies. Cybersecurity and the need to foster a “Culture of cybersecurity” will take us to the latest part of the document devoted to the social and economic impact of “cyber”. Economic and social impacts of cyber technology are considered as well. Keywords: Data Ownership, Privacy, Ethics, Cybersecurity, Culture of cybersecurity • Setting The Scene We are witnessing relevant changes due to both technological enhancements and modification of user requirements/expectations. In recent times the digital domain, once strictly populated by professional users and computer scientists, has opened up to former digitally divided. Technology is evolving toward a mature “calm” [4 - Weiser 1991] phase, “users” are overlapping more and more with “citizens” [5 - Council of Europe 2001] and they consider technology and e-Services [6 – Ronchi 2019] as an everyday commodity, to buy a ticket, to meet a medical doctor, to access the weather forecast. -
Smahtalk Kernel Language Fv1anual
This document is for Xerox internal use only SmaHtalk Kernel Language fv1anual BY Larry Tesler SEPTEMBER 1977 Smalltalk is a programming rang'uage that deals with objects. Every object has its own data. Objects communicate by sending and receiving messages according to simple. protocols. Objects are grouped into classes. The objects of a class are called its instances. Each class specifies the protocols its instances will know as well as the methods they will use to respond to messages they receive.· The standard facilities of the Small talk system include i/o protocols for disk, display, keyboard, mouse, and Ethernet; basic data structures such as numbers, strings, arrays, and dictionaries; basic control structures such as loops and processes; program editing, compiling, and debugging; text editing, illustration, music. animation, and information storage and retrieval. Smalltalk applications include education, personal computing, and systems research. This interim reference manual covers the semantics and the present syntax of the Smalltalk kernel language. It is assumed that the reader has seen Smalltalk in operation and has programmed computers in Algol-like languages. Familiarity with LISP, Simula, and/or Smallta!k-72 should be helpful but is not necessary. System operation is described in the memo, Browsing and Error Analysis, available under separate cover from the Learning Research Group, Systems Science Laboratory. XEROX PALO ALTO RESEARCH CENTER 3333 Coyote Hill Road / Palo J\lto / California 94304 This document is for Xerox internal use only Discla inler The Smalltalk kernel system is not yet ready for general release. \Ve ask that you do not copy and distribute either the manual or the system at this time. -
CPS323 Lecture: Concurrency Materials: 1. Coroutine Projectables
CPS323 Lecture: Concurrency Materials: 1. Coroutine Projectables 2. Handout for Ada Concurrency + Executable form (simple_tasking.adb, producer_and_consumer.adb) I. Introduction - ------------ A. Most of our attention throughout the CS curricum has been focussed on _sequential_ programming, in which a program does exactly one thing at a time, following a predictable order of steps. In particular, we expect a given program will always follow the exact same sequence of steps when run on a given set of data. B. An alternative is to think in terms of _concurrent_ programming, in which a "program" (at least in principle) does multiple things at the same time, following an order of steps that is not predictable and may differ between runs even if the same program is run on exactly the same data. C. Concurrency has long been an interest in CS, but has become of particular interest as we move into a situation in which raw hardware speeds have basically plateaued and multicore processors are coming to dominate the hardware scene. There are at least three reasons why this topic is of great interest. 1. Achieving maximum performance using technologies such as multicore processors. 2. Systems that inherently require multiple processors working together cooperatively on a single task - e.g. distributed or embedded systems. 3. Some problems are more naturally addressed by thinking in terms of multiple concurrrent components, rather than a single monolithic program. D. There are two broad approaches that might be taken to concurrency: 1. Make use of system libraries, without directly supporting parallelism in the language. (The approach taken by most languages - e.g. -
Pen Computing History
TheThe PastPast andand FutureFuture ofof PenPen ComputingComputing Conrad H. Blickenstorfer, Editor-in-Chief Pen Computing Magazine [email protected] http://www.pencomputing.com ToTo buildbuild thethe future,future, wewe mustmust learnlearn fromfrom thethe pastpast HistoryHistory ofof penpen computingcomputing 1914: Goldberg gets US patent for recognition of handwritten numbers to control machines 1938: Hansel gets US patent for machine recognition of handwriting 1956: RAND Corporation develops digitizing tablet for handwriting recognition 1957-62: Handwriting recognition projects with accuracies of 97-99% 1963: Bell Labs develops cursive recognizer 1966: RAND creates GRAIL, similar to Graffiti Pioneer:Pioneer: AlanAlan KayKay Utah State University Stanford University Xerox PARC: GUI, SmallTalk, OOL Apple Computer Research Fellow Disney Envisioned Dynabook in 1968: The Dynabook will be a “dynamic medium for creative thought, capable of synthesizing all media – pictures, animation, sound, and text – through the intimacy and responsiveness of the personal computer.” HistoryHistory ofof penpen computingcomputing 1970s: Commercial products, including kana/romanji billing machine 1980s: Handwriting recognition companies – Nestor – Communication Intelligence Corporation – Lexicus – Several others Pioneers:Pioneers: AppleApple 1987 Apple prototype – Speech recognition – Intelligent agents – Camera – Folding display – Video conferencing – Wireless communication – Personal Information Manager ““KnowledgeKnowledge NavigatorNavigator”” -
