Environmental Services for Water and Wastewater | Sargent & Lundy

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Services for Water and Wastewater | Sargent & Lundy Environmental Services for Water and Wastewater Sargent & Lundy provides comprehensive water treatment process and Why Clients Choose balance-of-plant (BOP) engineering services for mining, chemical Sargent & Lundy for injection, and power-generating facilities. We help clients prepare the Complex Environmental mass balances, specifications, technology analyses, and wastewater Services quality estimates necessary to execute a wide variety of water treatment projects, such as demineralized makeup water, high-volume reagent preparation, and wastewater treatment. Integrated project teams of environmental specialists and Treatment Experience engineering discipline leads working side by side. Biological reduction Mechanical vapor compression Streamlined project teams eliminates communication gaps Chemical precipitation Multimedia filtration experienced with separate Decarbonization Multiple-effect distillation engineering and environmental firms. Deaeration Multistage flash desalination Unmatched technical Electrodeionization Neutralization knowledge and support to Reverse osmosis ensure permits provide Fish return operating flexibility and limits Radioactive waste vitrification are achievable. Forced circulation crystallization Gravity filtration Traveling screens Gravity separation Ultrafiltration Ion-exchange demineralization Zero-valent iron Recent Water Treatment and Wastewater Projects BOP upgrade for flue gas desulfurization (FGD) wastewater treatment CONTACT US system to ensure compliance with new federal and state effluent limit Technical Contact guidelines Wayshalee Patel Study comparing the design, operation, and performance of plants in Environmental Manager several Organisation for Economic Co-operation and Development (OECD) 312-269-6619 [email protected] countries Study evaluating equipment upgrades required for plant life extension Director Contact James Malone Detailed BOP design support for seawater reverse osmosis facility Vice President 312-269-6890 Detailed BOP design support for makeup demineralizer system for [email protected] international project Detailed BOP design for upgrade of demineralized water treatment system www.sargentlundy.com .
Recommended publications
  • United States Patent 19 11 Patent Number: 5,364,534 Anselme Et Al
    US005364534A United States Patent 19 11 Patent Number: 5,364,534 Anselme et al. 45 Date of Patent: Nov. 15, 1994 54 PROCESS AND APPARATUS FOR 4,872,991 10/1989 Kartels et al. ...................... 210/651 TREATING WASTE LIQUIDS 5,093,072 8/1991 Hitotsuyanagi et al. ........... 210/650 5,154,830 10/1992 Paul et al. ........................... 210/639 75 Inventors: Christophe Anselme, Le Vesinet; Isabelle Baudin, Nanterre, both of FOREIGN PATENT DOCUMENTS France 2628337 9/1989 France . 73 Assignee: Lyonnaise Des Eaux - Dumez, 4018994 1/1992 Japan ................................ 210/195.2 Nanterre, France Primary Examiner-Frank Spear (21) Appl. No.: 129,387 Assistant Examiner-Ana Fortuna Attorney, Agent, or Firm-Pollock, Vande Sande & 22 Filed: Sep. 30, 1993 Priddy (30) Foreign Application Priority Data 57 ABSTRACT Oct. 2, 1992 FR France ................................ 92 1699 Process for purifying and filtering fluids, especially 51l Int. Cl............................................... BOD 61/00 water, containing suspended contaminants and using 52 U.S. Cl. .................................... 210/650; 210/660; gravity separation means as well as membrane separa 210/800; 210/805; 210/195.1; 210/195.2; tion means, in a finishing stage, comprising the step of 210/257.2 introducing a pulverulent reagent into the fluid stream 58) Field of Search ............... 210/650, 639, 800, 790, to be treated downstream of the gravity separation and 210/195.1, 195.2, 295, 805, 900, 257.2, 660 upstream of the membrane separation, wherein said 56) References Cited pulverulent reagent is recycled from the purge of the U.S. PATENT DOCUMENTS membrane separation means to the upstream of the gravity separation means.
