Cell-Surface Receptors for Retroviruses and Implications for Gene Transfer A

Total Page:16

File Type:pdf, Size:1020Kb

Cell-Surface Receptors for Retroviruses and Implications for Gene Transfer A Proc. Natl. Acad. Sci. USA Vol. 93, pp. 11407-11413, October 1996 Colloquium Paper This paper was presented at a colloquium entitled "Genetic Engineering of Viruses and of Virus Vectors," organized by Bernard Roizman and Peter Palese (Co-chairs), held June 9-11, 1996, at the National Academy ofSciences in Irvine, CA Cell-surface receptors for retroviruses and implications for gene transfer A. DUSTY MILLER Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Room C2-023, Seattle, WA 98109 ABSTRACT Retroviruses can utilize a variety of cell- occurring retroviruses can use a variety of different proteins surface proteins for binding and entry into cells, and the for cell entry, although in general individual retroviruses cloning of several of these viral receptors has allowed refine- appear to recognize- a single receptor. Utilization of addi- ment of models to explain retrovirus tropism. A single recep- tional cell-surface proteins for vector entry has been tor appears to be necessary and sufficient for entry of many achieved by incorporation of polypeptides into the Env retroviruses, but exceptions to this simple model are accu- protein to alter its receptor binding properties or by replace- mulating. For example, HIV requires two proteins for cell ment of the retroviral Env protein with surface proteins from entry, neither of which alone is sufficient; lOAl murine other viruses. These alterations can allow targeting of par- leukemia virus can enter cells by using either of two distinct ticular cells that express specific proteins or an expansion of receptors; two retroviruses can use different receptors in some the range of cells that can be transduced by targeting broadly cells but use the same receptor for entry into other cells; and expressed proteins. In this paper I will review the factors that posttranslational protein modifications and secreted factors govern retrovirus binding and entry into cells and implica- can dramatically influence virus entry. These findings greatly tions for the design of retroviral vectors. complicate the rules governing retrovirus tropism. The mech- anism underlying retrovirus evolution to use many receptors Virus Interference for cell entry is not clear, although some evidence supports a mutational model for the evolution of new receptor specific- Early evidence that retroviruses use multiple receptors for cell ities. Further study offactors that govern retrovirus entry into entry came from studies of virus interference. Infection of a cells are important for achieving high-efficiency gene trans- cell by a replication-competent retrovirus results in synthesis duction to specific cells and for the design of retroviral vectors of a retroviral Env protein that binds to the receptor used for to target additional receptors for cell entry. virus entry. This effectively blocks entry of the original virus and other retroviruses that target the same receptor, whereas Many features make retrovirus vectors a good choice for gene entry of retroviruses that use different receptors is unaffected. transfer into animal cells. Most importantly, these vectors Interference between retroviruses has been shown to occur at integrate efficiently into the target cell genome to promote the level of virus entry into cells and not at some other step in stable gene transfer, and integration is precise with respect to the virus life cycle. By interference analysis, retroviruses that the virus genome, resulting in unrearranged transfer of the infect human cells have been assigned to eight groups that use desired genes. The only other integrating vector is derived different receptors on human cells (Table 1). The genes from adeno-associated virus, but integration is inefficient (1) encoding these receptors are scattered on different chromo- and appears not to be precise with respect to the viral genome somes (Table 1), indicating that the receptors are different (2). In addition, retroviral vectors can transduce both dividing proteins. and non-dividing cells, although this is true of vectors derived from HIV (3) and not the commonly used vectors derived from Cloned Retrovirus Receptors murine leukemia viruses, which require cell division (4). Furthermore, retrovirus vectors can be designed to eliminate In 1984 CD4 (previously called T4) was identified as a all viral protein coding regions without affecting gene transfer receptor for HIV-1, and