Thermal Characteristics and Parametric Analysis of an Improved Solar Wall

Total Page:16

File Type:pdf, Size:1020Kb

Thermal Characteristics and Parametric Analysis of an Improved Solar Wall applied sciences Article Thermal Characteristics and Parametric Analysis of an Improved Solar Wall Xi Zhao 1 , Jiayin Zhu 2,*, Ruixin Li 2 , Weilin Li 2 and Bin Chen 3 1 College of Architecture, Texas A&M University, College Station, TX 77843, USA; [email protected] 2 Department of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China; [email protected] (R.L.); [email protected] (W.L.) 3 Department of Construction Engineering, Dalian University of Technology, Dalian 160003, China; [email protected] * Correspondence: [email protected]; Tel.: +86-135-2658-2041 Abstract: Solar air collectors installed on buildings can significantly reduce conventional energy consumption in winter and summer. However, some problems arise in the utilization process, such as overheating, inconvenient operation control and low energy efficiency, etc. This work is a parametric analysis focusing on the automatic control and thermal efficiency improvement of the solar wall. An improved color-changing solar wall integrated with automatic control components, such as a photoelectric fan and temperature-controlled damper, was proposed in this paper. Based on the exper- imental data, the average daily heat output of the color-changing solar wall is 1.08 MJ per unit floor area on clear days in winter and the average thermal efficiency is 56.8%. Meanwhile, a quantitative analysis was carried out based on monitoring experiments for evaluating the thermal characteristic of automatic control components. Furthermore, in order to improve the thermal performance of the solar wall, parametric analysis was performed by numerical simulation. Results from this paper can provide a theoretical basis for the application of solar air collectors in modern buildings. Citation: Zhao, X.; Zhu, J.; Li, R.; Li, W.; Keywords: solar energy; an improved color-changing solar wall; automatic control components; Chen, B. Thermal Characteristics and field measurement; parametric analysis Parametric Analysis of an Improved Solar Wall. Appl. Sci. 2021, 11, 6325. https://doi.org/10.3390/app11146325 1. Introduction Academic Editor: Sergio Montelpare As a type of renewable energy, solar energy is widely used as an alternative to fossil energy, and has the highest potential to meet the ever-increasing energy demands. Since Received: 31 May 2021 the middle of the last century, solar air heating has aroused great interest in the community Accepted: 7 July 2021 of solar researchers because it is a relatively simple, inexpensive and low maintenance Published: 8 July 2021 application [1]. As a typical component of passive solar air heating, solar air collectors are mainly used to convert incident solar radiation into useful heat in different types of Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in buildings. These heat collectors have been adopted around the world to reduce fossil fuel published maps and institutional affil- consumption for space heating and domestic hot water production [2]. Along these years, iations. several types of solar air collectors, differentiated by the type of solar absorber element (flat plate, V-corrugated plate, cylindrical tubes, plates with fins, etc.) were designed, mathematically modelled and experimentally tested [3,4]. The thermal performance of different types of solar air collectors is studied and compared in Table1. Among them, the most common system used for absorbing solar irradiation is the flat-plate solar air Copyright: © 2021 by the authors. collectors, which are always integrated on building façades as passive heating components. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Appl. Sci. 2021, 11, 6325. https://doi.org/10.3390/app11146325 https://www.mdpi.com/journal/applsci Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 21 Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 21 Appl. Sci. 2021, 11, x FORTable PEER REVIEW1. Investigations on thermal performance of different types of solar air collectors. 2 of 21 Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 21 Appl. AuthorSci. 2021, 11, x FOR PEER TypesREVIEW Diagram Inference 2 of 21 Table 1. Investigations on thermal performance of different types of solar air collectors. Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 21 Author solarTable airTypes 1. heater Investigations duct on thermal performanceDiagram of different types of solar air collectors.Inference Appl. Sci. 2021, 11, 6325 Table 1. Investigations on thermal performance of different typesThe maximumof solar air collectors.value of the thermal perfor-2 of 18 Appl. Sci. 2021, 11, x FORhavingTable PEER multi REVIEW1. Investigations V-shaped on thermal performance of different types of solar air collectors. 2 of 21 D. JinAuthor et al. [5] solar airTypes heater duct Diagram mance parameterInference was 1.93 for the range of Author ribs onTypes the absorber Diagram The maximum valueInference of the thermal perfor- Author havingTable multi Types1. Investigations V -shaped on thermal performanceDiagram of different types of solarparameters air collectors.Inference investigated. D. Jin et al. [5] solar airplate heater duct mance parameter was 1.93 for the range of ribssolar on air the heater absorber duct The maximum value of the thermal perfor- Table 1.AuthorInvestigations havingsolarTable on airmultiTypes thermal1. heater Investigations V -shaped duct performance on thermal of performanceDiagram different typesof different of solar typesThe airmaximum of solar collectors.parameters air collectors.valueInference investigated.of the thermal perfor- D. Jin et al. [5] having multiplate V -shaped Themance maximum parameter value was of 1.93 the forthermal the range perfor- of D. Jin et al. [5] havingribs on multi the absorber V-shaped mance parameter was 1.93 for the range of D. JinAuthor et al. [5] solarribs on air Typesthe heater absorber duct Diagram mance parameterparametersInference was investigated. 1.93 for the range of Authorsolar Typesribs airon heaterplatethe absorber with jet Diagram TheThe maximum thermalparameters efficiency value Inference investigated.of ofthe proposed thermal perfor-design A. M. Abogh- plate havingimpingement multi V on-shaped corru- duct is observedparameters almost investigated. 14% more as com- D. Jin et al. [5] solar airplate heater duct manceThe parameter maximum was value 1.93 offor the the thermalrange of rarasolar et al.air [6] heatersolarribs air ducton heaterthe having absorber with jet The thermalmaximum efficiency value of of the proposed thermal designperfor- A. M. Abogh- havinggated absorbermulti V-shaped plate performanceparedparameters to parameterthe investigated. smooth duct. was 1.93 for impingement on corru- duct is observed almost 14% more as com- D. Jin et al. [5] D. Jinmulti et al. V-shaped[5] ribsplate on the mance parameter was 1.93 for the range of rara et al. [6] solarribs air on heaterthe absorber with jet The thermalthe efficiency range of of parameters proposed design A. M. Abogh-absorbersolargated air plate absorber heater with plate jet The thermalparedparameters efficiency to the smoothinvestigated. of proposed duct. design A. M. Abogh- impingementplate on corru- duct is observed almost 14% more as com- solar air heater with jet The thermal efficiencyinvestigated. of proposed design A.rara M. et Abogh- al. [6] impingement on corru- duct is observed almost 14% more as com- rara et al. [6] impingementgated absorber on platecorru- duct is observedpared to almostthe smooth 14% duct.more as com- rara et al. [6] flatgated plate absorber solar air plate heat- TheThe annual thermalpared average to efficiencythe smoothof a nickel ofduct. proposed–tin selec- solar air heater with jet The thermal efficiency of proposed design A.A. Elsolar-Sebaii, air heatergated absorber with jet plate pared to the smooth duct. A. M. Abogh- design duct is observed almost 14% impingementers-double pass on flat corru- and ducttively is observedcoated absorber almost is14% higher more than as com- that A.M. Aboghrara et al. [6] impingement on corrugated H.rara Al -etSnani al. [6] [7] flatsolar plate air heatersolar air with heat- jet TheThemore thermalannual as averageefficiency compared of ofa nickeltoproposed the– smoothtin selec-design A.A.A. M. El Abogh--Sebaii,absorber gatedv-corrugated plate absorber plate plate with a blackpared painted to the smooth absorber duct. by 29.23%. ersimpingement-double pass on flat corru- and ducttively is coated observed absorber almostduct. is 14% higher more than as thatcom- H.rara Al- Snaniet al. [6] [7] flat plate solar air heat- The annual average of a nickel–tin selec- A.A. El-Sebaii, flatgatedv -platecorrugated absorber solar air plate plate heat- withTheThe annuala black annualpared averagepainted to average the smoothofabsorber a nickel of aduct. nickel–tinby–tin 29.23%. selec- A.A. El-Sebaii, ers-double pass flat and tively coated absorber is higher than that flat plateflat plate solar solar air air heat- The annual average of a nickel–tin selec- A.A. El-Sebaii, H. H.A.A. Al -ElSnani-Sebaii, [7] ers-double pass flat and Thermaltivelyselectively coated efficiency absorber coated of double absorber is higher pass than is solar higher that air H. Alheaters-double-Snani [7] ersdoublev-double-corrugated pass pass flatpass solar and plateflat airand withtively a coated black painted absorber absorber is higher by than 29.23%. that B.M. Ramani et v-corrugated plate collectorwith
