Host Preference, Detection, and Dependence: Ectoparasitic Gastropods Melanella Acicula and Peasistilifer Nitidula (Eulimidae)

Total Page:16

File Type:pdf, Size:1020Kb

Host Preference, Detection, and Dependence: Ectoparasitic Gastropods Melanella Acicula and Peasistilifer Nitidula (Eulimidae) UC Berkeley Student Research Papers, Fall 2009 Title HOST PREFERENCE, DETECTION, AND DEPENDENCE: THE ECTOPARASITIC GASTROPODS MELANELLA ACICULA AND PEASISTILIFER NITIDULA (EULIMIDAE) ON HOLOTHURIAN HOSTS Permalink https://escholarship.org/uc/item/1ft6r4hf Author Will, Ian Publication Date 2009-12-16 eScholarship.org Powered by the California Digital Library University of California HOST PREFERENCE, DETECTION, AND DEPENDENCE: THE ECTOPARASITIC GASTROPODS MELANELLA ACICULA AND PEASISTILIFER NITIDULA (EULIMIDAE) ON HOLOTHURIAN HOSTS Ian Will Department of Integrative Biology, University of California, Berkeley, California 94720 USA Abstract. Parasites are ecologically significant organisms and must be understood to properly appreciate nearly any community. Parasitism is one of the most common (if not the most common) lifestyles, and parasites can influence species throughout a community. One group of parasites, the Eulimidae, is a large family of marine gastropods. Unfortunately, eulimids have not been thoroughly studied and host use behaviors have not been well characterized at the specific, or even generic levels. Therefore, this study seeks to describe host preference, host detection and tracking, and dependence on host access for two eulimid species, both sharing the macrohabitat environment. A series of experiments and a field survey showed that Peasistilifer nitidula was host specific, actively located hosts by chemical cues, reattached to hosts quickly, and required frequent access to the host for survival. Conversely, Melanella acicula had a preferred host but parasitized others as well, did not actively pursue hosts by chemical or visual detection methods, reattached infrequently in the short‐term, and could survive longer isolated from the host. Using these aspects of host use to compare these co‐existing species showed significantly different life histories, and suggests possible niche differentiation between a generalist and specialist species. Keywords: parasite, sea cucumber, Holothuroidea, snail, chemosensory, niche INTRODUCTION The parasitic lifestyle can require unique adaptations and specializations, Parasitism is a prevalent feeding habit morphologically and in aspects of life history (Lafferty et. al. 2006, Price 1977, Renaud 1996) (Poulin 1963, Warén 1983) ‐ and lead to and an important biotic interaction. Parasitic extensive adaptive radiation (Price 1977). species have implications for the life history of Furthermore, evolution of parasitic species can hosts, competing parasitic species, and be driven by the pressures of this lifestyle, and consequently the overall community structure evolution of host species can be accelerated by (Combes 1996, Lafferty et. al. 2006, Rea 1994, the influences of the parasite, i.e. coevolution Poulin 1999, Thomas 2000, Wood et. al. 2007). (Combes 1996, Poulin 1963, Renaud 1996, Lyskin (2005) asserts that symbioses (and Warén 1983). therefore, parasitisms) are good systems To further understand the parasitic system, through which to view biological interaction, a case study of parasite‐host interactions was as the host dampens the effect of abiotic organized on the French Polynesian tropical factors on the symbiont ‐ making biological island of Mo’orea. Mo’orea is a relatively interactions more clear to scientific inquiry. young member (1.5‐2 million years old) of the Society Islands, a volcanic chain formed by acicula insert their proboscis into the lacunae hot‐spot action. These islands are relatively of the host’s body wall, not fully penetrating remote, being over 5000km away from the body wall, and feed upon the Australia, the nearest mainland. coelomocytes (blood and immune cells) Eulimidae, a family of parasitic marine (Hetzel 1963, Warén 1980‐B, 1983). gastropods, were the focus of this study, Some eulimids are known to be host specifically the tropical shallow‐water species specific, others are more generalist (Crossland Melanella acicula Gould and Peasistilifer nitidula 1993). However, documentation of host use is Pease. The Eulimidae is a large family, not substantial enough to make general estimated to be the second largest family of conclusions about the host specificity in parasitic gastropods (Lozouet 2001, Warén Eulimidae – although genera tend to be 1983) and also showing the greatest diversity specific to hosts at least at the class level and highest level of morphological adaptation (Warén 1983). As such, more thorough (Warén 1983). There have been 1250 species investigations, as in this study, will be useful. described as of 1983, although this includes Melanella is known to parasitize holothurians, fossil species and species that are likely and M. acicula has been recorded on three host synonymous. However, there