became the first known retrovirus rates, and can be made in the absence of replication-competent receptor (12, 13). Since then, six additional retrovirus re- virus by using retrovirus packaging cell lines, which supply all ceptors have been identified and their cDNAs cloned (Table of the viral proteins required for vector transmission. Gene 2). All except CD4 appear to be sufficient for entry of the transfer and expression mediated by such replication- corresponding retroviruses by the criteria that expression of incompetent vectors is called transduction to differentiate this these receptors in nonpermissive cells renders the cells process from virus infection followed by further virus replica- susceptible to infection. In contrast, CD4 transfer into tion. nonpermissive mouse cells does not allow infection by HIV. A key consideration in retroviral vector design is the HIV binds to all cells that express CD4, but another factor source of the viral envelope (Env) protein present on vector is required for HIV entry. Recently, a coreceptor for T-cell virions, because this protein binds to specific cell-surface tropic HIV-1 strains has been found and was named fusin to proteins and is the primary determinant of the range of cells indicate its presumed role in virus entry following HIV-1 that can be transduced by the vector. The name of the virus binding to CD4 (14). Expression of the human CD4 and fusin or the virus group from which the Env protein was derived proteins in mouse cells renders the cells susceptible to HIV-1 will be referred to as the pseudotype of the vector. Naturally infection, whereas either protein alone is insufficient. Even The publication costs of this article were defrayed in part by page charge Abbreviations: MLV, murine leukemia virus; AM-MLV, amphotropic payment. This article must therefore be hereby marked "advertisement" in MLV; MoMLV, Moloney MLV; CHO, Chinese hamster ovary; accordance with 18 U.S.C. §1734 solely to indicate this fact. GALV, gibbon ape leukemia virus; FeLV, feline leukemia virus. 11407 Downloaded by guest on October 6, 2021 11408 Colloquium Paper: Miller Proc. Natl. Acad. Sci. USA 93 (1996) Table 1. Retrovirus interference groups in human cells Interference Human chromosome group Virus Description that encodes receptor 1 RD114 Cat endogenous virus 19 SNV Avian spleen necrosis virus BaEV Baboon endogenous virus SRV-1 Simian retrovirus SRV-2 Simian retrovirus SRV-3 (MPMV) Simian retrovirus SRV-4 Simian retrovirus SRV-5 Simian retrovirus PO-1-Lou Spectacled langur retrovirus SMRV Squirrel monkey retrovirus 2 MLV-A Amphotropic murine leukemia virus 8 3 MLV-X Xenotropic murine leukemia virus 4 FeLV-C Feline leukemia virus 5 FeLV-B Feline leukemia virus -2 SSAV Simian sarcoma-associated virus GALV Gibbon ape leukemia virus 6 BLV Bovine leukemia virus 7 HTLV-1 Human T-cell leukemia virus 17 HTLV-2 Human T-cell leukemia virus ChTLV Chimpanzee T-cell leukemia virus STLV Simian T-cell leukemia virus 8 HIV-1 Human immunodeficiency virus 12 HIV-2 Human immunodeficiency virus SIV Simian immunodeficiency virus Interference data are from Sommerfelt and Weiss (5), and for SNV, from Kewalramani et al. (6). Chromosome localization data are from the following references: group 1 (7), group 2 (8), group 5 (9), group 7 (10), and group 8 (11). more recently, a second protein related to fusin and previ- addition, these proteins serve as receptors for distinct groups ously named CC-CKR-5 has been found to be a coreceptor of viruses in human cells (Table 1). for macrophage-tropic HIV-1 strains (15, 16). These results, showing that two proteins are required for The lOAl Retrovirus Can Use Either of HIV-1 entry, raise the possibility that coreceptors are re- Two Receptors for Cell Entry quired for entry of other retroviruses. However, their de- tection will require the identification of nonpermissive cells Studies of cloned retrovirus receptors and most virus inter- for which transfer of the known receptors does not render the ference data suggested that individual retroviruses bind to a single protein for entry into cells. When different viruses bind cells susceptible to infection. Some retroviruses have a very to the same receptor, they typically show reciprocal inter-fer- wide host range; thus, if other proteins are required for entry ence; that is, infection of cells by either virus blocks entry by of these viruses, functional homologs of these coreceptors the other virus. The finding of nonreciprocal interference must be distributed in cells from many species. widely between some retroviruses complicated this picture. In the Two