Prepared for submission to JCAP Strong Evidence that the Galactic Bulge is Shining in Gamma Rays Oscar Macias,a;b;c Shunsaku Horiuchi,a Manoj Kaplinghat,d Chris Gordon,e Roland M. Crocker,f David M. Natafg aCenter for Neutrino Physics, Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA bKavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583, Japan cGRAPPA Institute, University of Amsterdam, 1098 XH Amsterdam, The Netherlands dCenter for Cosmology, Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697 USA eSchool of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand f Research School of Astronomy and Astrophysics, Australian National University, Canberra, Australia gCenter for Astrophysical Sciences and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 E-mail:
[email protected] Abstract. There is growing evidence that the Galactic Center Excess identified in the Fermi- LAT gamma-ray data arises from a population of faint astrophysical sources. We provide compelling supporting evidence by showing that the morphology of the excess traces the stellar over-density of the Galactic bulge. By adopting a template of the bulge stars obtained from a triaxial 3D fit to the diffuse near-infrared emission, we show that it is detected at high significance. The significance deteriorates when either the position or the orientation of the template is artificially shifted, supporting the correlation of the gamma-ray data with the Galactic bulge. In deriving these results, we have used more sophisticated templates at low-latitudes for the Fermi bubbles compared to previous work and the three-dimensional arXiv:1901.03822v3 [astro-ph.HE] 20 Sep 2019 Inverse Compton (IC) maps recently released by the GALPROP team.