Hopscotch: Towards User Interface Composition Vassili Bykov Cadence Design Systems, 2655 Seely Ave, San Jose, CA 95134
Hopscotch: Towards User Interface Composition Vassili Bykov Cadence Design Systems, 2655 Seely Ave, San Jose, CA 95134 Abstract Hopscotch is the application framework and development environment of Newspeak, a new programming language and platform inspired by Smalltalk, Self and Beta. Hopscotch avoids a number of design limitations and shortcomings of traditional UIs and UI frameworks by favoring an interaction model and implementing a framework architecture that enable composition of interfaces. This paper discusses the deficiencies of the traditional approach, provides an overview of the Hopscotch alternative and analyses how it improves upon the status quo. 1. Introduction Hopscotch are attributable to its revised interaction and navigation model as much as to the underlying Newspeak [1] is a programming language and framework architecture. For this reason, this paper platform being developed by a team led by Gilad pays equal attention to the compositional frame- Bracha at Cadence Design Systems, Inc. The sys- work architecture and to the changes in the inter- tem is currently hosted inside Squeak [2], a descen- action model of Hopscotch compared to more tradi- dent of Smalltalk-80 [3]. Smalltalk, along with Self tional development environments. [4] and Beta [5], is also among the most important influences on the design of the Newspeak language. 2. Traditional Interface Construction This paper focuses on Hopscotch, the applica- tion framework of Newspeak and the Newspeak The art of devising forms to be filled in depends IDE implemented concurrently with the frame- on three elements: obscurity, lack of space, and work. The framework and the IDE allow easy nav- the heaviest penalties for failure. -
Automatic Graph Drawing Lecture 15 Early HCI @Apple/Xerox
Inf-GraphDraw: Automatic Graph Drawing Lecture 15 Early HCI @Apple/Xerox Reinhard von Hanxleden [email protected] 1 [Wikipedia] • One of the first highly successful mass- produced microcomputer products • 5–6 millions produced from 1977 to 1993 • Designed to look like a home appliance • It’s success caused IBM to build the PC • Influenced by Breakout • Visicalc, earliest spreadsheet, first ran on Apple IIe 1981: Xerox Star • Officially named Xerox 8010 Information System • First commercial system to incorporate various technologies that have since become standard in personal computers: • Bitmapped display, window-based graphical user interface • Icons, folders, mouse (two-button) • Ethernet networking, file servers, print servers, and e- mail. • Sold with software based on Lisp (early functional/AI language) and Smalltalk (early OO language) [Wikipedia, Fair Use] Xerox Star Evolution of “Document” Icon Shape [Wikipedia, CC BY-SA 3.0] 1983: Apple Lisa [Wikipedia, CC BY-SA 2.0 fr] Apple Lisa • One of the first personal computers with a graphical user interface (GUI) • In 1982, Steve Jobs (Cofounder of Apple, with Steve Wozniak) was forced out of Lisa project, moved on into existing Macintosh project, and redefined Mac as cheaper, more usable version of Lisa • Lisa was challenged by relatively high price, insufficient SW library, unreliable floppy disks, and immediate release of Macintosh • Sold just about 10,000 units in two years • Introduced several advanced features that would not reappear on Mac or PC for many years Lisa Office -
Dynamic Object-Oriented Programming with Smalltalk
Dynamic Object-Oriented Programming with Smalltalk 1. Introduction Prof. O. Nierstrasz Autumn Semester 2009 LECTURE TITLE What is surprising about Smalltalk > Everything is an object > Everything happens by sending messages > All the source code is there all the time > You can't lose code > You can change everything > You can change things without restarting the system > The Debugger is your Friend © Oscar Nierstrasz 2 ST — Introduction Why Smalltalk? > Pure object-oriented language and environment — “Everything is an object” > Origin of many innovations in OO development — RDD, IDE, MVC, XUnit … > Improves on many of its successors — Fully interactive and dynamic © Oscar Nierstrasz 1.3 ST — Introduction What is Smalltalk? > Pure OO language — Single inheritance — Dynamically typed > Language and environment — Guiding principle: “Everything is an Object” — Class browser, debugger, inspector, … — Mature class library and tools > Virtual machine — Objects exist in a persistent image [+ changes] — Incremental compilation © Oscar Nierstrasz 1.4 ST — Introduction Smalltalk vs. C++ vs. Java Smalltalk C++ Java Object model Pure Hybrid Hybrid Garbage collection Automatic Manual Automatic Inheritance Single Multiple Single Types Dynamic Static Static Reflection Fully reflective Introspection Introspection Semaphores, Some libraries Monitors Concurrency Monitors Categories, Namespaces Packages Modules namespaces © Oscar Nierstrasz 1.5 ST — Introduction Smalltalk: a State of Mind > Small and uniform language — Syntax fits on one sheet of paper > -