of the cloned retrovirus receptors, Raml and Glvrl, are example shown (Table 3), transduction by a vector with an closely related at the protein sequence level (21, 22, 24), and amphotropic, a lOA1, or an ecotropic pseudotype was mea- both are sodium-dependent phosphate transporters (23). sured in NIH 3T3 mouse cells infected with amphotropic MLV These proteins are members of a large family of known and (AM-MLV), lOAl MLV, Moloney MLV, or no virus. A typical presumptive phosphate transporters from many organisms pattern of interference for viruses that use different receptors (Fig. 1). However, Raml and Glvrl are clearly distinct since for cell entry is shown by the amphotropic and ecotropic the genes encoding these proteins are located on different viruses, where ecotropic vector transduction is blocked by the chromosomes in humans and mice (8, 9, 30, 31) and they show presence of ecotropic MoMLV in the target cells, but is very different patterns of expression in animal tissues (23). In unaffected by the presence of amphotropic virus, and ampho- Table 2.
Recommended publications
  • Mobile Genetic Elements in Streptococci
    Curr. Issues Mol. Biol. (2019) 32: 123-166. DOI: https://dx.doi.org/10.21775/cimb.032.123 Mobile Genetic Elements in Streptococci Miao Lu#, Tao Gong#, Anqi Zhang, Boyu Tang, Jiamin Chen, Zhong Zhang, Yuqing Li*, Xuedong Zhou* State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China. #Miao Lu and Tao Gong contributed equally to this work. *Address correspondence to: [email protected], [email protected] Abstract Streptococci are a group of Gram-positive bacteria belonging to the family Streptococcaceae, which are responsible of multiple diseases. Some of these species can cause invasive infection that may result in life-threatening illness. Moreover, antibiotic-resistant bacteria are considerably increasing, thus imposing a global consideration. One of the main causes of this resistance is the horizontal gene transfer (HGT), associated to gene transfer agents including transposons, integrons, plasmids and bacteriophages. These agents, which are called mobile genetic elements (MGEs), encode proteins able to mediate DNA movements. This review briefly describes MGEs in streptococci, focusing on their structure and properties related to HGT and antibiotic resistance. caister.com/cimb 123 Curr. Issues Mol. Biol. (2019) Vol. 32 Mobile Genetic Elements Lu et al Introduction Streptococci are a group of Gram-positive bacteria widely distributed across human and animals. Unlike the Staphylococcus species, streptococci are catalase negative and are subclassified into the three subspecies alpha, beta and gamma according to the partial, complete or absent hemolysis induced, respectively. The beta hemolytic streptococci species are further classified by the cell wall carbohydrate composition (Lancefield, 1933) and according to human diseases in Lancefield groups A, B, C and G.
    [Show full text]
  • Transposable Elements Drive Reorganisation of 3D Chromatin
    bioRxiv preprint doi: https://doi.org/10.1101/523712; this version posted January 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Transposable elements drive reorganisation of 3D chromatin during early embryogenesis Kai Kruse1, Noelia Díaz1, §, Rocio Enriquez-Gasca1, §, Xavier Gaume2, 4, Maria-Elena Torres-Padilla2, 3 and Juan M. Vaquerizas1, * 1. Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149 Muenster, Germany. 2. Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Marchioninistraße 25, 81377 Munich, Germany. 3. Faculty of Biology, Ludwig Maximilians Universität, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany. 4. Present address: Cancer Research Center of Lyon, 28 Rue Laennec, Lyon 69008, France. §. These authors have contributed equally to this work. *. Correspondence to J.M.V. ([email protected], @vaquerizasjm) Keywords: Chromosome conformation capture; low-input Hi-C; early embryonic development; totipotency; transposable elements; MERVL; TAds; 2-cell embryo; 2-cell-like cells; zygotic genome activation; CAF-1; dux. Transposable elements are abundant genetic components of eukaryotic genomes with important regulatory features affecting transcription, splicing, and recombination, among others. Here we demonstrate that the Murine Endogenous Retroviral Element (MuERV-L/MERVL) family of transposable elements drives the 3D reorganisation of the genome in the early mouse embryo. By generating Hi-C data in 2-cell-like cells, we show that MERLV elements promote the formation of insulating domain boundaries through- out the genome in vivo and in vitro.
