'Homeplace of the Heart'
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Synopsis of Aquatic Fireflies with Description of a New Species (Coleoptera) 539-562 © Wiener Coleopterologenverein, Zool.-Bot
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Water Beetles of China Jahr/Year: 2003 Band/Volume: 3 Autor(en)/Author(s): Jeng Ming-Luen, Lai Jennifer, Yang Ping-Shih Artikel/Article: Lampyridae: A synopsis of aquatic fireflies with description of a new species (Coleoptera) 539-562 © Wiener Coleopterologenverein, Zool.-Bot. Ges. Österreich, Austria; download unter www.biologiezentrum.at JÄcil & Jl (eels.): Water Hectics of China Vol.111 539 - 562 Wien, April 2003 LAMPYRIDAE: A synopsis of aquatic fireflies with description of a new species (Coleoptera) M.-L. JENG, J. LAI & P.-S. YANG Abstract A synopsis of the Lampyridae (Coleoptera) hitherto reported to be aquatic is given. The authors could confirm aquatic larval stages for five out of the fifteen reported cases: Luciola cruciata MOTSCHULSKY (Japan), L. ficta OLIVIER (China, incl. Taiwan), L. latcralis MOTSCHULSKY (Japan, Korea, China and Russia), L. owadai SATO & KlMURA (Japan) and L. substriata Gorham (= L. fonnosana PIC syn.n.) (Taiwan, Myanmar and India). A sixth species, L. hyclrophila sp.n. (Taiwan), is described. The larvae of all but L. substriata have lateral tracheal gills on abdominal segments 1-8; L. substriata has a metapneustic larval stage with a pair of functional spiracles on the eighth abdominal segment. It is suggested that the aquatic habits in Luciola LAPORTE have evolved at least twice. The species with facultatively aquatic larvae are summarized also. A lectotype is designated for L.ficta. Key words: Coleoptera, Lampyridae, Luciola, aquatic, new species. Introduction Lampyridae, or fireflies, belong to the superfamily Cantharoidea (sensu CROWSON 1972) or Elatcroidea (sensu LAWRENCE & NEWTON 1995). -
Former House of the Ishimaru Family “L'assemblee HIROO”
Community Information Paper No.42 February 2018 Translated/Issued by Azabu Regional City Office Edited by the Azabu Editing Office 5-16-45 Roppongi, Minato City, Tokyo, 106-8515 Tel: 03-5114-8812 (Rep.) Fax: 03-3583-3782 Please contact Minato Call for inquiries regarding Residents’ Life Support. Tel: 03-5472-3710 A community information paper created and edited by people who live in Azabu. Fascinated by Artistic Azabu ⑮ A Mansion Preserved and Protected in the Azabu Area Former House of the Ishimaru Family “l’Assemblee HIROO” l’Assemblee HIROO Area of the premises: 542.1m2 (About 167.3 tsubo), Building floor space: 314.8m2 (About 97.2 tsubo) Do you know about this mansion quietly nestled along the Teppo-zaka alleyway slope in Minami Azabu? It turned 95 years old in 2017, but still has all the fascinating and elegant appearance it had when it was first built. This luxurious mansion was built for the late Mr. Sukezaburo In what was formerly a bedroom, there are several elements Ishimaru, upon his return from London in 1922. In the fol- of Japanese style, including sliding doors and tokonoma (al- lowing year, 1923, the Great Kanto Earthquake struck this cove). However, all of this is matched harmoniously with the area. Fortunately, this building was not seriously damaged. Western-style fireplace, also designed in consideration of the family’s lifestyle. On the premises, there are three of the zelkova trees that are over 300 years old. There is a story that relates how, during The stone pillar in the dining room, the handrail of the stairs, the Great Tokyo Air Raid in 1945, those living in the neigh- and the beams in the student room on the top floor remain borhood poured water over this cypress tree to protect the unchanged and fully functional, the same as they have always Some earthquake reinforcement has been carried out for the building, and the stones forming the pillar are the same as tree. -
Molecular Systematics of the Firefly Genus Luciola