    [Show full text]
  • Investigation of Fouling Mechanisms on Ion Exchange Membranes During Electrolytic Separations
    INVESTIGATION OF FOULING MECHANISMS ON ION EXCHANGE MEMBRANES DURING ELECTROLYTIC SEPARATIONS By Matthew James Edwards A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford, MS 2019 Approved by: __________________________________ Advisor: Dr. Alexander M. Lopez _________________________________ Reader: Dr. Adam Smith __________________________________ Reader: Dr. John H. O’Haver i Ó 2019 Matthew James Edwards ALL RIGHTS RESERVED ii DEDICATION I would like to dedicate this Capstone Project to my parents, Michael and Nidia Edwards. Their support and commitment to my education has been unfailing for as long as I can remember. I am thankful for everything they have done. It is with their help that I am privileged to attend The University of Mississippi, and I will forever be grateful. iii ACKNOWLEDGEMENTS I would first like thank Dr. Alexander M. Lopez and The University of Mississippi Chemical Engineering Department for the opportunity to work on this research project. The guidance, patience, and willingness to work with and teach an undergraduate student has been beneficial and inspiring to me during my time here at Ole Miss. Second, I would like to thank Dr. Paul Scovazzo for providing guidance on how to write this thesis and for allowing me to use his lab and equipment as well. I would also like to thank all the graduate students of the Chemical Engineering Department, primarily Saloumeh Kolahchyan. The willingness to take the time to answer my questions, to guide me in how use all the equipment in the lab, and to show me how to follow lab protocols required for the completion of my thesis research.
    [Show full text]
  • Refinery Wastewater Management Using Multiple Angle Oil-Water Separators
    REFINERY WASTEWATER MANAGEMENT USING MULTIPLE ANGLE OIL-WATER SEPARATORS Kirby S. Mohr, P.E. Mohr Separations Research, Inc. 1278 FM 407 Suite 109 Lewisville, TX 75077 Phone: 918-299-9290 Cell: 918-269-8710 John N. Veenstra, Ph.D., P.E., Oklahoma State University Dee Ann Sanders, Ph.D., P.E. Oklahoma State University A paper presented at the International Petroleum Environment Conference in Albuquerque, New Mexico, 1998 ABSTRACT In this work, an overview of oil-water separation, as used in the petroleum refining industries, is presented along with case studies. Discussions include: impact of solids, legal aspects, and differing types of systems currently in use, along with their advantages and disadvantages. Performance information on separators is presented with an emphasis on new multiple angle coalescing plate technology for refinery wastewater management. Several studies are presented including a large (20,000 US GPM flow rate) system recently installed at a major US refinery. The separator was constructed by converting two existing API separators into four separators, and adding multiple angle coalescing plates to increase throughput and efficiency. A year of operating experience with this system indicates good performance and few problems. Other examples provide information on separators installed in the United States and other countries. Keywords: Oil-water separator, multiple angle, coalescence, refinery, wastewater management, petroleum, coalescing plate technology BACKGROUND AND INTRODUCTION Oil has been refined for various uses for at least 1000 years. An Arab handbook written by Al-Razi, in approximately 865 A.D., describes distillation of “naft” (naphtha) for use in lamps and thus the beginning of oil refining (Forbes).