Recommended publications
  • Theoretical Study of the Flow in a Fluid Damper Containing High Viscosity
    Theoretical study of the flow in a fluid damper containing high viscosity silicone oil: effects of shear-thinning and viscoelasticity Alexandros Syrakosa,∗, Yannis Dimakopoulosa, John Tsamopoulosa aLaboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, 26500 Patras, Greece Abstract The flow inside a fluid damper where a piston reciprocates sinusoidally inside an outer casing containing high-viscosity silicone oil is simulated using a Finite Volume method, at various excitation frequencies. The oil is modelled by the Carreau-Yasuda (CY) and Phan-Thien & Tanner (PTT) constitutive equations. Both models account for shear-thinning but only the PTT model accounts for elasticity. The CY and other gener- alised Newtonian models have been previously used in theoretical studies of fluid dampers, but the present study is the first to perform full two-dimensional (axisymmetric) simulations employing a viscoelastic con- stitutive equation. It is found that the CY and PTT predictions are similar when the excitation frequency is low, but at medium and higher frequencies the CY model fails to describe important phenomena that are predicted by the PTT model and observed in experimental studies found in the literature, such as the hysteresis of the force-displacement and force-velocity loops. Elastic effects are quantified by applying a decomposition of the damper force into elastic and viscous components, inspired from LAOS (Large Am- plitude Oscillatory Shear) theory. The CY model also overestimates the damper force relative to the PTT, because it underpredicts the flow development length inside the piston-cylinder gap. It is thus concluded that (a) fluid elasticity must be accounted for and (b) theoretical approaches that rely on the assumption of one-dimensional flow in the piston-cylinder gap are of limited accuracy, even if they account for fluid viscoelasticity.
    [Show full text]
  • Geometry of Thermodynamic Processes
    Article Geometry of Thermodynamic Processes Arjan van der Schaft 1, and Bernhard Maschke 2 1 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Jan C. Willems Center for Systems and Control, University of Groningen, the Netherlands; [email protected] 2 Univ. Lyon 1, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, Villeurbanne, France; [email protected] * Correspondence: [email protected]; Tel.: +31-50-3633731 Received: date; Accepted: date; Published: date Abstract: Since the 1970s contact geometry has been recognized as an appropriate framework for the geometric formulation of the state properties of thermodynamic systems, without, however, addressing the formulation of non-equilibrium thermodynamic processes. In [3] it was shown how the symplectization of contact manifolds provides a new vantage point; enabling, among others, to switch between the energy and entropy representations of a thermodynamic system. In the present paper this is continued towards the global geometric definition of a degenerate Riemannian metric on the homogeneous Lagrangian submanifold describing the state properties, which is overarching the locally defined metrics of Weinhold and Ruppeiner. Next, a geometric formulation is given of non-equilibrium thermodynamic processes, in terms of Hamiltonian dynamics defined by Hamiltonian functions that are homogeneous of degree one in the co-extensive variables and zero on the homogeneous Lagrangian submanifold. The correspondence between objects in contact geometry and their homogeneous counterparts in symplectic geometry, as already largely present in the literature [2,18], appears to be elegant and effective. This culminates in the definition of port-thermodynamic systems, and the formulation of interconnection ports.
