Density and Stratification Density of Water Ocean Surface Temperature

Total Page:16

File Type:pdf, Size:1020Kb

Density and Stratification Density of Water Ocean Surface Temperature Density of water density = mass/volume units: g/cm 3 (= g/ml = kg/L) Effect of Temperature on Density density of water - @ 4 oC and 1 atm pressure fresh:1.000 g/cm 3 (by definition!) Density and Stratification sea: 1.027 g/cm 3 (on average) what determines water density? temperature – inverse relationship the major players of the ocean’s layers lower temp = higher density higher temp = lower density salinity – direct relationship lower sal = lower density higher sal = higher density pressure water is essentially (but not exactly) incompressible but at very high pressures (deep depths) – pressure increases density sea level would be ~30-50 m higher without pressure effect Ocean surface temperature often called sea surface temperature or SST strongly correlates with latitude because insolation (amount of sunlight striking Earth’s surface) is high at low latitudes & low at high latitudes surface ocean isotherms (lines of equal temperature) generally trend east-west except where deflected toward poles or equator by currents warm water carried poleward on western side of ocean basins Gulf Stream, Kuroshio Current – Northern Hemisphere Brazil Current, East Australia Current – Southern Hemisphere cooler water carried equatorward on eastern side of ocean basins Canary Current, California Current – Northern Hemisphere Benguela Current, Peru Current – Southern Hemisphere SST overall pattern highest in the tropics (~25-29 oC) where insolation is highest decreases poleward with decreasing insolation negative temperatures in Arctic Ocean & around Antarctica 1 Ocean abyssal temperature cold and dense colder than 4 oC (remember Challenger expedition) colder = more dense remember temperature-density relationship for seawater temperature of maximum density is right at freezing point (~ -1.91 oC) smaller temperature range than SST <1 oC – 2.5 oC @ 4000 m depth overall, from ~1000 m and below, most temperatures are 2 o – 4oC more uniform distribution than SST isolation from insolation (read that twice!) still, some patterns can be discerned colder near Antarctica warmer in North Atlantic warmest in isolated basins (due to diffusion of heat over time) Caribbean Sea basin Philippine Sea basin Predict-a-profile Produce-a-profile kinda like whack-a-mole How did we do? except you don’t actually warm surface waters ≈ 2% of ocean volume hit anything thermocline waters ≈ 18% of ocean volume deep waters ≈ 80% of ocean volume near near near near Alaska Antarctica Alaska Antarctica Polar Temperate Region Tropics Temperate Region Polar Polar Temperate Region Tropics Temperate Region Polar ("high ("mid-latitudes") ("low latitudes") ("mid-latitudes") ("high ("high ("mid-latitudes") ("low latitudes") ("mid-latitudes") ("high latitudes") latitudes") latitudes") latitudes") 0 0 0 warm surface waters warm surface waters 0 ve r cool to warm warm to very warm cool to warm ld pycnocline and permanent thermocline y o 1000 co 1000 1000 1000 ld to 2000 co 2000 2000 2000 ld very cold deep waters very cold to c 3000 3000 3000 3000 Water Depth (m) very cold very cold very cold Water Depth (m) 4000 4000 4000 4000 5000 5000 5000 5000 70 oN 60 ooooooooooooooN 50 N 40 N 30 N 20 N 10 N 0 10 S 20 S 30 S 40 S 50 S 60 S 70 S 70 oN 60 ooooooooooooooN 50 N 40 N 30 N 20 N 10 N 0 10 S 20 S 30 S 40 S 50 S 60 S 70 S 2 Explain-a-profile thermocline in tropics What does this mean? Tropical Waters The permanent thermocline (low latitudes) warm, less dense surface layer over very cold and dense deep waters extends from the base of 32 41 50 59 68 77 86 °F the permanent thermocline is the interval through which temperature the surface mixed layer decreases rapidly with increasing water depth 0 5 1015 20 25 30 °C near near (~75-150 m) to ~1000 m 0 Alaska Antarctica water depth. Polar Temperate Region Tropics Temperate Region Polar seasonal ("high ("mid-latitudes") ("low latitudes") ("mid-latitudes") ("high latitudes") latitudes") The depth of the mixed (summer) thermocline 0 warm surface waters warm surface waters 0 layer is a function of mixing pycnocline and permanent thermocline (homogenization) of the 500 permanent 1000 1000 thermocline warmed surface waters (~150-1000 m) 2000 2000 downward by day-to-day very cold deep waters winds and storms, waves 3000 3000 1000 and surface currents. Water Depth (m) cold deep waters 4000 4000 below thermocline 5000 5000 (below pycnocline) o oooooooooooooo 70 N 60 N 50 N 