    [Show full text]
  • State-Of-The-Art Water Treatment in Czech Power Sector
    membranes Article State-of-the-Art Water Treatment in Czech Power Sector: Industry-Proven Case Studies Showing Economic and Technical Benefits of Membrane and Other Novel Technologies for Each Particular Water Cycle Jaromír Marek Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; [email protected]; Tel.: +420-732-277-183 Abstract: The article first summarizes case studies on the three basic types of treated water used in power plants and heating stations. Its main focus is Czechia as the representative of Eastern European countries. Water as the working medium in the power industry presents the three most common cycles—the first is make-up water for boilers, the second is cooling water and the third is represented by a specific type of water (e.g., liquid waste mixtures, primary and secondary circuits in nuclear power plants, turbine condensate, etc.). The water treatment technologies can be summarized into four main groups—(1) filtration (coagulation) and dosing chemicals, (2) ion exchange technology, (3) membrane processes and (4) a combination of the last two. The article shows the ideal industry-proven technology for each water cycle. Case studies revealed the economic, technical and environmental advantages/disadvantages of each technology. The percentage of Citation: Marek, J. State-of-the-Art technologies operated in energetics in Eastern Europe is briefly described. Although the work is Water Treatment in Czech Power conceived as an overview of water treatment in real operation, its novelty lies in a technological model Sector: Industry-Proven Case Studies of the treatment of turbine condensate, recycling of the cooling tower blowdown plus other liquid Showing Economic and Technical waste mixtures, and the rejection of colloidal substances from the secondary circuit in nuclear power Benefits of Membrane and Other plants.
    [Show full text]
  • Mixing Oil-Based Microencapsulation of Garlic Essential Oil: Impact of Incorporating Three Commercial Vegetable Oils on the Stability of Emulsions
    foods Article Mixing Oil-Based Microencapsulation of Garlic Essential Oil: Impact of Incorporating Three Commercial Vegetable Oils on the Stability of Emulsions Yunjiao Zhao 1, Rui Liu 1,* , Cuiping Qi 1, Wen Li 1, Mohamed Rifky 1, Min Zhang 2,*, Ping Xiao 3, Tao Wu 1 and Wenjie Sui 1 1 State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; [email protected] (Y.Z.); [email protected] (C.Q.); [email protected] (W.L.); [email protected] (M.R.); [email protected] (T.W.); [email protected] (W.S.) 2 College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300384, China 3 Tianjin Chunfa Bio-Technology Group Co., Ltd., Tianjin 300300, China; [email protected] * Correspondence: [email protected] (R.L.); [email protected] (M.Z.) Abstract: The active components in garlic essential oil are easily degradable, which limits its ap- plication in the food industry. Vegetable oils (VOs) were used to improve the stability of garlic essential oil (GEO) emulsion. The volatile compounds of GEO and its mixtures with vegetable oils (VOs), including corn oil (CO), soybean oil (SO), and olive oil (OO) indicated that GEO-VO mixtures had a higher percentage of Diallyl disulfide and Diallyl trisulfide than pure GEO. Adding an appropriate amount of VOs promoted the GEO emulsion (whey protein concentrate and inulin as Citation: Zhao, Y.; Liu, R.; Qi, C.; Li, the wall materials) stability in order of CO > SO > OO. Evaluation of the encapsulation efficiency, W.; Rifky, M.; Zhang, M.; Xiao, P.; Wu, controlled release, and antimicrobial activity of GEO-VO microcapsules showed that the GEO was T.; Sui, W.
    [Show full text]
  • Wastewater Treatment and Reuse in the Oil & Petrochem Industry
    Engineering Conferences International ECI Digital Archives Wastewater and Biosolids Treatment and Reuse: Proceedings Bridging Modeling and Experimental Studies Spring 6-13-2014 Wastewater treatment and reuse in the oil & petrochem industry – a case study Alberto Girardi Dregemont Follow this and additional works at: http://dc.engconfintl.org/wbtr_i Part of the Environmental Engineering Commons Recommended Citation Alberto Girardi, "Wastewater treatment and reuse in the oil & petrochem industry – a case study" in "Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies", Dr. Domenico Santoro, Trojan Technologies and Western University Eds, ECI Symposium Series, (2014). http://dc.engconfintl.org/wbtr_i/46 This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies by an authorized administrator of ECI Digital Archives. For more information, please contact [email protected]. Wastewater Treatment and Reuse In Oil & Petrochemical Industry Otranto, June 2014 COMPANY PROFILE DEGREMONT, THE WATER TREATMENT SPECIALISTS 4 areas of 5 areas of expertise: activities: . Drinking water production . Design & Build plants . Operation & . Reverse osmosis desalination Services plants . Urban wastewater treatment . Equipment and reuse plants . BOT / PPP . Biosolid treatment systems . Industrial water production and wastewater treatment units plants 2 Wastewater Treatment and Reuse COMPANY PROFILE DEGREMONT, THE WATER TREATMENT SPECIALISTS In over For industrials: For local authorities: 70 . Energy . Drinking water countries, . Upstream oil and gas Degrémont offers . Desalination . Refining and solutions to local . Urban wastewater authorities and petrochemicals . Sludge and biosolids industries . Chemicals . Pharmaceutical, cosmetics, fine chemicals .
