Genomic Markers for Malignant Progression in Pulmonary Adenocarcinoma with Bronchioloalveolar Features

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Markers for Malignant Progression in Pulmonary Adenocarcinoma with Bronchioloalveolar Features Genomic markers for malignant progression in pulmonary adenocarcinoma with bronchioloalveolar features Sarit Aviel-Ronen*, Bradley P. Coe†‡, Suzanne K. Lau*§, Gilda da Cunha Santos*¶, Chang-Qi Zhu*, Dan Strumpf*, Igor Jurisica*§ʈ, Wan L. Lam†‡, and Ming-Sound Tsao*§¶** *University Health Network, Ontario Cancer Institute and Princess Margaret Hospital Site, Toronto, ON, Canada M5G 2M9; †Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, BC, Canada V5Z 1L3; Departments of §Medical Biophysics, ¶Laboratory Medicine and Pathobiology, and ʈComputer Science, University of Toronto, Toronto, ON, Canada M5G 2C1; and ‡University of British Columbia, Vancouver, BC, Canada V6T 289 Edited by John D. Minna, University of Texas Southwestern Medical Center, Dallas, TX, and accepted by the Editorial Board April 30, 2008 (received for review October 9, 2007) Bronchioloalveolar carcinoma (BAC), a subtype of lung adenocar- epidermal growth factor receptor (EGFR) inhibitors (8). The initial cinoma (ADC) without stromal, vascular, or pleural invasion, is studies that recognized BAC as a distinct entity reported 5-year considered an in situ tumor with a 100% survival rate. However, survival rates of 100% (9–11), but more recent studies have the histological criteria for invasion remain controversial. BAC-like reported lower 5-year survival rates of 83–86% for resected stage areas may accompany otherwise invasive adenocarcinoma, re- I BAC patients (12–14). These rates possibly reflect difficulties in ferred to as mixed type adenocarcinoma with BAC features applying the histological criteria of invasion in BAC or AWBF. (AWBF). AWBF are considered to evolve from BAC, representing a Some studies have also reported that BAC with focal areas of paradigm for malignant progression in ADC. However, the sup- microinvasion may also have excellent prognosis similar to nonin- porting molecular evidence remains forthcoming. Here, we have vasive BAC (11, 15). The identification of genes/proteins that may studied the genomic changes of BAC and AWBF by array com- distinguish BAC from AWBF and are predictors of ADC with poor parative genomic hybridization (CGH). We used submegabase- prognosis could be useful for the establishment of molecular resolution tiling set array CGH to compare the genomic profiles of pathological classification of lung ADC. In this study, we have used 14 BAC or BAC with focal area suspicious for invasion with those array comparative genomic hybridization (CGH) to test our hy- of 15 AWBF. Threshold-filtering and frequency-scoring analysis pothesis that BAC is molecularly distinguishable from AWBF by found that genomic profiles of noninvasive and focally invasive their differential genomic profiles and that marker genes for BAC are indistinguishable and show fewer aberrations than tumor invasion and/or poor prognosis may be identified. cells in BAC-like areas of AWBF. These aberrations occurred mainly at the subtelomeric chromosomal regions. Increased genomic al- Results terations were noted between BAC-like and invasive areas of Most chromosomal changes in both BAC and AWBF were subtle, AWBF. We identified 113 genes that best differentiated BAC from indicating low levels of genomic alteration as well as partial atten- AWBF and were considered candidate marker genes for tumor uation by contaminating nonneoplastic host cells. The profiles of invasion and progression. Correlative gene expression analyses BAC and BAC with focal areas suspicious for invasion were demonstrated a high percentage of them to be poor prognosis indistinguishable and showed low copy gains at 1p, 2q, 5p, 7p, 11p, markers in early stage ADC. Quantitative PCR also validated the 11q, 12q, 16p, 16q, 17q, 20q, and 21q (Fig. 1B). Copy gains typically amplification and overexpression of PDCD6 and TERT on chromo- occurred at the subtelomeric regions. AWBF had similar chromo- some 5p and the prognostic significance of PDCD6 in early stage somal changes but with greater variability and frequency and longer ADC patients. We identified candidate genes that may be respon- segmental alterations. Deletions were also more common in AWBF sible for and are potential markers for malignant progression and were observed mainly on 3p and 5q and to a lesser extent on in AWBF. 4q and 6q. In two patients with synchronous BAC and invasive AWBF, the BAC-like area of the latter showed greater aberrations ͉ ͉ array comparative genomic hybridization bronchioloalveolar carcinoma than the BAC (Fig. 2A). In two other AWBF, greater alterations ͉ ͉ microarray non-small-cell lung carcinoma prognostic markers were also noted in BAC-like areas compared with invasive areas (Fig. 2B). Normal lung samples showed no alteration of these ung adenocarcinoma (ADC) accounts for Ϸ35% of all lung regions. Lcancers and has an overall 5-year survival of 17% (1). The recent World Health Organization (WHO) classification recognized a particular subtype, bronchioloalveolar carcinoma (BAC), for its Author contributions: W.L.L. and M.