40 N 30 N 20 N 10 N 0 10 S 20 S 30 S 40 S 50 S 60 S 70 S 1500 Growth of thermocline in mid-latitudes Seasonal Thermocline Temperate Waters Winter storms tend to be (mid-latitudes) NOTE: applies to mid-latitude temperate regions only bigger/stronger than 32 41 50 59 68 77 °F summer storms. March – winter cooling of surface waters has destroyed 0 5 10 15 20 25 °C seasonal thermocline, vertical mixing is taking place Therefore the mixed layer 0 summer mixed layer (0-75 m) 75 m May – surface waters winter mixed layer (0-150 m) tends to be deeper during 150 m seasonal begin to warm, weak winter months. (summer) thermocline forms Summer heating causes thermocline 500 permanent June – surface layer the creation of a seasonal thermocline increasingly shallow thermocline (a steeper (~150-1000 m) and isolated from temperature gradient than deeper waters; ther- during the winter). 1000 1000 m mocline strengthens pronounced seasonality cold deep waters August – thermocline below thermocline reaches maximum is the hallmark of (below pycnocline) the mid-latitudes Decay of thermocline occurs August – January, as surface 1500 waters increasingly cool and mix with deeper waters 3 thermocline in polar regions Salinity and the halocline A permanent thermocline is Polar Waters Salinity changes with latitude due In some areas of the ocean, (high latitudes) to variations in precipitation and surface water and deep water are absent in polar regions 32 41 50 °F evaporation with latitude. separated by a halocline , a zone of rapid change of salinity with because surface waters are Highest ocean salinity is between water depth. 0 5 10 °C 20-30 o north and south of the very cold and deep waters 0 The thermocline and halocline are very cold. equator, because evaporation combine to form the pycnocline exceeds precipitation there. (which is mighty fine). Therefore, there is little Low salinity at the equator and Water stratification (layering) temperature contrast (or poleward of 30 o results from within the ocean is most 500 evaporation being less than pronounced at the latitudes gradient) between polar no permanent precipitation. between 40 oN and 40 oS. surface and deep waters. thermocline (surface waters A small seasonal (summer) are cold, deep waters are cold) thermocline forms but (m) depth water 1000 vertical mixing occurs basically year-round. temperature salinity density 1500 = “thermo” = “halo” = “pycno” Fun with dots on plots o Temperature ( C) Density ( σ t ) 0 5 10 15 20 25 23 24 25 26 27 28 0 warm surface 0 less dense surface waters waters 500 thermocline 500 pycnocline 1000 1000 1500 1500 very cold dense 2000 deep waters 2000 deep waters 2500 2500 Water Depth (in meters) Depth Water (in Water Depth (in meters) Depth Water (in 3000 3000 3500 3500 4000 4000 32 41 50 59 68 77 1.023 1.024 1.025 1.026 1.027 1.028 Temperature ( oF) Density (g/cm 3) 4.
Recommended publications
  • Basic Concepts in Oceanography
    Chapter 1 XA0101461 BASIC CONCEPTS IN OCEANOGRAPHY L.F. SMALL College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America Abstract Basic concepts in oceanography include major wind patterns that drive ocean currents, and the effects that the earth's rotation, positions of land masses, and temperature and salinity have on oceanic circulation and hence global distribution of radioactivity. Special attention is given to coastal and near-coastal processes such as upwelling, tidal effects, and small-scale processes, as radionuclide distributions are currently most associated with coastal regions. 1.1. INTRODUCTION Introductory information on ocean currents, on ocean and coastal processes, and on major systems that drive the ocean currents are important to an understanding of the temporal and spatial distributions of radionuclides in the world ocean. 1.2. GLOBAL PROCESSES 1.2.1 Global Wind Patterns and Ocean Currents The wind systems that drive aerosols and atmospheric radioactivity around the globe eventually deposit a lot of those materials in the oceans or in rivers. The winds also are largely responsible for driving the surface circulation of the world ocean, and thus help redistribute materials over the ocean's surface. The major wind systems are the Trade Winds in equatorial latitudes, and the Westerly Wind Systems that drive circulation in the north and south temperate and sub-polar regions (Fig. 1). It is no surprise that major circulations of surface currents have basically the same patterns as the winds that drive them (Fig. 2). Note that the Trade Wind System drives an Equatorial Current-Countercurrent system, for example.
