Intransitivity and Vagueness Joseph Y. Halpern∗ Cornell University Computer Science Department Ithaca, NY 14853
[email protected] http://www.cs.cornell.edu/home/halpern Abstract preferences. Moreover, it is this intuition that forms the ba- sis of the partitional model for knowledge used in game the- There are many examples in the literature that suggest that indistinguishability is intransitive, despite the fact that the in- ory (see, e.g., [Aumann 1976]) and in the distributed sys- distinguishability relation is typically taken to be an equiv- tems community [Fagin, Halpern, Moses, and Vardi 1995]. alence relation (and thus transitive). It is shown that if the On the other hand, besides the obvious experimental obser- uncertainty perception and the question of when an agent vations, there have been arguments going back to at least reports that two things are indistinguishable are both care- Poincare´ [1902] that the physical world is not transitive in fully modeled, the problems disappear, and indistinguishabil- this sense. In this paper, I try to reconcile our intuitions ity can indeed be taken to be an equivalence relation. More- about indistinguishability with the experimental observa- over, this model also suggests a logic of vagueness that seems tions, in a way that seems (at least to me) both intuitively to solve many of the problems related to vagueness discussed appealing and psychologically plausible. I then go on to ap- in the philosophical literature. In particular, it is shown here ply the ideas developed to the problem of vagueness. how the logic can handle the Sorites Paradox. To understand the vagueness problem, consider the well- n+1 1 Introduction known Sorites Paradox: If grains of sand make a heap, then so do n.