are numerous species other than those found during this undescribed species and many more expected project on Mo’orea (Warén 1983). Peasistilifer to be found as well (Warén 1983). A recent nitidula has been noted to be exclusively taxonomic revision by Bouchet and Rocroi parasitizing the sea cucumber Holothuria atra (2005) place the eulimid superfamily, (Warén pers comm.), and the occurrence of P. Eulimoidea, in the informal group Ptenoglossa nitidula on H. atra can been seen in the with two other superfamilies (Epitonioidea literature (Warén 1980‐B, 1983). However, I and Triphoroidea). The Ptenoglossa along have not seen an experimental confirmation of with sister taxa, the Neogastropoda and the parasite’s specificity. Littorinimorpha, compose the Melanella acicula and Peasistilifer nitidula Hypsogastropoda ‐ including animals such as are both common and overlapping in periwinkles, cowries, worm snails and distribution at the study sites for this project; a numerous predatory snails (Bouchet and comparison of host use can show similarities Rocroi 2005). More specific documentation of and differences in life histories of these two the natural history and taxonomy of the organisms presented with the same problem: Eulimidae is underdeveloped (McClain 2006, maximizing fitness as an ectoparasite of Warén pers. comm.); as such, a study of host‐ holothurians. Specifically, I wished to answer parasite interactions will be doubly useful, what hosts are being used, and how those allowing general insights into parasite systems hosts are being located. Dimensions of the and increasing the knowledge base of eulimid host‐parasite relationship that were natural history. characterized to answer these questions were: Most eulimids are ectoparasitic, feeding distribution in nature, host preference, host on the bodily fluids of echinoderm hosts by detection, and survival off the host. A field piercing the skin of the host and reaching an survey helped establish what species are internal organ with their proboscis (Crossland parasitized in nature and the preference trials 1991, Crossland and Warén 1991, Warén 1980‐ further checked for these host preferences A, 1983, 1984). Some primitive forms retain a under controlled conditions. Warén (1983) radula (Anonymous 1982), however Melanella suggests that host specificity may be an and Peasistilifer have proboscises. Melanella important tool in approaching eulimid acicula and Peasistilifer nitidula can be found taxonomy, with more primitive species being parasitizing sea cucumbers (Class: less host specific, and more derived forms Holothuroidae). Both P. nitidula and M. becoming increasingly specific. Host detection trials included both chemosensory MATERIALS AND METHODS and visually based tests. Chemosensory abilities of various invertebrate parasites and Study Sites predators have been recorded as a way to detect prey and hosts (Cervo 1996, Haas 1994, Field and lab components of this study Rae 2009, Svensen 2000), and are hypothesized were undertaken on Mo’orea from 12 Oct to to be utilized by M. acicula and P. nitidula. The 14 Nov 2009. Two sites were used as the main majority of eulimids have eyes with lenses, sources for all study organisms, the Richard B. even species that are endoparasitic and/or Gump South Pacific Island Research Station abyssal (Warén 1983), and visual detection located along Cook’s Bay, and the Public was tested as a possible host detection method. Beach of Opunohu Bay. These adjacent bays Survival time off the host allowed trends from open to the North, and are major features of other experiments to be correlated to the Mo’orean landscape (Figure 1). Temae dependency on the host; survivorship off the Public Beach was also visited once for host for P. nitidula and M. acicula has been collecting. anecdotally noted as a “long time” (Warén 1983). Holothurians are substrate sifting or filter feeding echinoderms, having the most diverse symbiotic assemblages in Echinodermata (Lyskin 2005) and serving as hosts to M. acicula and P. nitidula. Echinoderms are often considered to be good hosts, by virtue of their long lifespan and predator deterring abilities – creating a stable and protected environment for the symbiont (Warén 1983). Holothurians in particular show a number of predator Figure 1. Map of Mo’orea Study Sites. defense mechanisms: expulsion of Cuvierian (Google Maps 2009, edited) tubules, active avoidance, crypsis, unpalatbility, toxicity, thickening of the body Gump Station (17°29ʹ25.96ʺS, wall, or evisceration of internal organs 149°49ʹ34.17ʺW) borders a marine protected (defense by autotomy) (Castillo 2006). Three area (i.e., a no‐take zone), and serves as a shallow‐water species from the family research and boarding facility for various Holothuriidae were used throughout the scientific
Recommended publications
  • Caenogastropoda Eulimidae) from the Western Iberian Peninsula