    [Show full text]
  • A Numerical Study of the Long- and Short-Term Temperature Variability and Thermal Circulation in the North Sea
    JANUARY 2003 LUYTEN ET AL. 37 A Numerical Study of the Long- and Short-Term Temperature Variability and Thermal Circulation in the North Sea PATRICK J. LUYTEN Management Unit of the Mathematical Models, Brussels, Belgium JOHN E. JONES AND ROGER PROCTOR Proudman Oceanographic Laboratory, Bidston, United Kingdom (Manuscript received 3 January 2001, in ®nal form 4 April 2002) ABSTRACT A three-dimensional numerical study is presented of the seasonal, semimonthly, and tidal-inertial cycles of temperature and density-driven circulation within the North Sea. The simulations are conducted using realistic forcing data and are compared with the 1989 data of the North Sea Project. Sensitivity experiments are performed to test the physical and numerical impact of the heat ¯ux parameterizations, turbulence scheme, and advective transport. Parameterizations of the surface ¯uxes with the Monin±Obukhov similarity theory provide a relaxation mechanism and can partially explain the previously obtained overestimate of the depth mean temperatures in summer. Temperature strati®cation and thermocline depth are reasonably predicted using a variant of the Mellor±Yamada turbulence closure with limiting conditions for turbulence variables. The results question the common view to adopt a tuned background scheme for internal wave mixing. Two mechanisms are discussed that describe the feedback of the turbulence scheme on the surface forcing and the baroclinic circulation, generated at the tidal mixing fronts. First, an increased vertical mixing increases the depth mean temperature in summer through the surface heat ¯ux, with a restoring mechanism acting during autumn. Second, the magnitude and horizontal shear of the density ¯ow are reduced in response to a higher mixing rate.
    [Show full text]
  • MIMOC: a Global Monthly Isopycnal Upper-Ocean Climatology with Mixed Layers*
    1 * 1 MIMOC: A Global Monthly Isopycnal Upper-Ocean Climatology with Mixed Layers 2 3 Sunke Schmidtko1,2, Gregory C. Johnson1, and John M. Lyman1,3 4 5 1National Oceanic and Atmospheric Administration, Pacific Marine Environmental 6 Laboratory, Seattle, Washington 7 2University of East Anglia, School of Environmental Sciences, Norwich, United 8 Kingdom 9 3Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, 10 Honolulu, Hawaii 11 12 Accepted for publication in 13 Journal of Geophysical Research - Oceans. 14 Copyright 2013 American Geophysical Union. Further reproduction or electronic 15 distribution is not permitted. 16 17 8 February 2013 18 19 ______________________________________ 20 *Pacific Marine Environmental Laboratory Contribution Number 3805 21 22 Corresponding Author: Sunke Schmidtko, School of Environmental Sciences, University 23 of East Anglia, Norwich, NR4 7TJ, UK. Email: [email protected] 2 24 Abstract 25 26 A Monthly, Isopycnal/Mixed-layer Ocean Climatology (MIMOC), global from 0–1950 27 dbar, is compared with other monthly ocean climatologies. All available quality- 28 controlled profiles of temperature (T) and salinity (S) versus pressure (P) collected by 29 conductivity-temperature-depth (CTD) instruments from the Argo Program, Ice-Tethered 30 Profilers, and archived in the World Ocean Database are used. MIMOC provides maps 31 of mixed layer properties (conservative temperature, Θ, Absolute Salinity, SA, and 32 maximum P) as well as maps of interior ocean properties (Θ, SA, and P) to 1950 dbar on 33 isopycnal surfaces. A third product merges the two onto a pressure grid spanning the 34 upper 1950 dbar, adding more familiar potential temperature (θ) and practical salinity (S) 35 maps.