-S.T. designed research; S.A.-R., B.P.C., S.K.L., and noninvasive features and excellent prognosis (2). BAC has a distinct G.d.C.S. performed research; S.A.-R., B.P.C., S.K.L., and I.J. contributed new reagents/ analytic tools; S.A.-R., B.P.C., S.K.L., G.d.C.S., C.-Q.Z., and D.S. analyzed data; and S.A.-R., histological pattern of tumor cells growing along preexisting alve- B.P.C., S.K.L., C.-Q.Z., D.S., and M.-S.T. wrote the paper. olar framework without evidence of stromal, pleural, or vascular The authors declare no conflict of interest. invasion. Yet, some invasive ADC, classified as mixed type, may This article is a PNAS Direct Submission. J.D.M. is a guest editor invited by the Editorial have components or large areas of BAC-like pattern. Multistage Board. development of adenocarcinoma putatively involves progression Freely available online through the PNAS open access option. from atypical adenomatous hyperplasia (AAH) through BAC to Data deposition: The data reported in this paper have been deposited in the Gene invasive mixed type ADC with BAC features (AWBF) (3–5). Mice Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. GSE11945). that express oncogenic KRAS develop histological changes that **To whom correspondence should be addressed at: Ontario Cancer Institute, Toronto, ON, range from mild hyperplasia/dysplasia analogous to atypical adeno- Canada M5G 2M9. E-mail: [email protected]. matous hyperplasia to alveolar adenomas and ultimately display This article contains supporting information online at www.pnas.org/cgi/content/full/ overt ADC (6, 7). BAC-associated tumors have gained significant 0709618105/DCSupplemental. MEDICAL SCIENCES attention for their potentially greater sensitivity to treatment by © 2008 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0709618105 PNAS ͉ July 22, 2008 ͉ vol. 105 ͉ no. 29 ͉ 10155–10160 Downloaded by guest on September 25, 2021 A C AWBF BAC A BAC B AWBF-BAC area Chr 5 Chr 8 Chr 7 Chr 19 1 AWBF AWBF-invasive area 2 Fig. 2. Increase in genomic instability. Shown is a karyotypic presentation of the log2 ratio of array CGH signals (SeeGH software). Normal genomic content -0.5 +0.5 is represented by the midline (blue); clonal gains deviate to the right (green lines) and deletions to the left (red lines). The lower images show progression B of genomic instability represented by more chromosomal aberrations than -100% +100% the upper images (purple brackets). (A) Synchronous BAC and AWBF in the same patient. (B) AWBF sampled in BAC and invasive areas. Using threshold-filtering, we identified 119 clones that distin- guished BAC from AWBF. Hierarchical clustering of all cases using these clones separated BAC from AWBF samples (Fig. 1C). In addition, a Fisher’s Exact Test comparing the frequency of genomic changes between the BAC and AWBF groups yielded a list of 517 clones that best differentiated the two lesions. Integrating these two analyses was accomplished by applying a 10-clone ‘‘window’’ to identify shared regions [supporting information (SI) Text]. The result was a list of 256 candidate clones of high interest, from which a shorter list of 58 clones with gains in AWBF compared with BAC was selected. These clones included 113 unique amplified genes (Table S1) that could represent invasion and tumor progression markers for AWBF. Quantitative polymerase chain reaction (QPCR) validated the gene content changes in 33 of the 113 candidate marker genes; 25 genes (75.8%) (Table S2) showed significantly higher gene copy number in AWBF compared with BAC. Among the evaluated genes were TERT and PDCD6, which we selected for further validation by QPCR and/or FISH based on their location on chromosome 5p, which showed prominent genomic changes (Fig. 1B). Measurement of both genes by QPCR demonstrated signifi- cant differences in gene copy number between BAC and AWBF (P ϭ 0.03 for TERT and P ϭ 0.02 for PDCD6), consistent with the array CGH results (Fig. 3A). Using FISH, we also studied the gene copy of TERT and chromosome 5 in 21 tumors. The correlation coefficients were 0.76 between array CGH and QPCR, 0.50 be- tween QPCR and FISH, and 0.53 between array CGH and FISH (Fig. 4). FISH appears the most sensitive in detecting the amplifi- cation levels and revealed the existence of chromosome 5 polysomy, especially in AWBF. Furthermore, FISH showed increased signal in the invasive area of AWBF compared with the BAC-like area in two samples, T41 and T46 (Fig. 4A). The coefficient of correlation Fig. 1. BAC compared with AWBF by histology, frequency scoring, and thresh- for PDCD6 amplification between array CGH and QPCR was 0.94. old filtering. (A1) BAC showing typical growth pattern of tumoral cells along the Using real-time QPCR (RT-QPCR), we showed that in 10 preexisting alveolar scaffold without evidence of invasion.