    [Show full text]
  • Review Cell Division from a Genetic Perspective
    REVIEW CELL DIVISION FROM A GENETIC PERSPECTIVE LELAND H. HARTWELL From the Department of Genetics, University of Washington, Seattle, Washington 98195 Recently, a number of laboratories have begun to incubation at the restrictive condition for that study mutant cells that are defective in specific mutation, whereas mutants with defects in one of stages of the eukaryotic cell cycle. The long-range the continuously required functions will arrest at goals of this work are to identify the genes that the restrictive temperature with cells at a variety code for division-related proteins, to define the of positions in the cell cycle. roles that these gene products play and to investi- Classes of mutants may be distinguished from gate the hierarchies of order that assure their one another and the roles of their products delim- coordinated activity. It is my intent in this brief ited by determining the stage-specific event at review to discuss the strategies employed in this which they arrest. It is convenient to have a genetic approach and to enumerate some of the designation for the first landmark of the cell cycle new conclusions that have come to light. A recent that is blocked in a particular mutant, and I shall review on the genetics of meiosis (2) complements call it the diagnostic landmark for that mutant. this review on mitosis. Mutants of Saccharomyces cerevisiae have been identified that have diagnostic landmarks at spin- MUTANTS dle pole body (SPB) duplication, SPB separation, Mutations that inactivate gene products essential initiation of DNA synthesis, DNA replication, for division would be lethal.
    [Show full text]
  • Cell Division and Cycle
    Name: _______________________ Date:_____________ Period_________ Subject: ________ Cell Division and Cycle Read the phase to answer the questions 1 through 10. Living organisms are constantly making new cells. They make new cells in order to grow and also to replace old dead cells. The process by which new cells are made is called cell division. Cell division is occurring all the time. Around two trillion cell divisions occur in the average human body every day! Types of Cell Division There are three main types of cell division: binary fission, mitosis, and meiosis. Binary fission is used by simple organisms like bacteria. More complex organisms gain new cells by either mitosis or meiosis. Mitosis Mitosis is used when a cell needs to be replicated into exact copies of itself. Everything in the cell is duplicated. The two new cells have the same DNA, functions, and genetic code. The original cell is called the mother cell and the two new cells are called daughter cells. The full process, or cycle, of mitosis is described in more detail below. Examples of cells that are produced through mitosis include cells in the human body for the skin, blood, and muscles. Cell Cycle for Mitosis Cells go through different phases called the cell cycle. The "normal" state of a cell is called the "interphase". The genetic material is duplicated during the interphase stage of the cell. When a cell gets the signal that it is to duplicate, it will enter the first state of mitosis called the "prophase". Prophase - During this phase the chromatin condenses into chromosomes and the nuclear membrane and nucleolus break down.