    Biodiversity Journal, 2021, 12 (2): 277–282, https://doi.org/10.31396/Biodiv.Jour.2021.12.2.277.282 https://zoobank.org:pub:AA55BDF3-1E5E-469D-84A8-5EC6A013150F A new minute eulimid (Caenogastropoda Eulimidae) from the western Iberian Peninsula Serge Gofas1 & Luigi Romani2* 1Departamento de Biología Animal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain,; e-mail: [email protected] 2Via delle ville 79, 55012 Capannori (Lucca), Italy; e-mail: [email protected] *Corresponding author ABSTRACT An enigmatic small-sized gastropod is recorded on few shells originating from the western Iberian Peninsula. It is assigned to the family Eulimidae relying on shell characters, and com- pared to species of several genera which share some morphological features with it. It is de- scribed as new and provisionally included in Chileutomia Tate et Cossmann, 1898, although with reservation, as we refrain to establish a new genus without anatomical and molecular data which can clarify the phylogenetic relationships of the new species. KEY WORDS Gastropoda; new species; NW Atlantic Ocean. Received 06.01.2020; accepted 28.02.2021; published online 12.04.2021 INTRODUCTION tematics and intra-familial relationships is at its very beginning, for instance the phylogenetic posi- The Eulimidae Philippi, 1853 are a species-rich tion of the Eulimidae within the Caenogastropoda taxon of marine snails, mostly parasitic of Echino- was assessed by molecular means only recently dermata (Warén, 1984). The family comprises (Takano & Kano, 2014), leading to consider them about one thousand recent valid species recognized as sister-group to the Vanikoridae (Bouchet et al., worldwide (MolluscaBase, 2021a), but a more re- 2017).
    [Show full text]
  • A Hitherto Unnoticed Adaptive Radiation: Epitoniid Species (Gastropoda: Epitoniidae) Associated with Corals (Scleractinia)
    Contributions to Zoology, 74 (1/2) 125-203 (2005) A hitherto unnoticed adaptive radiation: epitoniid species (Gastropoda: Epitoniidae) associated with corals (Scleractinia) Adriaan Gittenberger and Edmund Gittenberger National Museum of Natural History, P.O. Box 9517, NL 2300 RA Leiden / Institute of Biology, University Leiden. E-mail: [email protected] Keywords: Indo-Pacific; parasites; coral reefs; coral/mollusc associations; Epitoniidae;Epitonium ; Epidendrium; Epifungium; Surrepifungium; new species; new genera; Scleractinia; Fungiidae; Fungia Abstract E. sordidum spec. nov. ....................................................... 155 Epifungium gen. nov. .............................................................. 157 Twenty-two epitoniid species that live associated with various E. adgranulosa spec. nov. ................................................. 161 hard coral species are described. Three genera, viz. Epidendrium E. adgravis spec. nov. ........................................................ 163 gen. nov., Epifungium gen. nov., and Surrepifungium gen. nov., E. adscabra spec. nov. ....................................................... 167 and ten species are introduced as new to science, viz. Epiden- E. hartogi (A. Gittenberger, 2003) .................................. 169 drium aureum spec. nov., E. sordidum spec. nov., Epifungium E. hoeksemai (A. Gittenberger and Goud, 2000) ......... 171 adgranulosa spec. nov., E. adgravis spec. nov., E. adscabra spec. E. lochi (A. Gittenberger and Goud, 2000) ..................
    [Show full text]
  • (Gastropoda: Cerithiopsidae) from Bocas Del Toro, Panama
    Caribbean Journal of Science, Vol. 40, No. 2, 192-197, 2004 Copyright 2004 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Development of Cerithiopsis gemmulosum (Gastropoda: Cerithiopsidae) from Bocas del Toro, Panama RACHEL COLLIN Smithsonian Tropical Research Institute, Unit 0948, APO AA 34002, USA e-mail: [email protected] ABSTRACT.—The relationships between the seven families in the Ptenoglossa and the relationships be- tween the Ptenoglossa and other gastropod groups have been based on anatomical features associated with feeding, and on developmental characters. However the embryonic development of several of these families remains undescribed. Here I describe the development of Cerithiopsis gemmulosum from Bocas del Toro Province, Panama. This species lives on and lays its thin-walled egg capsules in Halichondria melanadocia sponges. The 79 µm eggs have equal cleavage with a polar lobe. The ciliated “trochophore” stage is followed by an encapsulated veliger which has distinct embryonic kidneys and large granular cells that cover the head vesicle. The black eyes are large and develop early, but there is no pigmented mantle organ. At hatching the brown larval shell is a single whorl and 127 µm long, and each semicircular velar lobe is unpigmented. The velar lobes are equal in size at hatching, but as the shell grows and becomes high-spired the right lobe grows to twice the size of the left lobe. The late larval shell is smooth but has a prominent beak flanked by two distinct notches that fit the velar lobes. After 3 weeks in culture the velum begins to shrink, and larvae with 500 µm shell length metamorphose when exposed to host sponge.