    [Show full text]
  • Air Infiltration Glossary (English Edition)
    AIRGLOSS: Air Infiltration Glossary (English Edition) Carolyn Allen ~)Copyrlght Oscar Faber Partnership 1981. All property rights, Including copyright ere vested In the Operating Agent (The Oscar Faber Partnership) on behalf of the International Energy Agency. In particular, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permluion of the operat- ing agent. Contents (i) Preface (iii) Introduction (v) Umr's Guide (v) Glossary Appendix 1 - References 87 Appendix 2 - Tracer Gases 93 Appendix 3 - Abbreviations 99 Appendix 4 - Units 103 (i) (il) Preface International Energy Agency In order to strengthen cooperation In the vital area of energy policy, an Agreement on an International Energy Program was formulated among a number of industrialised countries In November 1974. The International Energy Agency (lEA) was established as an autonomous body within the Organisation for Economic Cooperation and Development (OECD) to administer that agreement. Twenty-one countries are currently members of the lEA, with the Commission of the European Communities participating under a special arrangement. As one element of the International Energy Program, the Participants undertake cooperative activities in energy research, development, and demonstration. A number of new and improved energy technologies which have the potential of making significant contributions to our energy needs were identified for collaborative efforts. The lEA Committee on Energy Research and Development (CRD), assisted by a small Secretariat staff, coordinates the energy research, development, and demonstration programme. Energy Conservation in Buildings and Community Systems The International Energy Agency sponsors research and development in a number of areas related to energy.
    [Show full text]
  • Installation, Operation, & Maintenance Manual
    R10C/H R20C/H R35C/H R45C/H R80C/H R90C/H Packaged Terminal Air Conditioner (PTAC) ™ Packaged Terminal Heat Pump (PTHP) Straight cooling nominal capacities The Right Fit for Comfort 9,000 12,000 15,000 18,000 Btuh 2.6 3.5 4.4 5.3 kW Heat pump nominal capacities 9,000 12,000 15,000 Btuh 2.6 3.5 4.4 kW Installation, Operation, & Maintenance Manual R10C | R10H R45C | R45H Replacement for: Replacement for: American Air Filter 16 series, American Standard Type 40 American Standard 45, Carteret 45, Remington Type 45, McQuay 45, Singer 45, Nelson Aire 16 R20C | R20H R80C | R80H ECR International LLC Replacement for: Replacement for: 2201 Dwyer Avenue Climate Master (Friedrich) 702/703, Fedders CMEO “Unizone”, Cool Heat RM series, Mueller/Worthington “Climatrol" Utica, NY 13501 TPI Ra-Matic, Weather Twin, e-mail: [email protected] Zonaire S, SC & RM R35C | R35H R90C | R90H Replacement for: Replacement for: Singer, Remington, Cool Heat AD & 700, McQuay EA, ES & RS Friedrich Climate Master AD & 700 An ISO 9001-2000 Certified Company P/N 240008034, Rev. B [120209] Replacement Packaged Terminal Air-Conditioning / Heat Pump • Installation, Operation, and Maintenance Manual • Read This First Contents Read This First 2-3 Installation Instructions — R80C | R80H 20-21 To the installer . 2 Installation Instructions — R90C | R90H 22-23 Inspection . 3 General precautions . 3 Sequence of Operation 24-25 Initial Power-Up or power restoration . 24 General Product Information 4-7 R_ _C / R_ _H: Cooling Operation . 24 Product description . 4 R_ _C / R_ _H: Heating Operation . 25 Standard controls and components.