    [Show full text]
  • Herpes Simplex Virus Type 1 Oril Is Not Required for Virus Infection In
    JOURNAL OF VIROLOGY, Nov. 1987, p. 3528-3535 Vol. 61, No. 11 0022-538X/87/113528-08$02.00/0 Copyright C 1987, American Society for Microbiology Herpes Simplex Virus Type 1 oriL Is Not Required for Virus Replication or for the Establishment and Reactivation of Latent Infection in Mice MARYELLEN POLVINO-BODNAR, PAULO K. ORBERG, AND PRISCILLA A. SCHAFFER* Laboratory of Tumor Virus Genetics, Dana-Farber Cancer Institute, and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115 Received 11 May 1987/Accepted 31 July 1987 During the course of experiments designed to isolate deletion mutants of herpes simplex virus type 1 in the gene encoding the major DNA-binding protein, ICP8, a mutant, d61, that grew efficiently in ICP8-expressing Vero cells but not in normal Vero cells was isolated (P. K. Orberg and P. A. Schaffer, J. Virol. 61:1136-1146, 1987). d61 was derived by cotransfection of ICP8-expressing Vero cells with infectious wild-type viral DNA and a plasmid, pDX, that contains an engineered 780-base-pair (bp) deletion in the ICP8 gene, as well as a spontaneous -55-bp deletion in OriL. Gel electrophoresis and Southern blot analysis indicated that d61 DNA carried both deletions present in pDX. The ability of d61 to replicate despite the deletion in OriL suggested that a functional OriL is not essential for virus replication in vitro. Because d61 harbored two mutations, a second mutant, ts+7, with a deletion in oriL-associated sequences and an intact ICP8 gene was constructed. Both d61 and ts+7 replicated efficiently in their respective permissive host cells, although their yields were slightly lower than those of control viruses with intact oriL sequences.
    [Show full text]
  • Mitosis Vs. Meiosis
    Mitosis vs. Meiosis In order for organisms to continue growing and/or replace cells that are dead or beyond repair, cells must replicate, or make identical copies of themselves. In order to do this and maintain the proper number of chromosomes, the cells of eukaryotes must undergo mitosis to divide up their DNA. The dividing of the DNA ensures that both the “old” cell (parent cell) and the “new” cells (daughter cells) have the same genetic makeup and both will be diploid, or containing the same number of chromosomes as the parent cell. For reproduction of an organism to occur, the original parent cell will undergo Meiosis to create 4 new daughter cells with a slightly different genetic makeup in order to ensure genetic diversity when fertilization occurs. The four daughter cells will be haploid, or containing half the number of chromosomes as the parent cell. The difference between the two processes is that mitosis occurs in non-reproductive cells, or somatic cells, and meiosis occurs in the cells that participate in sexual reproduction, or germ cells. The Somatic Cell Cycle (Mitosis) The somatic cell cycle consists of 3 phases: interphase, m phase, and cytokinesis. 1. Interphase: Interphase is considered the non-dividing phase of the cell cycle. It is not a part of the actual process of mitosis, but it readies the cell for mitosis. It is made up of 3 sub-phases: • G1 Phase: In G1, the cell is growing. In most organisms, the majority of the cell’s life span is spent in G1. • S Phase: In each human somatic cell, there are 23 pairs of chromosomes; one chromosome comes from the mother and one comes from the father.
    [Show full text]
  • Topological Analysis of the Gp41 MPER on Lipid Bilayers Relevant to the Metastable HIV-1 Envelope Prefusion State
    Topological analysis of the gp41 MPER on lipid bilayers relevant to the metastable HIV-1 envelope prefusion state Yi Wanga,b, Pavanjeet Kaurc,d, Zhen-Yu J. Sune,1, Mostafa A. Elbahnasawya,b,2, Zahra Hayatic,d, Zhi-Song Qiaoa,b,3, Nhat N. Buic, Camila Chilea,b,4, Mahmoud L. Nasre,5, Gerhard Wagnere, Jia-Huai Wanga,f, Likai Songc, Ellis L. Reinherza,b,6, and Mikyung Kima,g,6 aLaboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; bDepartment of Medicine, Harvard Medical School, Boston, MA 02115; cNational High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306; dDepartment of Physics, Florida State University, Tallahassee, FL 32306; eDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; fDepartment of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215; and gDepartment of Dermatology, Harvard Medical School, Boston, MA 02215 Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved September 23, 2019 (received for review July 18, 2019) The membrane proximal external region (MPER) of HIV-1 envelope immunologically vulnerable epitopes targeted by several of the most glycoprotein (gp) 41 is an attractive vaccine target for elicitation of broadly neutralizing antibodies (bNAbs) developed during the broadly neutralizing antibodies (bNAbs) by vaccination. However, course of natural HIV-1 infection (10–13). Insertion, deletion, current details regarding the quaternary structural organization of and mutations of residues in the MPER defined the functional the MPER within the native prefusion trimer [(gp120/41)3] are elu- importance of the MPER in Env incorporation, viral fusion, and sive and even contradictory, hindering rational MPER immunogen infectivity (14–16).