    [Show full text]
  • Thirteen New Records of Marine Invertebrates and Two of Fishes from Cape Verde Islands
    Thirteen new records of marine invertebrates and two of fishes from Cape Verde Islands PETER WIRTZ Wirtz, P. 2009. Thirteen new records of marine invertebrates and two of fishes from Cape Verde Islands. Arquipélago. Life and Marine Sciences 26: 51-56. The sea anemones Actinoporus elegans Duchassaing, 1850 and Anthothoe affinis (Johnson, 1861) are new records from Cape Verde Islands. Also new to the marine fauna of Cape Verde are an undescribed mysid species of the genus Heteromysis that lives in association with the polychaete Branchiomma nigromaculata, the shrimp Tulearicoaris neglecta Chace, 1969 that lives in association with the sea urchin Diadema antillarum, an undescribed nudibranch of the genus Hypselodoris, and two undescribed species of the parasitic gastropod genus Melanella and Melanella cf. eburnea. An undescribed plathelmint of the genus Pseudobiceros, the nudibranch Phyllidia flava (Aradas, 1847) and the parasitic gastropod Echineulima leucophaes (Tomlin & Shackleford, 1913) are recorded, based on colour photos taken in the field. The crab Nepinnotheres viridis Manning, 1993 was encountered in the bivalve Pseudochama radians, which represents the first host record for this pinnotherid species. The nudibranch Tambja anayana, previously only known from a single animal, was reencountered and photographed alive. The sea anemone Actinoporus elegans, previously only known from the western Atlantic, is also reported here from São Tomé Island. In addition, the bythiid fish Grammonus longhursti and an undescribed species of the genus Apletodon are recorded from the Cape Verde Islands for the first time. Key words: Anthozoa, Gastropoda, marine biodiversity, Plathelmintes, São Tomé Peter Wirtz (e-mail: [email protected]), Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, PT-8005-139 Faro, Portugal.
    [Show full text]
  • Sea Cucumber Abundance, Diversity and Fisheries in Samoa; an Assessment of Lagoon Occurring Sea Cucumbers
    2006-05-17 Sea cucumber abundance, diversity and fisheries in Samoa; an assessment of lagoon occurring sea cucumbers Part I: A wide approached survey to assess status of commercial beche-de-mer species in Samoa. & Part II: The subsistence and artisanal sea cucumber fishery, with particular focus on Stichopus horrens, in Samoa. B.G.H. Eriksson Preface This study was performed in Samoa from 2005-09-20 to 2005-12-20 and finalises my university studies at Uppsala University towards an M.Sc in Biology. The work presented in this paper came about after a series of events and I owe greatly to all of those that are mentioned in the acknowledgement section. During 2005 a request was put forward to The Secretariat of the Pacific Community (SPC) from the Samoan Fisheries Division to perform a survey on the coastal resources (including sea cucumber resources) around the country of Samoa in the South Pacific. The coastal component of the Pacific Region Oceanic and Coastal Fisheries (PROCFish/C) section of SPC started up this work in collaboration with the Samoan Fisheries Division in June and August 2005 and covered finfish and invertebrate resources in parts of Upolu and Savaii. The invertebrate surveys included fisheries dependent and fisheries independent data collection. The fisheries independent surveys were in-water assessments of stock and habitat in grounds that was pre-selected because of fishing activities in that area. The data collected was generally density estimates (incl. species composition) across shifting habitats, but also biological data, such as length and weight measurements. Alongside this information fishery dependent data was also collected.