    [Show full text]
  • Mapping Current and Future Priorities
    Mapping Current and Future Priorities for Coral Restoration and Adaptation Programs International Coral Reef Initiative (ICRI) Ad Hoc Committee on Reef Restoration 2019 Interim Report This report was prepared by James Cook University, funded by the Australian Institute for Marine Science on behalf of the ICRI Secretariat nations Australia, Indonesia and Monaco. Suggested Citation: McLeod IM, Newlands M, Hein M, Boström-Einarsson L, Banaszak A, Grimsditch G, Mohammed A, Mead D, Pioch S, Thornton H, Shaver E, Souter D, Staub F. (2019). Mapping Current and Future Priorities for Coral Restoration and Adaptation Programs: International Coral Reef Initiative Ad Hoc Committee on Reef Restoration 2019 Interim Report. 44 pages. Available at icriforum.org Acknowledgements The ICRI ad hoc committee on reef restoration are thanked and acknowledged for their support and collaboration throughout the process as are The International Coral Reef Initiative (ICRI) Secretariat, Australian Institute of Marine Science (AIMS) and TropWATER, James Cook University. The committee held monthly meetings in the second half of 2019 to review the draft methodology for the analysis and subsequently to review the drafts of the report summarising the results. Professor Karen Hussey and several members of the ad hoc committee provided expert peer review. Research support was provided by Melusine Martin and Alysha Wincen. Advisory Committee (ICRI Ad hoc committee on reef restoration) Ahmed Mohamed (UN Environment), Anastazia Banaszak (International Coral Reef Society),
    [Show full text]
  • World Ocean Thermocline Weakening and Isothermal Layer Warming
    applied sciences Article World Ocean Thermocline Weakening and Isothermal Layer Warming Peter C. Chu * and Chenwu Fan Naval Ocean Analysis and Prediction Laboratory, Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-831-656-3688 Received: 30 September 2020; Accepted: 13 November 2020; Published: 19 November 2020 Abstract: This paper identifies world thermocline weakening and provides an improved estimate of upper ocean warming through replacement of the upper layer with the fixed depth range by the isothermal layer, because the upper ocean isothermal layer (as a whole) exchanges heat with the atmosphere and the deep layer. Thermocline gradient, heat flux across the air–ocean interface, and horizontal heat advection determine the heat stored in the isothermal layer. Among the three processes, the effect of the thermocline gradient clearly shows up when we use the isothermal layer heat content, but it is otherwise when we use the heat content with the fixed depth ranges such as 0–300 m, 0–400 m, 0–700 m, 0–750 m, and 0–2000 m. A strong thermocline gradient exhibits the downward heat transfer from the isothermal layer (non-polar regions), makes the isothermal layer thin, and causes less heat to be stored in it. On the other hand, a weak thermocline gradient makes the isothermal layer thick, and causes more heat to be stored in it. In addition, the uncertainty in estimating upper ocean heat content and warming trends using uncertain fixed depth ranges (0–300 m, 0–400 m, 0–700 m, 0–750 m, or 0–2000 m) will be eliminated by using the isothermal layer.
    [Show full text]
  • Climate Change Impacts on Net Primary Production (NPP) And
    Biogeosciences, 13, 5151–5170, 2016 www.biogeosciences.net/13/5151/2016/ doi:10.5194/bg-13-5151-2016 © Author(s) 2016. CC Attribution 3.0 License. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models Weiwei Fu, James T. Randerson, and J. Keith Moore Department of Earth System Science, University of California, Irvine, California, 92697, USA Correspondence to: Weiwei Fu ([email protected]) Received: 16 June 2015 – Published in Biogeosciences Discuss.: 12 August 2015 Revised: 10 July 2016 – Accepted: 3 August 2016 – Published: 16 September 2016 Abstract. We examine climate change impacts on net pri- the models. Community structure is represented simply in mary production (NPP) and export production (sinking par- the CMIP5 models, and should be expanded to better cap- ticulate flux; EP) with simulations from nine Earth sys- ture the spatial patterns and climate-driven changes in export tem models (ESMs) performed in the framework of the efficiency. fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representa- tive Concentration Pathway (RCP) 8.5. Relative to the 1990s, 1 Introduction NPP in the 2090s is reduced by 2–16 % and EP by 7–18 %. The models with the largest increases in stratification (and Ocean net primary production (NPP) and particulate or- largest relative declines in NPP and EP) also show the largest ganic carbon export (EP) are key elements of marine bio- positive biases in stratification for the contemporary period, geochemistry that are vulnerable to ongoing climate change suggesting overestimation of climate change impacts on NPP from rising concentrations of atmospheric CO2 and other and EP.