    [Show full text]
  • Process Burners 101
    Back to Basics Process Burners 101 Erwin Platvoet Process burners may be classified based on Charles Baukal, P.E. John Zink Hamworthy flame shape, emissions, fuel type, and Combustion other characteristics. Here’s what you need to know to work effectively with a burner manufacturer when selecting a burner for your application. rocess burners (1) operate in heaters and furnaces in Round and rectangular flames the refining, petrochemical, and chemical process Burners can be classified by their flame shape. The Pindustries (CPI). While each of these industries has two most common flame shapes are round and rectangular specific requirements, most process burners have a heat (i.e., flat). release of 1–15 MMBtu/h (0.3–4.4 MW), a firebox pressure Round flames. Freestanding burners typically have round at the burner of –0.25 to –0.75 in. H2O (–0.62 to 1.87 mbar), flames and are placed in the middle of the firebox with and an excess air ratio of 10–25%. Although most process radiant tubes mounted on the firebox walls (Figure 2). This burners have common operating characteristics, they can be firebox configuration is cost-effective because the amount of classified in a variety of different ways: tube surface area per unit of firebox volume is high. How- • motive force — forced draft, natural draft, ever, the tubes are heated only from one side. Therefore, this self- aspirated firebox design is restricted to applications where the tubes’ • NOx emission control — conventional, low-NOx, circumferential heat-flux distribution is not critical. Round ultra-low-NOx flames are also appropriate in applications where horizontal • flame shape — round, flat flames are required or where burners are firing in the down- • placement in the firebox — freestanding (floor), against ward direction.
    [Show full text]
  • 179 Design of a Hydraulic Damper for Heavy Machinery
    ANALELE UNIVERSIT ĂłII “EFTIMIE MURGU” RE ŞIłA ANUL XVIII, NR. 1, 2011, ISSN 1453 - 7397 Emil Zaev, Gerhard Rath, Hubert Kargl Design of a Hydraulic Damper for Heavy Machinery A hydraulic unit consisting of an accumulator as energy storage element and an orifice providing friction was designed to damp oscillations of a machine during operation. In the first step, a model for the gas spring was developed from the ideal gas laws for the dimensioning the elements. To model the gas process with a graphical simulation tool it is necessary to find a form of the gas law which can be integrated with a numerical solver, such as Tustin, Runge-Kutta, or other. For simulating the working condition, the model was refined using the van der Waals equations for real gas. A unified model representation was found to be applied for any arbitrary state change. Verifications were made with the help of special state changes, adiabatic and isothermal. After determining the dimensional parameters, which are the accumulator capacity and the orifice size, the operational and the limiting parameters were to be found. The working process of a damper includes the gas pre-charging to a predefined pressure, the nearly isothermal static loading process, and the adiabatic change during the dynamic operation. Keywords : Vibration damping, hydraulic damping, gas laws 1. Introduction Mining Machines, like the ALPINE Miner of the Sandvik company in Fig. 1, are subject to severe vibrations during their operation. Measures for damping are re- quired. Goal of this project was to investigate the potential of damping oscillation using the hydraulic cylinders of the support jacks (Fig.
    [Show full text]
  • Don't Let Dollars Disappear up Your Chimney!
    ENERGY SAVINGTIPS DON’T LET DOLLARS DISAPPEAR UP YOUR CHIMNEY! You wouldn’t leave a window wide open in cold weather. Having a fireplace with an open flue damper is the same as having a window open. That sends precious winter heat and money right up the chimney! Here’s how you can heat your home, and not the neighborhood! KEEP THE FIREPLACE DAMPER CLOSED WHEN THE FIREPLACE IS NOT BEING USED The damper is a flap inside the chimney or flue. It has an open and a closed position. When a fire is burning, the damper should be in the open position to allow smoke to escape up the fireplace flue and out the chimney. When you’re not using the fireplace, the damper should be closed. If you can’t see the handle or chain that opens and closes the damper, use a flashlight and look up inside the chimney flue. The handle could be a lever that moves side to side or back and forth. If a chain operates the damper, you may have to pull both sides to determine which one closes or opens the damper. KEEP YOUR HEAT IN YOUR HOME! Even the most energy efficient homes can fall victim to fireplace air leaks. Your fireplace may be reserved for a handful of special occasions or especially cold nights. When it’s not in use, though, your home loses heat – and costs you money – without you knowing it. Using the heat from your fireplace on a cold winter night may be cozy, but that fire is a very inefficient way to warm up the room.