    [Show full text]
  • The Recent Molluscan Marine Fauna of the Islas Galápagos
    THE FESTIVUS ISSN 0738-9388 A publication of the San Diego Shell Club Volume XXIX December 4, 1997 Supplement The Recent Molluscan Marine Fauna of the Islas Galapagos Kirstie L. Kaiser Vol. XXIX: Supplement THE FESTIVUS Page i THE RECENT MOLLUSCAN MARINE FAUNA OF THE ISLAS GALApAGOS KIRSTIE L. KAISER Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA 4 December 1997 SiL jo Cover: Adapted from a painting by John Chancellor - H.M.S. Beagle in the Galapagos. “This reproduction is gifi from a Fine Art Limited Edition published by Alexander Gallery Publications Limited, Bristol, England.” Anon, QU Lf a - ‘S” / ^ ^ 1 Vol. XXIX Supplement THE FESTIVUS Page iii TABLE OF CONTENTS INTRODUCTION 1 MATERIALS AND METHODS 1 DISCUSSION 2 RESULTS 2 Table 1: Deep-Water Species 3 Table 2: Additions to the verified species list of Finet (1994b) 4 Table 3: Species listed as endemic by Finet (1994b) which are no longer restricted to the Galapagos .... 6 Table 4: Summary of annotated checklist of Galapagan mollusks 6 ACKNOWLEDGMENTS 6 LITERATURE CITED 7 APPENDIX 1: ANNOTATED CHECKLIST OF GALAPAGAN MOLLUSKS 17 APPENDIX 2: REJECTED SPECIES 47 INDEX TO TAXA 57 Vol. XXIX: Supplement THE FESTIVUS Page 1 THE RECENT MOLLUSCAN MARINE EAUNA OE THE ISLAS GALAPAGOS KIRSTIE L. KAISER' Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA Introduction marine mollusks (Appendix 2). The first list includes The marine mollusks of the Galapagos are of additional earlier citations, recent reported citings, interest to those who study eastern Pacific mollusks, taxonomic changes and confirmations of 31 species particularly because the Archipelago is far enough from previously listed as doubtful.
    [Show full text]
  • Notas Breves Epitonium Brevissimum
    © Sociedad Española de Malacología Iberus, 32 (2): 207-209, 2014 Notas breves Epitonium brevissimum (G. Seguenza, 1876) (Caenogastropoda, Epitoniidae): new records in the Tyrrhenian Sea and the Strait of Gibraltar Epitonium brevissimum (G. Seguenza, 1876) (Caenogastropoda, Epitoniidae): nuevas citas en el mar Tirreno y estrecho de Gibraltar Luigi ROMANI1* & Cesare BOGI2 Recibido el 21-III-2014. Aceptado el 6-V-2014 INTRODUCTION Epitonium brevissimum was described formly dirty white in colour. The proto- by G. SEGUENZA (1876) as a fossil from conch is subcylindrical with a narrow the Pliocene of southern Italy and light brown subsutural band (PEÑAS, reported from the Pliocene of Capo ROLÁN,LUQUE,TEMPLADO,MORENO, Milazzo (PALAZZI AND VILLARI, 1996). A RUBIO,SALAS,SIERRA AND GOFAS, 2006; shell was subsequently found in a collec- GOFAS,MORENO AND SALAS, 2011). The tion by Seguenza in the Geological and animal is unknown. Paleontological Museum of Florence Uni- Three shells were recently found on versity (BERTOLASO AND PALAZZI, 2000). coralligenous bottoms of Alboran island The shell is easily recognizable by its (80-200 m) while one fresh shell is shape: the teleoconch is somewhat reported from the Celtic Sea off Brittany globose, trochiform, of about two very (313-330 m) (both in PEÑAS ET AL., 2006). convex whorls crossed by close-set No further records are known. Three fragile lamellae. The aperture is circular. new findings for the Mediterranean Sea The umbilicus is wide. The shell is uni- are reported in this note. TAXONOMY Family EPITONIIDAE Berry S.S., 1910 Genus Epitonium Röding, 1798 Epitonium brevissimum (G. Seguenza, 1876) (Fig.