animals Article Molecular Systematics of the Firefly Genus Luciola (Coleoptera: Lampyridae: Luciolinae) with the Description of a New Species from Singapore Wan F. A. Jusoh 1,* , Lesley Ballantyne 2, Su Hooi Chan 3, Tuan Wah Wong 4, Darren Yeo 5, B. Nada 6 and Kin Onn Chan 1,* 1 Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore 2 School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga 2678, Australia; [email protected] 3 Central Nature Reserve, National Parks Board, Singapore 573858, Singapore; [email protected] 4 National Parks Board HQ (Raffles Building), Singapore Botanic Gardens, Singapore 259569, Singapore; [email protected] 5 Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; [email protected] 6 Forest Biodiversity Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; [email protected] * Correspondence: [email protected] (W.F.A.J.); [email protected] (K.O.C.) Simple Summary: Fireflies have a scattered distribution in Singapore but are not as uncommon as many would generally assume. A nationwide survey of fireflies in 2009 across Singapore documented 11 species, including “Luciola sp. 2”, which is particularly noteworthy because the specimens were collected from a freshwater swamp forest in the central catchment area of Singapore and did not fit Citation: Jusoh, W.F.A.; Ballantyne, the descriptions of any known Luciola species. Ten years later, we revisited the same locality to collect L.; Chan, S.H.; Wong, T.W.; Yeo, D.; new specimens and genetic material of Luciola sp. 2. Subsequently, the mitochondrial genome of that Nada, B.; Chan, K.O. -
Streams in Kume-Jima
Streams rich in biodiversity, with endemic species including Kikuzato’s Stream Snake and Kumejima Firefl y Streams in Kume-jima Permanent and Seasonal Streams Geographical Coordinates: 26°22’N, 126°46’E / Altitude: 120-280m / Area: 255ha / Major type of wetland: Permanent and seasonal streams / Designation: Natural Habitat Conservation Area under the Law for the Conservation of Endangered Species of Wild Fauna and Flora / Municipalities involved: Kumejima Town, Okinawa Prefecture / Ramsar designation: October 2008 / Ramsar Criteria: 2 Kumejima Firefl ies fl ashing in unison Upper reach of Shirase River Middle reaches of Shirase River View of the designated area (right hand side) from Uegusukudake Kumejima General Overview: Minami Kume-jima is an island located approxi- Freshwater Crab mately 100km west of the main island of Okinawa. The island has an area of ap- proximately 5900ha with a shoreline that stretches approximately 48km. In the northern area of the island, the ridge of Kikuzato’s Stream hills including O-take (230m) and Uegu- Snake suku-dake (309m) runs from west to east in an arching line. In the southeast, a gen- tly sloping terrain extends with the Uraji There are two facilities, Kumejima Na- [Other Rare Species] Reptile: Yamashina’s river and Shirase river running through it. ture & Culture Center and Kumejima Firefl y Ground Gecko Goniurosaurus kuroiwae Steep slopes face the sea in the north. Museum, for conservation management yamashinae, Kumejimahai Sinomicrurus With a mean annual temperature of 22.4 and public awareness. japonicus takarai / Amphibian: Ryukyu degrees C and an annual precipitation of [Kikuzato’s Stream Snake Opisthotropis Brown Frog Rana okinavana / Birds: Japa- approximately 2200mm, the hills in such kikuzatoi] This Snake is an endemic snake nese Wood Pigeon Columba janthina / sub-tropical climate are covered with to the streams in Kume-jima island with Crustacea: Kumejima Minami Freshwa- dense forest dominated by Castanopsis a body length of 60cm and a dark brown ter Crab Candidiopotamon kumejimense, sieboldii ssp. -
Coleoptera: Lampyridae) and the Description of New Genera
TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3653 (1): 001–162 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3653.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:72A07BC6-AEB0-4EBC-AFA8-F5871065680F ZOOTAXA 3653 Systematics and Phylogenetics of Indo-Pacific Luciolinae Fireflies (Coleoptera: Lampyridae) and the Description of new Genera LESLEY A. BALLANTYNE1 & CHRISTINE L. LAMBKIN2 1. School of Agricultural and Wine Sciences, Charles Sturt University, PO Box 588, Wagga Wagga, 2678, Australia. [email protected] 2 Queensland Museum, PO Box 3300 South Brisbane, 4101, Australia. [email protected] Magnolia Press Auckland, New Zealand Accepted by C. Majka: 28 Feb. 2013; published: 22 May 2013 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. LESLEY A. BALLANTYNE & CHRISTINE L. LAMBKIN Systematics and Phylogenetics of Indo-Pacific Luciolinae Fireflies (Coleoptera: Lampyridae) and the Description of new Genera ( Zootaxa 3653) 162 pp.; 30 cm. 22 May 2013 ISBN 978-1-77557-160-5 (paperback) ISBN 978-1-77557-161-2 (Online edition) FIRST PUBLISHED IN 2013 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2013 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. -