Recommended publications
  • Farnesol-Induced Apoptosis in Human Lung Carcinoma Cells Is Coupled to the Endoplasmic Reticulum Stress Response
    Research Article Farnesol-Induced Apoptosis in Human Lung Carcinoma Cells Is Coupled to the Endoplasmic Reticulum Stress Response Joung Hyuck Joo,1 Grace Liao,1 Jennifer B. Collins,2 Sherry F. Grissom,2 and Anton M. Jetten1 1Cell Biology Section, LRB, and 2Microarray Group, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina Abstract range of fruits and vegetables (9, 10). Each isoprenoid has been Farnesol (FOH) and other isoprenoid alcohols induce apopto- shown to inhibit proliferation and induce apoptosis in a number of sis in various carcinoma cells and inhibit tumorigenesis in neoplastic cell lines from different origins (4, 11–14). In addition, in vivo these isoprenoids have been reported to be effective in chemo- several models. However, the mechanisms by which in vivo they mediate their effects are not yet fully understood. In this prevention and chemotherapy in various cancer models study, we show that FOH is an effective inducer of apoptosis in (10, 12, 15, 16). FOH has been reported to exhibit chemopreventive several lung carcinoma cells, including H460. This induction is effects in colon and pancreas carcinogenesis in rats (9, 17) whereas associated with activation of several caspases and cleavage of phase I and II clinical trials have indicated therapeutic potential poly(ADP-ribose) polymerase (PARP). To obtain insight into for POH (16, 18). The mechanisms by which these isoprenoids induce these effects are not yet fully understood. Isoprenoids have the mechanism involved in FOH-induced apoptosis, we compared the gene expression profiles of FOH-treated and been reported to inhibit posttranslational protein prenylation (19) control H460 cells by microarray analysis.
    [Show full text]
  • Multi-Targeted Mechanisms Underlying the Endothelial Protective Effects of the Diabetic-Safe Sweetener Erythritol
    Multi-Targeted Mechanisms Underlying the Endothelial Protective Effects of the Diabetic-Safe Sweetener Erythritol Danie¨lle M. P. H. J. Boesten1*., Alvin Berger2.¤, Peter de Cock3, Hua Dong4, Bruce D. Hammock4, Gertjan J. M. den Hartog1, Aalt Bast1 1 Department of Toxicology, Maastricht University, Maastricht, The Netherlands, 2 Global Food Research, Cargill, Wayzata, Minnesota, United States of America, 3 Cargill RandD Center Europe, Vilvoorde, Belgium, 4 Department of Entomology and UCD Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America Abstract Diabetes is characterized by hyperglycemia and development of vascular pathology. Endothelial cell dysfunction is a starting point for pathogenesis of vascular complications in diabetes. We previously showed the polyol erythritol to be a hydroxyl radical scavenger preventing endothelial cell dysfunction onset in diabetic rats. To unravel mechanisms, other than scavenging of radicals, by which erythritol mediates this protective effect, we evaluated effects of erythritol in endothelial cells exposed to normal (7 mM) and high glucose (30 mM) or diabetic stressors (e.g. SIN-1) using targeted and transcriptomic approaches. This study demonstrates that erythritol (i.e. under non-diabetic conditions) has minimal effects on endothelial cells. However, under hyperglycemic conditions erythritol protected endothelial cells against cell death induced by diabetic stressors (i.e. high glucose and peroxynitrite). Also a number of harmful effects caused by high glucose, e.g. increased nitric oxide release, are reversed. Additionally, total transcriptome analysis indicated that biological processes which are differentially regulated due to high glucose are corrected by erythritol. We conclude that erythritol protects endothelial cells during high glucose conditions via effects on multiple targets.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Downloaded from URL: Δ Δ Nated ALG-2 GF122) and GST-ALG-2 GF122 Was Cium.Uhnres.Utoronto.Ca/Vgm