    [Show full text]
  • Advancing Electrodeionization with Conductive Ionomer Binders That
    www.nature.com/npjcleanwater ARTICLE OPEN Advancing electrodeionization with conductive ionomer binders that immobilize ion-exchange resin particles into porous wafer substrates ✉ ✉ Varada Menon Palakkal 1,3, Lauren Valentino 2,3, Qi Lei 1, Subarna Kole1, Yupo J. Lin 2 and Christopher G. Arges 1 Electrodeionization (EDI) is an electrically driven separations technology that employs ion-exchange membranes and resin particles. Deionization occurs under the influence of an applied electric field, facilitating continuous regeneration of the resins and supplementing ionic conductivity. While EDI is commercially used for ultrapure water production, material innovation is required for improving desalination performance and energy efficiency for treating alternative water supplies. This work reports a new class of ion-exchange resin-wafers (RWs) fabricated with ion-conductive binders that exhibit exceptional ionic conductivities—a3–5-fold improvement over conventional RWs that contain a non-ionic polyethylene binder. Incorporation into an EDI stack (RW-EDI) resulted in an increased desalination rate and reduced energy expenditure compared to the conventional RWs. The water-splitting phenomenon was also investigated in the RW in an external experimental setup in this work. Overall, this work demonstrates that ohmic resistances can be substantially curtailed with ionomer binder RWs at dilute salt concentrations. npj Clean Water (2020) 3:5 ; https://doi.org/10.1038/s41545-020-0052-z 1234567890():,; INTRODUCTION EDI stack is more thermodynamically efficient for removing ions in 10 Electrochemical separations, which primarily consist of electrodia- the more challenging dilute concentration regime. lysis (ED), electrodeionization (EDI), and membrane capacitive A drawback of conventional EDI is the utilization of loose resin deionization (MCDI/CDI),1 are a subset of technologies primarily beads that foster inconsistent process performance, stack leakage, used for deionization and other water treatment processes.
    [Show full text]
  • Wastewater Treatment by Electrodialysis System and Fouling Problems
    The Online Journal of Science and Technology - January 2016 Volume 6, Issue 1 WASTEWATER TREATMENT BY ELECTRODIALYSIS SYSTEM AND FOULING PROBLEMS Elif OZTEKIN, Sureyya ALTIN Bulent Ecevit University, Department of Environmental Engineering, Zonguldak-Turkey [email protected], VDOWÕQ#NDUDHOPDVHGXWU Abstract: Electrodialysis ED is a separation process commercially used on a large scale for production of drinking water from water bodies and treatment of industrial effluents (Ruiz and et al., 2007). ED system contains ion exchange membranes and ions are transported through ion selective membranes from one solution to another under the influence of electrical potential difference used as a driving force. ED has been widely used in the desalination process and recovery of useful matters from effluents. The performance of ED, depends on the operating conditions and device structures such as ion content of raw water, current density, flow rate, membrane properties, feed concentration, geometry of cell compartments (Chang and et al., 2009, Mohammadi and et al., 2004). The efficiency of ED systems consist in a large part on the properties of the ion exchange membranes. Fouling of ion exchange membranes is one of the common problems in ED processes (Lee and et al., 2009, Ruiz and et al., 2007). Fouling is basically caused by the precipitation of foulants such as organics, colloids and biomass on the membrane surface or inside the membrane and fouling problem reduces the transport of ions. The fouling problems are occasion to increase membrane resistance, loss in selectivity of the membranes and affect negatively to membrane performance (Lee and et al., 2002, Lindstrand and et al., 2000a, Lindstrand and et al., 2000b).