Title Further Records of Introduced Semisulcospira Snails in Japan
Further records of introduced Semisulcospira snails in Japan Title (Mollusca, Gastropoda): implications for these snails’ correct morphological identification Sawada, Naoto; Toyohara, Haruhiko; Miyai, Takuto; Nakano, Author(s) Takafumi Citation BioInvasions Records (2020), 9(2): 310-319 Issue Date 2020-04-24 URL http://hdl.handle.net/2433/250819 © Sawada et al. This is an open access article distributed Right under terms of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0). Type Journal Article Textversion publisher Kyoto University BioInvasions Records (2020) Volume 9, Issue 2: 310–319 CORRECTED PROOF Rapid Communication Further records of introduced Semisulcospira snails in Japan (Mollusca, Gastropoda): implications for these snails’ correct morphological identification Naoto Sawada1,*, Haruhiko Toyohara1, Takuto Miyai2 and Takafumi Nakano3 1Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan 216-4, Oshikiri, Ichikawa City, Chiba 272-0107, Japan 3Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan Author e-mails: [email protected] (NS), [email protected] (HT), [email protected] (TM), [email protected] (TN) *Corresponding author Citation: Sawada N, Toyohara H, Miyai T, Nakano T (2020) Further records of Abstract introduced Semisulcospira snails in Japan (Mollusca, Gastropoda): implications for Seven species of the freshwater snail genus Semisulcospira, which are indigenous these snails’ correct morphological taxa of the largest lake in Japan, Lake Biwa, have been introduced into 17 localities, identification. BioInvasions Records 9(2): including five newly recorded localities. Among these species, S. dilatata Watanabe 310–319, https://doi.org/10.3391/bir.2020.9.2.16 and Nishino, 1995, S. -
Firefly Translocation: a Case Study of Genetic and Behavioral Evaluation in Thailand Anchana Thancharoen
Chapter Firefly Translocation: A Case Study of Genetic and Behavioral Evaluation in Thailand Anchana Thancharoen Abstract Conservation translocation is frequently used to conserve the threatened fauna by releasing individuals from the wild or captive populations into a particular area. This approach, however, is not successful in many cases because the translocated populations could not self-sustain in the new habitats. In this chapter, I reviewed the concept of translocation for conservation and the factors associated with the success rate. I used example problems from several cases involving different insect taxa. With its often high potential to mass rear in captivity, captive breeding can be a powerful tool by assuring large population size for insect translocation, which can result in a high success rate. However, genetic consequences from inbreeding and genetic adaptation to captivity can reduce the fitness of the captive popula- tion to establish successfully in the wild. Additionally, as the evidence in Japanese fireflies shows, the genetic differences between the translocated and local popula- tions should be considered for a sustainable translocation program. A case study involved genetic and behavioral evaluation of S. aquatilis populations to assess the possibility of including the species for the firefly translocation program in Thailand. Although the results revealed no genetic variation among populations, examina- tion of the variation in flash signals showed that the long-distance population had a longer courtship flash pulse than other populations in the Bangkok Metropolitan Region. With no geographical barrier, the light pollution and urbanization are probably important fragmented barriers causing adaptation of flash communica- tion to increase the fitness. -