    Inuzuka et al. BMC Structural Biology 2010, 10:25 http://www.biomedcentral.com/1472-6807/10/25 RESEARCH ARTICLE Open Access Molecular basis for defect in Alix-binding by alternatively spliced isoform of ALG-2 (ALG-2ΔGF122) and structural roles of F122 in target recognition Tatsutoshi Inuzuka1, Hironori Suzuki1,2, Masato Kawasaki2, Hideki Shibata1, Soichi Wakatsuki2, Masatoshi Maki1* Abstract Background: ALG-2 (a gene product of PDCD6) belongs to the penta-EF-hand (PEF) protein family and Ca2 +-dependently interacts with various intracellular proteins including mammalian Alix, an adaptor protein in the ESCRT system. Our previous X-ray crystal structural analyses revealed that binding of Ca2+ to EF3 enables the side chain of R125 to move enough to make a primary hydrophobic pocket (Pocket 1) accessible to a short fragment of Alix. The side chain of F122, facing a secondary hydrophobic pocket (Pocket 2), interacts with the Alix peptide. An alternatively spliced shorter isoform, designated ALG-2ΔGF122, lacks Gly121Phe122 and does not bind Alix, but the structural basis of the incompetence has remained to be elucidated. Results: We solved the X-ray crystal structure of the PEF domain of ALG-2ΔGF122 in the Ca2+-bound form and compared it with that of ALG-2. Deletion of the two residues shortened a-helix 5 (a5) and changed the configuration of the R125 side chain so that it partially blocked Pocket 1. A wall created by the main chain of 121- GFG-123 and facing the two pockets was destroyed. Surprisingly, however, substitution of F122 with Ala or Gly, but not with Trp, increased the Alix-binding capacity in binding assays.
    [Show full text]
  • PDCD6 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50Ul [email protected] 100 Ul √ √ Web
    TD7978 PDCD6 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50ul [email protected] 100 uL √ √ Web www.ab-mart.com.cn Description: Calcium sensor that plays a key role in processes such as endoplasmic reticulum (ER)- Golgi vesicular transport, endosomal biogenesis or membrane repair. Acts as an adapter that bridges unrelated proteins or stabilizes weak protein-protein complexes in response to calcium: calcium-binding triggers exposure of apolar surface, promoting interaction with different sets of proteins thanks to 3 different hydrophobic pockets, leading to translocation to membranes. Involved in ER-Golgi transport by promoting the association between PDCD6IP and TSG101, thereby bridging together the ESCRT-III and ESCRT-I complexes. Together with PEF1, acts as calcium-dependent adapter for the BCR(KLHL12) complex, a complex involved in ER-Golgi transport by regulating the size of COPII coats. In response to cytosolic calcium increase, the heterodimer formed with PEF1 interacts with, and bridges together the BCR(KLHL12) complex and SEC31 (SEC31A or SEC31B), promoting monoubiquitination of SEC31 and subsequent collagen export, which is required for neural crest specification. Involved in the regulation of the distribution and function of MCOLN1 in the endosomal pathway. Promotes localization and polymerization of TFG at endoplasmic reticulum exit site. Required for T-cell receptor-, Fas-, and glucocorticoid- induced apoptosis (By similarity). May mediate Ca(2+)-regulated signals along the death pathway: interaction with DAPK1 can accelerate apoptotic cell death by increasing caspase-3 activity. Its role in apoptosis may however be indirect, as suggested by knockout experiments (By similarity). May inhibit KDR/VEGFR2-dependent angiogenesis; the function involves inhibition of VEGF-induced phosphorylation of the Akt signaling pathway.