    [Show full text]
  • Green Sea Turtle, Chelonia Mydas, Feeding on Synapta Maculata
    ISSN 1025-4943 Issue 41 – March 2021 BECHE-DE-MER information bulletin Inside this issue Editorial The listing of three sea cucumber species in CITES Appendix II enters into force This 41th issue of the SPC Beche-de-Mer Information Bulletin includes 16 original M. Di Simone et al. p. 3 articles and scientific observations from a wide variety of regions around the world. Updated conversion ratios for beche-de- We first want to express our congratulations to Dr Marie Bonneel, Dr Cathy Hair mer species in Torres Strait, Australia and Dr Hocine Benzait who recently received their PhDs. Dr Bonneel received her N. E. Murphy et al. p. 5 PhD from the University of Mons in Belgium, and her dissertation is titled “Sea Successful use of a remotely operated cucumbers as a source of proteins with biomimetic interest: Adhesive and con- vehicle to survey deep-reef habitats for white teatfish (Holothuria fuscogilva) in nective tissue – stiffening proteins from Holothuria forskali”. Dr Hair received her Torres Strait, Australia PhD from James Cook University in Australia, and the title of her dissertation N. E. Murphy et al. p. 8 is “Development of community-based mariculture of sandfish, Holothuria scabra, Salting affects the collagen composition in New Ireland Province, Papua New Guinea”. Dr Benzait received his PhD from of the tropical sea cucumber Holothuria the Université de Mostaganem in Algeria, and his dissertation is titled “Ecologie, scabra dynamique de la population et reproduction d’Echinaster sepositus, Ophioderma R. Ram et al. p. 12 longicauda et de Parastichopus regalis au niveau de la côte de Mostaganem”.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Predator Defense Mechanisms in Shallow Water Sea Cucumbers (Holothuroidea)
    PREDATOR DEFENSE MECHANISMS IN SHALLOW WATER SEA CUCUMBERS (HOLOTHUROIDEA) JESSICA A. CASTILLO Environmental Science Policy and Management, University of California, Berkeley, California 94720 USA Abstract. The various predator defense mechanisms possessed by shallow water sea cucumbers were surveyed in twelve different species and morphs. While many defense mechanisms such as the presence of Cuverian tubules, toxic secretions, and unpalatability have been identified in holothurians, I hypothesized that the possession of these traits as well as the degree to which they are utilized varies from species to species. The observed defense mechanisms were compared against a previously-derived phylogeny of the sea cucumbers of Moorea. Furthermore, I hypothesized that while the presence of such structures is most likely a result of the species’ placement on a phylogenetic tree, the degree to which they utilize such structures and their physical behavior are influenced by their individual ecologies. The presence of a red liquid secretion was restricted to individuals of the genus Holothuria (Linnaeus 1767) however not all members of the genus exhibited this trait. With the exception of H. leucospilota, which possessed both Cuverian tubules and a red secretion, Cuverian tubules were observed in members of the genus Bohadschia (Ostergren 1896). In accordance with the hypothesis, both the phylogenetics and individual ecology appear to influence predator defense mechanisms. However, even closely related species of similar ecology may differ considerably. Key words: holothurians; defense; toxicity; Cuverian tubules; Moorea, French Polynesia INTRODUCTION (Sakthivel et. Al, 1994). Approximately 20 species in two families and five genera, Sea cucumbers belong to the phylum including Holothuria, Bohadschia, and Thenelota, Echinodermata and the class Holothuroidea.
    [Show full text]
  • Critical Review of Type Specimens Deposited in the Malacological Collection of the Biological Institute/Ufrj, Rio De Janeiro, Brazil
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/324805927 Critical review of type specimens deposited in the Malacological Collection of the Biological institute/ufrj, Rio de Janeiro, Brazil Article in Zootaxa · April 2018 DOI: 10.11646/zootaxa.4415.1.4 CITATIONS READS 0 35 4 authors, including: Cleo Oliveira Ricardo Silva Absalão Federal University of Rio de Janeiro Federal University of Rio de Janeiro 16 PUBLICATIONS 64 CITATIONS 92 PUBLICATIONS 486 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Morfoanatomia de Gastrópodes (Mollusca) Terrestres em Floresta Ombrófila Densa Montana do Parque Nacional da Serra dos Órgãos, Rio de Janeiro View project All content following this page was uploaded by Cleo Oliveira on 24 May 2018. The user has requested enhancement of the downloaded file. Zootaxa 4415 (1): 091–117 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4415.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:D2AC7BE4-87D2-462C-91CA-F5F877FF595A Critical review of type specimens deposited in the Malacological collection of the biological institute/Ufrj, Rio de Janeiro, Brazil CLÉO DILNEI DE CASTRO OLIVEIRA1,3, ALEXANDRE DIAS PIMENTA2, RAQUEL MEDEIROS ANDRADE FIGUEIRA1 & RICARDO SILVA ABSALÃO1 1Laboratório de Malacologia, Instituto de Biologia/UFRJ, Rio de Janeiro, Brazil. 2Departamento de Invertebrados, Museu Nacional/UFRJ, Rio de Janeiro, Brazil 3Corresponding author. E-mail: [email protected] Abstract The Malacological Collection of the Biological Institute of Federal University of Rio de Janeiro figures as an important repository of specimens, containing c.a.
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]