    [Show full text]
  • Viroporins: Structures and Functions Beyond Cell Membrane Permeabilization
    Editorial Viroporins: Structures and Functions beyond Cell Membrane Permeabilization José Luis Nieva 1,* and Luis Carrasco 2,* Received: 17 September 2015 ; Accepted: 21 September 2015 ; Published: 29 September 2015 Academic Editor: Eric O. Freed 1 Biophysics Unit (CSIC, UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain 2 Centro de Biología Molecular Severo Ochoa (CSIC, UAM), c/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain * Correspondence: [email protected] (J.L.N.); [email protected] (L.C.); Tel.: +34-94-601-3353 (J.L.N.); +34-91-497-8450 (L.C.) Viroporins represent an interesting group of viral proteins that exhibit two sets of functions. First, they participate in several viral processes that are necessary for efficient production of virus progeny. Besides, viroporins interfere with a number of cellular functions, thus contributing to viral cytopathogenicity. Twenty years have elapsed from the first review on viroporins [1]; since then several reviews have covered the advances on viroporin structure and functioning [2–8]. This Special Issue updates and revises new emerging roles of viroporins, highlighting their potential use as antiviral targets and in vaccine development. Viroporin structure. Viroporins are usually short proteins with at least one hydrophobic amphipathic helix. Homo-oligomerization is achieved by helix–helix interactions in membranes rendering higher order structures, forming aqueous pores. Progress in viroporin structures during the last 2–3 years has in some instances provided a detailed knowledge of their functional architecture, including the fine definition of binding sites for effective inhibitors.
    [Show full text]
  • How Influenza Virus Uses Host Cell Pathways During Uncoating
    cells Review How Influenza Virus Uses Host Cell Pathways during Uncoating Etori Aguiar Moreira 1 , Yohei Yamauchi 2 and Patrick Matthias 1,3,* 1 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; [email protected] 2 Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; [email protected] 3 Faculty of Sciences, University of Basel, 4031 Basel, Switzerland * Correspondence: [email protected] Abstract: Influenza is a zoonotic respiratory disease of major public health interest due to its pan- demic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry. Keywords: influenza; capsid uncoating; HDAC6; ubiquitin; EPS8; TNPO1; pandemic; M1; virus– host interaction Citation: Moreira, E.A.; Yamauchi, Y.; Matthias, P. How Influenza Virus Uses Host Cell Pathways during 1. Introduction Uncoating. Cells 2021, 10, 1722. Viruses are microscopic parasites that, unable to self-replicate, subvert a host cell https://doi.org/10.3390/ for their replication and propagation. Despite their apparent simplicity, they can cause cells10071722 severe diseases and even pose pandemic threats [1–3].