    [Show full text]
  • Caverns Measureless to Man: Interdisciplinary Planetary Science & Technology Analog Research Underwater Laser Scanner Survey (Quintana Roo, Mexico)
    Caverns Measureless to Man: Interdisciplinary Planetary Science & Technology Analog Research Underwater Laser Scanner Survey (Quintana Roo, Mexico) by Stephen Alexander Daire A Thesis Presented to the Faculty of the USC Graduate School University of Southern California In Partial Fulfillment of the Requirements for the Degree Master of Science (Geographic Information Science and Technology) May 2019 Copyright © 2019 by Stephen Daire “History is just a 25,000-year dash from the trees to the starship; and while it’s going on its wild and woolly but it’s only like that, and then you’re in the starship.” – Terence McKenna. Table of Contents List of Figures ................................................................................................................................ iv List of Tables ................................................................................................................................. xi Acknowledgements ....................................................................................................................... xii List of Abbreviations ................................................................................................................... xiii Abstract ........................................................................................................................................ xvi Chapter 1 Planetary Sciences, Cave Survey, & Human Evolution................................................. 1 1.1. Topic & Area of Interest: Exploration & Survey ....................................................................12
    [Show full text]
  • Shear Dispersion in the Thermocline and the Saline Intrusion$
    Continental Shelf Research ] (]]]]) ]]]–]]] Contents lists available at SciVerse ScienceDirect Continental Shelf Research journal homepage: www.elsevier.com/locate/csr Research papers Shear dispersion in the thermocline and the saline intrusion$ Hsien-Wang Ou a,n, Xiaorui Guan b, Dake Chen c,d a Division of Ocean and Climate Physics, Lamont-Doherty Earth Observatory, Columbia University, 61 Rt. 9W, Palisades, NY 10964, United States b Consultancy Division, Fugro GEOS, 6100 Hillcroft, Houston, TX 77081, United States c Lamont-Doherty Earth Observatory, Columbia University, United States d State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, China article info abstract Article history: Over the mid-Atlantic shelf of the North America, there is a pronounced shoreward intrusion of the Received 11 March 2011 saltier slope water along the seasonal thermocline, whose genesis remains unexplained. Taking note of Received in revised form the observed broad-band baroclinic motion, we postulate that it may propel the saline intrusion via the 15 March 2012 shear dispersion. Through an analytical model, we first examine the shear-induced isopycnal diffusivity Accepted 19 March 2012 (‘‘shear diffusivity’’ for short) associated with the monochromatic forcing, which underscores its varied even anti-diffusive short-term behavior and the ineffectiveness of the internal tides in driving the shear Keywords: dispersion. We then derive the spectral representation of the long-term ‘‘canonical’’ shear diffusivity, Saline intrusion which is found to be the baroclinic power band-passed by a diffusivity window in the log-frequency Shear dispersion space. Since the baroclinic power spectrum typically plateaus in the low-frequency band spanned by Lateral diffusion the diffusivity window, canonical shear diffusivity is simply 1/8 of this low-frequency plateau — Isopycnal diffusivity Tracer dispersion independent of the uncertain diapycnal diffusivity.
    [Show full text]
  • Marine Forecasting at TAFB [email protected]
    Marine Forecasting at TAFB [email protected] 1 Waves 101 Concepts and basic equations 2 Have an overall understanding of the wave forecasting challenge • Wave growth • Wave spectra • Swell propagation • Swell decay • Deep water waves • Shallow water waves 3 Wave Concepts • Waves form by the stress induced on the ocean surface by physical wind contact with water • Begin with capillary waves with gradual growth dependent on conditions • Wave decay process begins immediately as waves exit wind generation area…a.k.a. “fetch” area 4 5 Wave Growth There are three basic components to wave growth: • Wind speed • Fetch length • Duration Wave growth is limited by either fetch length or duration 6 Fully Developed Sea • When wave growth has reached a maximum height for a given wind speed, fetch and duration of wind. • A sea for which the input of energy to the waves from the local wind is in balance with the transfer of energy among the different wave components, and with the dissipation of energy by wave breaking - AMS. 7 Fetches 8 Dynamic Fetch 9 Wave Growth Nomogram 10 Calculate Wave H and T • What can we determine for wave characteristics from the following scenario? • 40 kt wind blows for 24 hours across a 150 nm fetch area? • Using the wave nomogram – start on left vertical axis at 40 kt • Move forward in time to the right until you reach either 24 hours or 150 nm of fetch • What is limiting factor? Fetch length or time? • Nomogram yields 18.7 ft @ 9.6 sec 11 Wave Growth Nomogram 12 Wave Dimensions • C=Wave Celerity • L=Wave Length •