    [Show full text]
  • Identification of Promoter Regions in the Human Genome by Using a Retroviral Plasmid Library-Based Functional Reporter Gene Assa
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Methods Identification of Promoter Regions in the Human Genome by Using a Retroviral Plasmid Library-Based Functional Reporter Gene Assay Shirin Khambata-Ford,1,5 Yueyi Liu,2 Christopher Gleason,1 Mark Dickson,3 Russ B. Altman,2 Serafim Batzoglou,4 and Richard M. Myers1,3,6 1Department of Genetics, 2Stanford Medical Informatics, 3Stanford Human Genome Center, Stanford University School of Medicine, Stanford, California 94305, USA; 4Department of Computer Science, Stanford University, Stanford, California 94305, USA Attempts to identify regulatory sequences in the human genome have involved experimental and computational methods such as cross-species sequence comparisons and the detection of transcription factor binding-site motifs in coexpressed genes. Although these strategies provide information on which genomic regions are likely to be involved in gene regulation, they do not give information on their functions. We have developed a functional selection for promoter regions in the human genome that uses a retroviral plasmid library-based system. This approach enriches for and detects promoter function of isolated DNA fragments in an in vitro cell culture assay. By using this method, we have discovered likely promoters of known and predicted genes, as well as many other putative promoter regions based on the presence of features such as CpG islands. Comparison of sequences of 858 plasmid clones selected by this assay with the human genome draft sequence indicates that a significantly higher percentage of sequences align to the 500-bp segment upstream of the transcription start sites of known genes than would be expected from random genomic sequences.
    [Show full text]
  • Proquest Dissertations
    RICE UNIVERSITY Molecular Basis of Gene Dosage Sensitivity by Jianping Chen A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Doctor of Philosophy APPROVED, THESIS COMMITTEE: Ariel Fernandez, Chair Karl F. Hasselmann Professor Department of Bioengineering Rice University rn'idtfP h.tQsJUW*- Michael W. Deem, John W. Cox Professor Department of Bioengineering Department of Physics and Astronomy Rice Universit ^engineering at Rice University Jiochemistry at Baylor College of Medicine Axxttig- «J^gb/uv Laura Segaton, T.N. Law Assistant Professor Chemical and Biomolecular Engineering Rice University HOUSTON, TEXAS JANUARY 2009 UMI Number: 3362141 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI® UMI Microform 3362141 Copyright 2009 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Molecular Basis of Gene Dosage Sensitivity by JianpingChen Deviation of gene expression from normal levels has been associated with diseases. Both under- and overexpression of genes could lead to deleterious biological consequences. Dosage balance has been proposed to be a key issue of determining gene expression pheno- type.
    [Show full text]
  • Identification of Biomarkers of Metastatic Disease in Uveal
    Identification of biomarkers of metastatic disease in uveal melanoma using proteomic analyses Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy Martina Angi June 2015 To Mario, the wind beneath my wings 2 Acknowledgments First and foremost, I would like to acknowledge my primary supervisor, Prof. Sarah Coupland, for encouraging me to undergo a PhD and for supporting me in this long journey. I am truly grateful to Dr Helen Kalirai for being the person I could always turn to, for a word of advice on cell culture as much as on parenting skills. I would also like to acknowledge Prof. Bertil Damato for being an inspiration and a mentor; and Dr Sarah Lake and Dr Joseph Slupsky for their precious advice. I would like to thank Dawn, Haleh, Fidan and Fatima for becoming my family away from home, and the other members of the LOORG for the fruitful discussions and lovely cakes. I would like to acknowledge Prof. Heinrich Heimann and the clinical team at LOOC, especially Sisters Hebbar, Johnston, Hachuela and Kaye, for their admirable dedication to UM patients and for their invaluable support to clinical research. I would also like to thank the members of staff in St Paul’s theatre and Simon Biddolph and Anna Ikin in Pathology for their precious help in sample collection. I am grateful to Dr Rosalind Jenkins who guided my first steps in the mysterious word of proteomics, and to Dr Deb Simpsons and Prof. Rob Beynon for showing me its beauty.