    [Show full text]
  • Product Catalog -Vertical Stack Fan Coil Units
    Product Catalog Vertical High Rise Fan Coil Units — FCV 0.75 to 3 tons June 2021 UNT-PRC028D-EN Introduction Vertical High Rise Fan Coil Units Trane vertical high rise fan coils are intended for single zone applications. These units are used in high rise hotels, and condominiums. We work closely with engineers at the design stage to ensure optimum use of the units within the HVAC system. These units have load capabilities of 300 to 1200 cfm. Fan coils provide cooling and heating, and are available as two-pipe, with or without electric heat (one hydronic circuit) or four-pipe (two hydronic circuits). These units feature a variety of factory mounted piping packages. The UC400-B controller is included inside the unit's control box assembly. These controllers utilize analog signals from a control device mounted in the occupied space. The Customer Supplied Terminal Interface (CSTI) option, includes a 24volt AC transformer, and an interface terminal board. Controls provided by an external source can be tied into the interface terminal board utilizing the integrated terminal block with 3mm screw connections. The Customer Supplied Terminal Interface (CSTI) option is also available with a Telkonet thermostat. A thermostat with wire harness will ship with the unit and can be connected to the unit via a connector in the field after the unit is installed. Figure 1. Fan coil - model FCV Figure 2. Furred-in fan coil 20 ga. galvanized cabinet with acoustical liner Direct-drive centrifugal fan - EC fan motor with sealed bearings standard 8 Piping package factory installed (HW re-heat) 1 CW/HW coils - 2-pipe or 4-pipe 6 7 Drain pan - stainless steel or polymer, positively sloped to outlet - standard Optional electric heater (behind panel) 2 Electrical box for unit-mounted thermostat Supply air opening (multiple openings available) 3 Also available but not shown: 4 •Risers • Double deflection supply air grille • Return air panel •Filter 5 Grille and return air panel standard color is white.
    [Show full text]
  • Measures and Assumptions for Demand Side Management (Dsm) Planning
    MEASURES AND ASSUMPTIONS FOR DEMAND SIDE MANAGEMENT (DSM) PLANNING APPENDIX C: SUBSTANTIATION SHEETS Presented to Ontario Energy Board 2300 Yonge Street, 27th Floor Toronto, Ontario M4P 1E4 APRIL 16, 2009 Navigant Consulting Inc. 1 Adelaide Street East, Suite 2601 Toronto, ON M5C 2V9 416.927.1641 www.navigantconsulting.com C-1 TABLE OF CONTENTS GLOSSARY AND DEFINITION OF TERMS ......................................................................................................... 4 RESIDENTIAL SPACE HEATING .......................................................................................................................... 6 1. AIR SEALING .......................................................................................................................................................... 7 2. BASEMENT WALL INSULATION (R-12) ................................................................................................................ 12 3. CEILING INSULATION (R-40) ................................................................................................................................ 16 4. ENHANCED FURNACE (ELECTRONICALLY COMMUTATED MOTOR) – EXISTING RESIDENTIAL ............................. 20 5. ENHANCED FURNACE (ELECTRONICALLY COMMUTATED MOTOR) – NEW CONSTRUCTION ................................ 26 6. ENERGY STAR WINDOWS (LOW-E) ...................................................................................................................... 32 7. HEAT REFLECTIVE PANELS .................................................................................................................................
    [Show full text]
  • System Controls Engineering Guide
    SECTION G Engineering Guide System Controls System Controls Engineering Guide Introduction to VAV Terminal Units The control of air temperature in a space requires that the loads in the space are offset by some means. Space loads can consist of exterior loads and/or interior loads. Interior loads can consist of people, mechanical equipment, lighting, com puters, etc. In an 'air' conditioning system compensating for the loads is achieved by introducing air into the space at a given temperature and quantity. Since space loads are always fluctuating the compensation to offset the loads must also be changing in a corresponding manner. Varying the air temperature or varying the air volume or a combination of both in a controlled manner will offset the space load as required. The variable air volume terminal unit or VAV box allows us to vary the air volume into a room and in certain cases also lets us vary the air temperature into a room. YSTEM CONTROLS YSTEM S The VAV terminal unit may be pressure dependent or pressure independent. This is a function of the control package. ENGINEERING GUIDE - Pressure Dependent A device is said to be pressure dependent when the flow rate passing through it varies as the system inlet pressure fluctuates. The flow rate is dependent only on the inlet pressure and the damper position of the terminal unit. The pressure dependent terminal unit consists of a damper and a damper actuator controlled directly by a room thermostat. The damper is modulated in response to room temperature only. Since the air volume varies with inlet pressure, the room may experience temperature swings until the thermostat repositions the damper.