    [Show full text]
  • Coal Fired Power Plant Water Chemistry Issues: Amine Selection at Supercritical Conditions and Sodium Leaching from Ion Exchange Mixed Beds
    COAL FIRED POWER PLANT WATER CHEMISTRY ISSUES: AMINE SELECTION AT SUPERCRITICAL CONDITIONS AND SODIUM LEACHING FROM ION EXCHANGE MIXED BEDS By JOONYONG LEE Bachelor of Science in Chemical Engineering Kangwon National University Chuncheon, South Korea 1995 Master of Science in Chemical Engineering Kangwon National University Chuncheon, South Korea 1997 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2012 COAL FIRED POWER PLANT WATER CHEMISTRY ISSUES: AMINE SELECTION AT SUPERCRITICAL CONDITIONS AND SODIUM LEACHING FROM ION EXCHANGE MIXED BEDS Dissertation Approved: Dr. Gary L. Foutch Dissertation Adviser Dr. AJ Johannes Dr. Martin S. High Dr. Josh D. Ramsey Dr. Allen Apblett Outside Committee Member Dr. Sheryl A. Tucker Dean of the Graduate College ii TABLE OF CONTENTS Chapter Page I. INTRODUCTION ......................................................................................................1 1.1. Coal-Fired Power Plants ...................................................................................1 1.2. Ultrapure Water ................................................................................................3 1.3. Mixed-Bed Ion Exchange .................................................................................5 1.4. Objective ...........................................................................................................6 II. WATER CHEMISTRY IN POWER PLANTS ......................................................10
    [Show full text]
  • A Marine Waste Biorefinery
    A Marine Waste Biorefinery A thesis submitted for the degree of Doctor of Philosophy (PhD) at Newcastle University by Ahmed Said Hamed Al Hatrooshi November 2019 Abstract Biodiesel is a renewable alternative to ‘petro-diesel’. There is already an established, conventional production technology based on refined vegetable oils. However, this is always more expensive than producing petroleum-based diesel, mainly due to the feedstock cost. Use of a cheap, non- edible feedstock, such as waste shark liver oil (WSLO), would reduce the biodiesel production cost and make the process economically viable. WSLO is obtained by exposing sharks’ livers to the sun until they melt and collecting the oil produced. Sharks’ livers comprise 25-30% of their body weight. Historically, the discarded WSLO was used for waterproofing wooden boats. However, this application is no longer required, as modern boats are made of fibreglass. The excess WSLO derived from these discarded sharks’ livers has great potential for being further processed into valuable products, including biodiesel, squalene and omega-3 polyunsaturated fatty acids (PUFA), such as eicosapentaenoic (EPA) and docosahexaenoic (DHA). The glyceride components of the WSLO can be converted into biodiesel using existing biodiesel processing technologies, while the squalene, EPA and DHA may be extracted and sold as value-added products through biorefinery processes. This study investigated the production of fatty acid methyl ester (FAME) from WSLO using both acid (sulfuric acid, H2SO4) and base (sodium hydroxide, NaOH) catalysts. Due to the high levels of free fatty acids (FFA) in WSLO, homogeneous alkali-catalysed transesterification was less effective than the acid-catalysed process, resulting in a maximum WSLO to FAME conversion of only 40% after 15 min at a 60°C temperature, a 1.5 wt.% of NaOH catalyst and a 6:1 molar ratio of methanol to WSLO.