Firefly Genomes Illuminate Parallel Origins of Bioluminescence in Beetles
Firefly genomes illuminate parallel origins of bioluminescence in beetles The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Fallon, Timothy R. et al. "Firefly genomes illuminate parallel origins of bioluminescence in beetles." eLife 7 (2018): e36495 © 2019 The Author(s) As Published 10.7554/elife.36495 Publisher eLife Sciences Publications, Ltd Version Final published version Citable link https://hdl.handle.net/1721.1/124645 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ RESEARCH ARTICLE Firefly genomes illuminate parallel origins of bioluminescence in beetles Timothy R Fallon1,2†, Sarah E Lower3,4†, Ching-Ho Chang5, Manabu Bessho-Uehara6,7,8, Gavin J Martin9, Adam J Bewick10, Megan Behringer11, Humberto J Debat12, Isaac Wong5, John C Day13, Anton Suvorov9, Christian J Silva5,14, Kathrin F Stanger-Hall15, David W Hall10, Robert J Schmitz10, David R Nelson16, Sara M Lewis17, Shuji Shigenobu18, Seth M Bybee9, Amanda M Larracuente5, Yuichi Oba6, Jing-Ke Weng1,2* 1Whitehead Institute for Biomedical Research, Cambridge, United States; 2Department of Biology, Massachusetts Institute of Technology, Cambridge, United States; 3Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States; 4Department of Biology, Bucknell University, Lewisburg, United States; 5Department of Biology, University of Rochester, Rochester, United States; 6Department of Environmental Biology, -
Light from a Firefly at Temperatures Considerably Higher and Lower Than Normal
www.nature.com/scientificreports OPEN Light from a frefy at temperatures considerably higher and lower than normal Mana Mohan Rabha1, Upamanyu Sharma2 & Anurup Gohain Barua2* Bioluminescence emissions from a few species of frefies have been studied at diferent temperatures. Variations in the fash-duration have been observed and interesting conclusions drawn in those studies. Here we investigate steady-state and pulsed emissions from male specimens of the Indian species Sclerotia substriata at temperatures considerably higher and lower than the ones at which they normally fash. When the temperature is raised to 34 °C, the peak wavelength gets red-shifted and the emitted pulses become the narrowest which broaden considerably thereafter for small increases in temperature; this probably indicates denaturation of the enzyme luciferase catalyzing the light-producing reaction. When the temperature is decreased to the region of 10.5–9 °C, the peak gets blue-shifted and the fash-duration increased abnormally with large fuctuation; this possibly implies cold denaturation of the luciferase. We conclude that the frst or hot efect is very likely to be the reason of the species being dark-active on hot days, and the second or cold one is the probable reason for its disappearance at the onset of the winter. Our study makes the inference that these two happenings determine the temperature-tolerance, which plays a major role in the selection of the habitat for the frefy. Te light of the frefy is the outcome of a very efcient reaction, called chemiluminescent reaction. It is well- known that oxygen is the biochemical trigger which excites the substrate luciferin, and produces the photo- emitter molecule oxyluciferin in presence of ATP and Mg 2+, the reaction being catalyzed by the enzyme luciferase. -
Cloning, Sequencing, and Characterization of Luciola Italica Luciferase Jennifer P
Connecticut College Digital Commons @ Connecticut College Chemistry Honors Papers Chemistry Department April 2006 Cloning, Sequencing, and Characterization of Luciola italica Luciferase Jennifer P. DeAngelis Connecticut College, [email protected] Follow this and additional works at: http://digitalcommons.conncoll.edu/chemhp Recommended Citation DeAngelis, Jennifer P., "Cloning, Sequencing, and Characterization of Luciola italica Luciferase" (2006). Chemistry Honors Papers. 