    [Show full text]
  • Issue 25 • Summer 2013/14 Aud$11.95 • Nz$10.95 Sanctuarymagazine.Org.Au
    1625 115+ green products & design tips; Building in bushfire zones; Urban beekeeping; Design Workshop: free advice on your home plans; Material inspiration for homes that reuse EARTHY TEXTURES A hemp & rammed earth home Resilient design Small & tiny homes Material inspiration ISSUE 25 • SUMMER 2013/14 AUD$11.95 • NZ$10.95 SANCTUARYMAGAZINE.ORG.AU A solar power system from Tindo Solar WIN *Offer open to Australian residents only. Contents —Issue 25 HOUSE PROFILES 14 14 Cottage character A north-facing extension to an Adelaide cottage provides flexible and energy efficient family living spaces without compromising the character of the original home. 23 Earthy modern living A Melbourne hempcrete and rammed earth home takes bold steps in environmentally sustainable family living. 31 Creative economy Extensions to this Queensland home create a family hub that hasn’t sacrificed on style or spatial quality, is durable and easy to maintain. 50 59 Bush bound Salvaged and recycled timbers are front and FOCUS centre in this renovated northern beaches Sydney home. 38 Resilient design 66 While households have rallied to reduce Rural studio their carbon footprint, how can we make An artist’s workspace is designed for the our homes resilient to the effects of climate graceful fields of Norfolk, England. change? 59 Small spaces, tiny homes Opting to live in smaller living spaces can save resources and money and with clever design small spaces can be extraordinarily liveable. 3 Contents —Issue 25 DESIGN WORKSHOP DESIGN MATTERS 91 44 80 Eco retreat meets design reality Building in bushfire zones Rob Norman from design firm Symbiosphere For those building (or considering building) unpacks the design challenges faced by a in a bushfire-prone area, managing couple planning to build an eco retreat in environmental and regulatory issues can be Queensland’s Gold Coast hinterland.
    [Show full text]
  • Life Safety Dampers Selection and Application Manual • Ceiling Radiation Dampers • Fire Dampers • Combination Fire Smoke Dampers • Smoke Dampers
    Life Safety Dampers Selection and Application Manual • Ceiling Radiation Dampers • Fire Dampers • Combination Fire Smoke Dampers • Smoke Dampers August 2016 1 Table of Contents HOW TO USE THIS MANUAL DAMPER APPLICATION 3 • Fire Damper Application • Smoke Damper Application • Combination Fire Smoke Damper Application • Corridor Ceiling Combination Fire Smoke Damper Application DAMPER SELECTION 5 • Selection Process • Key Points to Remember ACTUATOR SELECTION 7 • Selection Process • Actuator Mounting Options • Key Points to Remember SLEEVE REQUIREMENTS 9 • Sleeve Thickness • Sleeve Length • Key Points to Remember SPACE REQUIREMENTS FOR PROPER INSTALLATION 10 • Key Points to Remember DAMPER OPTIONS 11 • Control Options • Security Bar Options • Transition Options • Key Points to Remember INSTALLATION REQUIREMENTS 15 • Combination Fire Smoke Damper Installation • Smoke Damper Installation • Actuator Installation • Damper and Actuator Maintenance • Key Points to Remember SPECIAL INSTALLATION CASES 17 • Maximum Damper Size Limitations • Horizontal Fire Smoke Damper in a Non-Concrete Barrier • AMCA Mullion System • What if a Damper Cannot be Installed per the Manufacturer’s Installation Instructions? • What if a Damper Cannot be Installed in the Wall? • Steps to Take When an Unapproved Installation Must be Provided CEILING RADIATION DAMPERS 20 • Ceiling Radiation Damper Application • Key Points to Remember CODES AND STANDARDS 21 • Compliance with the Applicable Building Codes • The National Fire Protection Association • Code and Standard Making
    [Show full text]