    [Show full text]
  • Chapter 15. Gravity Separation
    Chapter 15. Gravity Separation IS. INTRODUCTION Separation by density difference is a process that is as old as recorded history. Separation of gold by density difference dates back to at least 3,000 BC as depicted in writings from ancient Egypt. The principle employed in gravity separation goes back further in time to the formation and weathering of the rocks and the releasing of the minerals they contain and the transport of the mineral grains by heavy rains. It is the driving force for the formation of the alluvial deposits of precious metals and gemstones that have been worked since beyond recorded history as they still are today. Archaeological excavations have discovered mineral concentration activities such as the lead-silver concentrating plant in Attica, Greece, dating from 300-400 BC. So gravity separation has a long history as a mineral concentration process. Not all mineral combinations are amenable to this type of concentration technique. To determine the suitability of gravity separation processes to a particular ore type, a concentration criterion is commonly used. A concentration criterion (CC) can be defined as [1]: „ . „. SG of heavy mineral-SG of fluid ,<-,.. Concentration Criterion = (15.1) SG of light mineral - SG of fluid where SG = specific gravity (or density), and the fluid is typically water or air. Some concentration criterion ratios for minerals that are treated by gravity separation are given in Table 15.1. Table 15.1 Concentration criterion for some common minerals separated by gravity separation from a gangue of density 2650 kg/m3 Mineral Fluid CC Gold water 10.3 Gold air 6.8 Cassiterite water 3.5 Coal water 3.4 Hematite water 2.5 A guideline for separability by gravity based on this concentration criterion is given in Table 15.2.
    [Show full text]
  • OEM Technical Manual for Electropure
    OEM Engineering Manual Electropure™ XL & EXL Series EDI Contains information for the successful system engineering, design, installation, operation, and maintenance of SnowPure’s “Electropure™ XL and EXL” EDI products by an OEM pure water system integrator. Pictured: EXL - 750 750 High Flow Industrial EDI Manual: Version 3.5 (A4) Module Updated: February 2018 SNOWPURE, LLC, 2005-2018 VERSION 3.5 (XL+EXL) –FEBRUARY 2018 PAGE 1 Worldwide HQ (Headquarters): SnowPure Water Technologies San Clemente, CA 92672, USA Tel: +1.949.240.2188 [email protected] www.snowpure.com SnowPure Global Sales Offices: China Sales Office Electropure Environmental Technology (Shanghai) Co. Ltd. 伊乐科环保科技(上海)有限公司 Tel: +86.21.6167.1860 Email: [email protected] www.snowpure.com.cn Middle East Sales Office SnowPure Middle East Amman, Jordan Email: [email protected] International Distributors: Hong Kong (Authorized Distributor) SnowPure International (HK) Ltd. Hong Kong Tel: +1.858.692.0664 [email protected] Germany (Authorized Distributor) TES Water Treatment GmbH India (Authorized Distributor) Tel: +49.6205.2870.0 Evergreen Technologies Pvt. Ltd. [email protected] Tel: +91.2201.2461 [email protected] Sweden, Finland, Norway, Baltics (Authorized Distributor) Japan (Authorized Distributor) PWS Pure Water Scandinavia AB AMP Ionex / Mihama Tel: +46.23.797.990 エイエムピー・アイオネクス株式会社 / 美浜株式会社 [email protected] Tel: +81.3.4570.3820 [email protected] Switzerland, Austria, Czech Republic, Slovakia www.amp-ionex.com ROC Components AG Tel: +41.61.461.8303 Korea (Authorized Distributor) [email protected] Innomeditech, Inc. 주식회사 이노메디텍 Ukraine (Authorized Distributor) Tel: +82-31-80022500 Nerex PE [email protected] Tel: +38.44.223.5636 www.innomeditech.co.kr [email protected] SNOWPURE, LLC, 2005-2018 VERSION 3.5 (XL+EXL) –FEBRUARY 2018 PAGE 2 Table of Contents WORLDWIDE HQ (HEADQUARTERS): .............................................................................
    [Show full text]