    [Show full text]
  • PDCD6IP (Human) Recombinant Protein (P01)
    PDCD6IP (Human) Recombinant Preparation Method: in vitro wheat germ expression Protein (P01) system Purification: Glutathione Sepharose 4 Fast Flow Catalog Number: H00010015-P01 Storage Buffer: 50 mM Tris-HCI, 10 mM reduced Regulation Status: For research use only (RUO) Glutathione, pH=8.0 in the elution buffer. Product Description: Human PDCD6IP full-length ORF Storage Instruction: Store at -80°C. Aliquot to avoid ( AAH20066, 1 a.a. - 868 a.a.) recombinant protein with repeated freezing and thawing. GST-tag at N-terminal. Entrez GeneID: 10015 Sequence: MATFISVQLKKTSEVDLAKPLVKFIQQTYPSGGEEQAQ Gene Symbol: PDCD6IP YCRAAEELSKLRRAAVGRPLDKHEGALETLLRYYDQIC SIEPKFPFSENQICLTFTWKDAFDKGSLFGGSVKLALA Gene Alias: AIP1, Alix, DRIP4, HP95, MGC17003 SLGYEKSCVLFNCAALASQIAAEQNLDNDEGLKIAAKH YQFASGAFLHIKETVLSALSREPTVDISPDTVGTLSLIM Gene Summary: This gene encodes a protein thought LAQAQEVFFLKATRDKMKDAIIAKLANQAADYFGDAFK to participate in programmed cell death. Studies using QCQYKDTLPKEVFPVLAAKHCIMQANAEYHQSILAKQ mouse cells have shown that overexpression of this QKKFGEEIARLQHAAELIKTVASRYDEYVNVKDFSDKI protein can block apoptosis. In addition, the product of NRALAAAKKDNDFIYHDRVPDLKDLDPIGKATLVKSTP this gene binds to the product of the PDCD6 gene, a VNVPISQKFTDLFEKMVPVSVQQSLAAYNQRKADLVN protein required for apoptosis, in a calcium-dependent RSIAQMREATTLANGVLASLNLPAAIEDVSGDTVPQSIL manner. This gene product also binds to endophilins, TKSRSVIEQGGIQTVDQLIKELPELLQRNREILDESLRLL proteins that regulate membrane shape during DEEEATDNDLRAKFKERWQRTPSNELYKPLRAEGTNF endocytosis.
    [Show full text]
  • Anti-PEF1 / Peflin Antibody (ARG42993)
    Product datasheet [email protected] ARG42993 Package: 100 μl anti-PEF1 / Peflin antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes PEF1 / Peflin Tested Reactivity Hu, Ms, Rat Tested Application FACS, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name PEF1 / Peflin Antigen Species Human Immunogen Synthetic peptide of Human PEF1 / Peflin. Conjugation Un-conjugated Alternate Names ABP32; PEF1A; Peflin; PEF protein with a long N-terminal hydrophobic domain; Penta-EF hand domain- containing protein 1 Application Instructions Application table Application Dilution FACS 1:20 WB 1:1000 - 1:5000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control K562 Calculated Mw 30 kDa Observed Size ~ 31 kDa Properties Form Liquid Purification Affinity purified. Buffer 50 nM Tris-Glycine (pH 7.4), 0.15M NaCl, 0.01% Sodium azide, 40% Glycerol and 0.05% BSA. Preservative 0.01% Sodium azide Stabilizer 40% Glycerol and 0.05% BSA Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol PEF1 Gene Full Name penta-EF-hand domain containing 1 Background This gene encodes a calcium-binding protein belonging to the penta-EF-hand protein family.
    [Show full text]
  • Characterizing the Chlamydia Trachomatis Inclusion Membrane Proteome
    Characterizing the Chlamydia trachomatis inclusion membrane proteome Mary Dickinson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2019 Reading committee Kevin Hybiske, Chair Lee Ann Campbell David Sherman Program Authorized to Offer Degree: Pathobiology ©Copyright 2019 Mary Dickinson ii University of Washington Abstract Characterizing the Chlamydia trachomatis inclusion membrane proteome Mary Dickinson Chair of the Supervisory Committee: Kevin Hybiske Pathobiology Program, Department of Medicine Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection, responsible for millions of infections each year. Despite this high prevalence, the elucidation of the molecular mechanisms of Chlamydia pathogenesis has been difficult due to limitations in genetic tools and its intracellular developmental cycle. Within a host epithelial cell, chlamydiae replicate within a vacuole called the inclusion. Many Chlamydia–host interactions are thought to be mediated by the Inc family of type III secreted proteins that are anchored in the inclusion membrane, but their array of host targets are largely unknown. To investigate how the inclusion membrane proteome changes over the course of an infected cell, we have adapted the APEX system of proximity-dependent biotinylation. APEX is capable of specifically labeling proteins within a 20 nm radius in living cells. We transformed C. trachomatis to express the enzyme APEX fused to known inclusion membrane proteins, allowing biotinylation and purification of inclusion-associated proteins. Using quantitative mass spectrometry against APEX labeled samples, we identified over 400 proteins associated with the inclusion membrane at early, middle, and late stages of epithelial cell infection. This system was iii sensitive enough to detect inclusion interacting proteins early in the developmental cycle, at 8 hours post infection, a previously intractable time point.
    [Show full text]