    [Show full text]
  • Assembly Lecture 11 Biology W3310/4310 Virology Spring 2014
    Assembly Lecture 11 Biology W3310/4310 Virology Spring 2014 “Anatomy is des.ny.” --SIGMUND FREUD All virions complete a common set of assembly reac3ons * common to all viruses common to many viruses ©Principles of Virology, ASM Press The structure of a virus parcle determines how it is formed ©Principles of Virology, ASM Press Assembly is dependent on host cell machinery • Cellular chaperones • Transport systems • Secretory pathway • Nuclear import and export machinery Concentrang components for assembly: Nothing happens fast in dilute solu1ons • Viral components oSen visible by light microscopy (‘factories’ or ‘inclusions’) • Concentrate proteins on internal membranes (poliovirus) • Negri bodies (rabies virus) Viral proteins have ‘addresses’ built into their structure • Membrane targeYng: Signal sequences, fa\y acid modificaons • Membrane retenYon signals • Nuclear localizaYon sequences (NLS) • Nuclear export signals 414 Localiza3on of viral proteins to the nucleus CHAPTER 12 Golgi apparatus Ribosome Rough endoplasmic reticulum Plasma membrane Py(VP1) + VP2/3 Ad hexon + 5 100 kDa Nuclear envelope: Outer nuclear membrane Inner nuclear membrane Nucleus Nuclear pore complex Mitochondrion Cytoskeleton: Influenza virus NP Intermediate filament Microtubule Actin filament bundle Extracellular matrix ©Principles of Virology, ASM Press Figure 12.1 Localization of viral proteins to the nucleus. The nucleus and major membrane-bound compartments of the cytoplasm, as well as components of the cytoskeleton, are illustrated schematically and not to scale. Viral proteins destined for the nucleus are synthesized by cytoplasmic polyribosomes, as illustrated for the infl uenza virus NP protein. They engage with the cytoplasmic face of the nuclear pore complex and are translocated into the nucleus by the protein import machinery of the host cell.
    [Show full text]
  • Cell Growth and Reproduction Lesson 6.2: Chromosomes and DNA Replication
    Chapter 6: Cell Growth and Reproduction Lesson 6.2: Chromosomes and DNA Replication Cell reproduction involves a series of steps that always begin with the processes of interphase. During interphase the cell’s genetic information which is stored in its nucleus in the form of chromatin, composed of both mitotic and interphase chromosomes molecules of protein complexes and DNA strands that are loosely coiled winds tightly to be replicated. It is estimated that the DNA in human cells consists of approximately three billion nucleotides. If a DNA molecule was stretched out it would measure over 20 miles in length and all of it is stored in the microscopic nuclei of human cells. This lesson will help you to understand how such an enormous amount of DNA is coiled and packed in a complicated yet organized manner. During cell reproduction as a cell gets ready to divide the DNA coils even more into tightly compact structures. Lesson Objectives • Describe the coiled structure of chromosomes. • Understand that chromosomes are coiled structures made of DNA and proteins. They form after DNA replicates and are the form in which the genetic material goes through cell division. • Discover that DNA replication is semi-conservative; half of the parent DNA molecule is conserved in each of the two daughter DNA molecules. • Outline discoveries that led to knowledge of DNA’s structure and function. • Examine the processes of DNA replication. Vocabulary • centromere • double helix • Chargaff’s rules • histones • chromatid • nucleosomes • chromatin • semi-conservative DNA replication • chromosome • sister chromatids • DNA replication • transformation Introduction In eukaryotic cells, the nucleus divides before the cell itself divides.
    [Show full text]
  • The Obscure World of Integrative and Mobilizable Elements Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget
    The obscure world of integrative and mobilizable elements Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget To cite this version: Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget. The obscure world of integrative and mobilizable elements: Highly widespread elements that pirate bacterial conjugative systems. Genes, MDPI, 2017, 8 (11), pp.337. 10.3390/genes8110337. hal- 01686871 HAL Id: hal-01686871 https://hal.archives-ouvertes.fr/hal-01686871 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License G C A T T A C G G C A T genes Review The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems Gérard Guédon *, Virginie Libante, Charles Coluzzi, Sophie Payot and Nathalie Leblond-Bourget * ID DynAMic, Université de Lorraine, INRA, 54506 Vandœuvre-lès-Nancy, France; [email protected] (V.L.); [email protected] (C.C.); [email protected] (S.P.) * Correspondence: [email protected] (G.G.); [email protected] (N.L.-B.); Tel.: +33-037-274-5142 (G.G.); +33-037-274-5146 (N.L.-B.) Received: 12 October 2017; Accepted: 15 November 2017; Published: 22 November 2017 Abstract: Conjugation is a key mechanism of bacterial evolution that involves mobile genetic elements.
    [Show full text]