    [Show full text]
  • D5.3 Interaction Between Currents, Wave, Structure and Subsoil
    Downloaded from orbit.dtu.dk on: Oct 05, 2021 D5.3 Interaction between currents, wave, structure and subsoil Christensen, Erik Damgaard; Sumer, B. Mutlu; Schouten, Jan-Joost; Kirca, Özgür; Petersen, Ole; Jensen, Bjarne; Carstensen, Stefan; Baykal, Cüneyt; Tralli, Aldo; Chen, Hao Total number of authors: 19 Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Christensen, E. D., Sumer, B. M., Schouten, J-J., Kirca, Ö., Petersen, O., Jensen, B., Carstensen, S., Baykal, C., Tralli, A., Chen, H., Tomaselli, P. D., Petersen, T. U., Fredsøe, J., Raaijmakers, T. C., Kortenhaus, A., Hjelmager Jensen, J., Saremi, S., Bolding, K., & Burchard, H. (2015). D5.3 Interaction between currents, wave, structure and subsoil. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your
    [Show full text]
  • Trophic Diversity of Plankton in the Epipelagic and Mesopelagic Layers of the Tropical and Equatorial Atlantic Determined with Stable Isotopes
    diversity Article Trophic Diversity of Plankton in the Epipelagic and Mesopelagic Layers of the Tropical and Equatorial Atlantic Determined with Stable Isotopes Antonio Bode 1,* ID and Santiago Hernández-León 2 1 Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, Apdo 130, 15080 A Coruña, Spain 2 Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de las Palmas de Gran Canaria, Campus de Taliarte, Telde, Gran Canaria, 35214 Islas Canarias, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-981205362 Received: 30 April 2018; Accepted: 12 June 2018; Published: 13 June 2018 Abstract: Plankton living in the deep ocean either migrate to the surface to feed or feed in situ on other organisms and detritus. Planktonic communities in the upper 800 m of the tropical and equatorial Atlantic were studied using the natural abundance of stable carbon and nitrogen isotopes to identify their food sources and trophic diversity. Seston and zooplankton (>200 µm) samples were collected with Niskin bottles and MOCNESS nets, respectively, in the epipelagic (0–200 m), upper mesopelagic (200–500 m), and lower mesopelagic layers (500–800 m) at 11 stations. Food sources for plankton in the productive zone influenced by the NW African upwelling and the Canary Current were different from those in the oligotrophic tropical and equatorial zones. In the latter, zooplankton collected during the night in the mesopelagic layers was enriched in heavy nitrogen isotopes relative to day samples, supporting the active migration of organisms from deep layers. Isotopic niches showed also zonal differences in size (largest in the north), mean trophic diversity (largest in the tropical zone), food sources, and the number of trophic levels (largest in the equatorial zone).
    [Show full text]
  • The Effects of Haloclines on the Vertical Distribution and Migration of Zooplankton
    Journal of Experimental Marine Biology and Ecology 278 (2002) 111–134 www.elsevier.com/locate/jembe The effects of haloclines on the vertical distribution and migration of zooplankton Laurence A. Lougee *, Stephen M. Bollens1, Sean R. Avent 2 Romberg Tiburon Center for Environmental Studies and the Department of Biology, San Francisco State University, 3150 Paradise Drive, Tiburon, CA 94920, USA Received 28 April 2000; received in revised form 29 May 2002; accepted 18 July 2002 Abstract While the influence of horizontal salinity gradients on the distribution and abundance of planktonic organisms in estuaries is relatively well known, the effects of vertical salinity gradients (haloclines) are less well understood. Because biological, chemical, and physical conditions can vary between different salinity strata, an understanding of the behavioral response of zooplankton to haloclines is crucial to understanding the population biology and ecology of these organisms. We studied four San Francisco Bay copepods, Acartia (Acartiura) spp., Acartia (Acanthacartia) spp., Oithona davisae, and Tortanus dextrilobatus, and one species of larval fish (Clupea pallasi), in an attempt to understand how and why zooplankton respond to haloclines. Controlled laboratory experiments involved placing several individuals of each species in two 2-m-high tanks, one containing a halocline (magnitude varied between 1.4 and 10.0 psu) and the other without a halocline, and recording the location of each organism once every hour for 2–4 days using an automated video microscopy system. Results indicated that most zooplankton changed their vertical distribution and/or migration in response to haloclines. For the smaller taxa (Acartiura spp., Acanthacartia spp., and O.
    [Show full text]