1. http://digitalcommons.conncoll.edu/chemhp/1 This Article is brought to you for free and open access by the Chemistry Department at Digital Commons @ Connecticut College. It has been accepted for inclusion in Chemistry Honors Papers by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. Cloning, Sequencing, and Characterization of Luciola italica Luciferase Jennifer Patricia DeAngelis Department of Chemistry Connecticut College Presents an Honors Thesis under the supervision of Dr. Bruce R. Branchini April, 2006 ACKNOWLEDGEMENTS First of all, I would like to thank Dr. Bruce R. Branchini for introducing me to this project and advising me through it. I would also like to thank everyone in the lab including Tara Southworth, Danielle Ablamsky, and Martha Murtiashaw for all their help throughout this project; I would have not been accomplish this without them. I want to thank Evelyn Bamford and Maureen Ronau for little things and words of encouragement, which were such a big help in dealing with this difficult year. Lastly, I want to thank Dr. David Cullen and Daniel Odom for being great and helpful readers for this thesis. -
A Molecular Phylogeny of Lampyridae with Insight Into Visual and Bioluminescent Evolution
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2014-12-01 A Molecular Phylogeny of Lampyridae with Insight into Visual and Bioluminescent Evolution Gavin Jon Martin Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biology Commons BYU ScholarsArchive Citation Martin, Gavin Jon, "A Molecular Phylogeny of Lampyridae with Insight into Visual and Bioluminescent Evolution" (2014). Theses and Dissertations. 5758. https://scholarsarchive.byu.edu/etd/5758 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. A Molecular Phylogeny of Lampyridae with Insight into Visual and Bioluminescent Evolution Gavin J. Martin A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Seth M. Bybee, Chair Michael F. Whiting Marc A. Branham Department of Biology Brigham Young University December 2014 Copyright © 2014 Gavin J. Martin All Rights Reserved ABSTRACT A Molecular Phylogeny of Lampyridae with Insight into Visual and Bioluminescent Evolution Gavin J. Martin Department of Biology, BYU Master of Science Fireflies are some of the most captivating organisms on the planet. Because of this, they have a rich history of study, especially concerning their bioluminescent and visual behavior. Among insects, opsin copy number variation has been shown to be quite diverse. However, within the beetles, very little work on opsins has been conducted. Here we look at the visual system of fireflies (Coleoptera: Lampyridae), which offer an elegant system in which to study visual evolution as it relates to their behavior and broader ecology. -
Karaoken Presenteras Av Sveriges J-Rock-Förening
Karaoken presenteras av Sveriges J-rock-förening Karaokelista – Innehåll s. 3 Animé & Live Action s. 20 J-rock s. 26 J-pop s. 31 Spel & VN s. 33 Parodier & Fanlåtar s. 37 Vocaloid s. 39 Koreanskt & Kinesiskt s. 44 Västerländskt s. 51 Film & TV s. 54 Musikal & Opera Scanna QR-koden – få karaokelistan digitalt! Listan senast uppdaterad 2021-06-10 Karaoken presenteras av I samarbete med Hikari-kai, Sveriges J-rock-förening Raison d’être Pecena Piperka och Feed Me Kpop Den här är rejäl Jag minns inte exakt när det var jag tog över karaokelistan och databasen. När det var jag som började vara ansvarig för uppdateringarna. Det allra tidigaste beviset jag kan finna på en lista som det med hundraprocentig säkerhet var jag som stod för är från december 2014. Så jag har inte riktigt gjort det i ett decennium än. Men jag är rätt säker på att det här är den absolut största uppdateringen jag har gjort. I alla fall är det, utan minsta tvivel, den största uppdateringen på så här kort tid, eftersom det inte ens var två månader sedan den förra listan. Vi hade nämligen förra månaden ett litet event. En karaokemakartävling som löpte över fyra veckor. Summa summarum: Över hundra nya låtar i listan. Plus ett gäng uppdaterade versioner av sånt vi redan hade. Själv har jag se’n sist i princip bara gjort One Piece och Nichijou-låtar, så där finns det diverse nytt att hämta. Högst takt höll Nea, som dessutom fokuserade mycket på nyare populära serier. Så häri kan ni numera hitta musik från Tensei Shitara Slime Datta Ken, Re:Zero kara Hajimeru Isekai Seikatsu, Dr.