Interview with James Mitchell
Interview with James Mitchell Interviewed by: David C. Brock Recorded February 19, 2019 Santa Barbara, CA CHM Reference number: X8963.2019 © 2019 Computer History Museum Interview with James Mitchell Brock: Yeah. So, yeah, maybe we can talk about your transition from Carnegie Mellon to PARC and how that opportunity came about, and what your thinking was about joining the new lab. Mitchell: I basically finished my PhD and left in July of 1970. I had missed graduation that year, so my diploma says 1971. But, in fact, I'd been out working for a year by then, and at PARC, you know, there were a number of other grad students I knew, and two of them had gone to work for a start-up in Berkeley that-- there were two Berkeley computer science departments, and the engineering one left to form this company called Berkeley Computer Corporation with Mel Pirtle running it and Butler Lampson kind of a chief technical officer and Chuck Thacker and so on, and anyway the people that I-- the two other grad students that had gone already that I knew, when I was going out, I was starting to go around and interview in early 1970 because I knew I was close to being finished, and it was in those days because there were so few people who had PhDs in computer science and every university was trying to build a department, and industrial research places like Bell Labs were trying to hire people and so on, anywhere you went with a new PhD you got an offer. -
A Low-Cost Implementation of Coroutines for C
University of Wollongong Research Online Department of Computing Science Working Faculty of Engineering and Information Paper Series Sciences 1983 A low-cost implementation of coroutines for C Paul A. Bailes University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/compsciwp Recommended Citation Bailes, Paul A., A low-cost implementation of coroutines for C, Department of Computing Science, University of Wollongong, Working Paper 83-9, 1983, 24p. https://ro.uow.edu.au/compsciwp/76 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] A LOW-COST IMPLEMENTATION OF COROUTINES FOR C Paul A. Bailes Department of Computing Science University of Wollongong Preprint No. 83-9 November 16, 1983 P.O. Box 1144, WOLLONGONG N.S.W. 2500, AUSTRALIA tel (042)-282-981 telex AA29022 A Low-Cost Implementation of Coroutines for C Paul A. Bailes Department of Computing Science University of Wollongong Wollongong N.S.W. 2500 Australia ABSTRACT We identify a set of primitive operations supporting coroutines, and demonstrate their usefulness. We then address their implementation in C accord ing to a set of criteria aimed at maintaining simplicity, and achieve a satisfactory compromise between it and effectiveness. Our package for the PDP-II under UNIXt allows users of coroutines in C programs to gain access to the primitives via an included definitions file and an object library; no penalty is imposed upon non-coroutine users. October 6, 1983 tUNIX is a Trademark of Bell Laboratories. A Low-Cost Implementation of Coroutines for C Paul A. -
1. with Examples of Different Programming Languages Show How Programming Languages Are Organized Along the Given Rubrics: I
AGBOOLA ABIOLA CSC302 17/SCI01/007 COMPUTER SCIENCE ASSIGNMENT 1. With examples of different programming languages show how programming languages are organized along the given rubrics: i. Unstructured, structured, modular, object oriented, aspect oriented, activity oriented and event oriented programming requirement. ii. Based on domain requirements. iii. Based on requirements i and ii above. 2. Give brief preview of the evolution of programming languages in a chronological order. 3. Vividly distinguish between modular programming paradigm and object oriented programming paradigm. Answer 1i). UNSTRUCTURED LANGUAGE DEVELOPER DATE Assembly Language 1949 FORTRAN John Backus 1957 COBOL CODASYL, ANSI, ISO 1959 JOSS Cliff Shaw, RAND 1963 BASIC John G. Kemeny, Thomas E. Kurtz 1964 TELCOMP BBN 1965 MUMPS Neil Pappalardo 1966 FOCAL Richard Merrill, DEC 1968 STRUCTURED LANGUAGE DEVELOPER DATE ALGOL 58 Friedrich L. Bauer, and co. 1958 ALGOL 60 Backus, Bauer and co. 1960 ABC CWI 1980 Ada United States Department of Defence 1980 Accent R NIS 1980 Action! Optimized Systems Software 1983 Alef Phil Winterbottom 1992 DASL Sun Micro-systems Laboratories 1999-2003 MODULAR LANGUAGE DEVELOPER DATE ALGOL W Niklaus Wirth, Tony Hoare 1966 APL Larry Breed, Dick Lathwell and co. 1966 ALGOL 68 A. Van Wijngaarden and co. 1968 AMOS BASIC FranÇois Lionet anConstantin Stiropoulos 1990 Alice ML Saarland University 2000 Agda Ulf Norell;Catarina coquand(1.0) 2007 Arc Paul Graham, Robert Morris and co. 2008 Bosque Mark Marron 2019 OBJECT-ORIENTED LANGUAGE DEVELOPER DATE C* Thinking Machine 1987 Actor Charles Duff 1988 Aldor Thomas J. Watson Research Center 1990 Amiga E Wouter van Oortmerssen 1993 Action Script Macromedia 1998 BeanShell JCP 1999 AngelScript Andreas Jönsson 2003 Boo Rodrigo B.