Historical Range of Variation Assessment for Wetland and Riparian Ecosystems, U.S

Total Page:16

File Type:pdf, Size:1020Kb

Historical Range of Variation Assessment for Wetland and Riparian Ecosystems, U.S Historical Range of Variation Assessment for Wetland and Riparian Ecosystems, U.S. Forest Service Rocky Mountain Region Edward Gage and David J. Cooper United States Department of Agriculture / Forest Service Rocky Mountain Research Station General Technical Report RMRS-GTR-286WWW April 2013 Gage, Edward; Cooper, David J. 2013. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region. Gen. Tech. Rep. RMRS-GTR-286WWW. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 239 p. Abstract This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem types—riparian areas, fens, wet meadows, salt flats, and marshes—we review key structural and functional characteristics including geomorphic setting, principal ecological drivers, classification, and dominant vegetation. In addition, we discuss anthropogenic factors known to influence the abundance or condition of each main wetland type. Keywords: wetlands, wet meadows, fens, salt flats, riparian, marshes, Colorado, Wyoming, South Dakota, Kansas, Nebraska Acknowledgments We thank the numerous individuals who provided us information, data, or critical review of this document including Barry Johnston, Bernie Bornong, Carl Chambers, Dave Bradford, Deanna Reyher, Dennis Lowry, Gay Austin, Greg Schenbeck, Jeff Redder, Jim Maxwell, Joe Neal, Joe Rocchio, Kathy Carsey, Ken Kanaan, Les Dobson, Les Gonyer, Michele Girard, Ray Zubick, Dave Ode, Gerry Steinauer, George Jones, Kelly Kindscher, Dean Erhard, Mike Johnson, Joanna Lemly, Kathy Roche, Rod Chimner, John Proctor, and Mike Menaffe. Claudia Regan, Jim Maxwell, and Dan Binkley were particularly helpful in seeing this project through from start to end. Special thanks to Kate Dwire and Melinda Larson for assistance in final revisions and facilitating publication. We also thank Kathy Roche, Gay Austin, and five anonymous reviewers from the Ecological Society of America for providing insightful comments on draft versions of this document. Historical Range of Variation Assessment for Wetland And Riparian Ecosystems, U.S. Forest Service Rocky Mountain Region Edward Gage and David J. Cooper Contents 1. Introduction................................................ 1 Objectives of the Project.....................................1 Organization of This Report ..................................5 Historical Range of Variation Concepts ........................5 Wetland Definitions and Applicable Laws.......................5 2. Data and Information Sources ................................ 8 Instrumental Records .......................................8 Paleoclimatic, Paleohydrologic, and Paleoecological Studies .....10 Classification of Region 2 Wetlands and Riparian Communities ...11 Historical Photographs and Accounts.........................12 3. Wetland and Riparian Ecosystems of Region 2: Structural and Functional Characteristics and Ecological and Historical Setting ....................................... 13 Introduction ..............................................13 Overview of the Principal Wetland and Riparian Types in the Region ..........................................14 Vegetation of Region 2 Wetlands and Riparian Areas ............17 Climate ..................................................19 Geomorphology and Geology ...............................26 Hydrologic Drivers of Wetland and Riparian Ecosystem Structure and Function ...............................28 Disturbance Regimes ......................................30 Ecoregions of Region 2.....................................31 Human History of the Region ................................31 Overview of Anthropogenic Impacts to Wetlands and Riparian Ecosystems .................................38 4. Historical Range of Variation for Region 2 Riparian Ecosystems ... 49 Definitions and Concepts of Riparian . .49 Geomorphic Setting and Principal Ecological Drivers ...........49 Riparian Classification and Gradients.........................57 HRV of Riparian Ecosystems in Region 2 ......................64 Management Opportunities and Constraints ...................90 5. Historical Range of Variation for Region 2 Marshes.............. 95 Definitions and Concepts of Marshes .........................95 Geomorphic Setting and Principal Ecological Drivers ...........95 Marsh Classification and Gradients..........................103 Marsh Vegetation in the Region .............................106 HRV of Marshes in Region 2................................108 Management Opportunities and Constraints ..................117 6. Historical Range of Variation for Region 2 Fens ................ 120 Definitions and Concepts of Fens . .120 Geomorphic Setting and Principal Ecological Drivers ..........121 Fen Classification and Gradients............................138 Fen Vegetation in the Region ...............................142 HRV of Fens in Region 2 ...................................146 Management Opportunities and Constraints ..................161 7. Historical Range of Variation for Region 2 Salt Flats . 166 Definitions and Concepts of Salt Flats .......................166 Geomorphic Setting and Principal Ecological Drivers ..........166 Salt Flat Classification and Gradients ........................174 Salt Flat Vegetation in the Region ...........................176 HRV of Salt Flats in Region 2 ...............................178 Management Opportunities and Constraints ..................181 8. Historical Range of Variation for Region 2 Wet Meadows ........ 184 Definitions and Concepts of Wet Meadows ...................184 Geomorphic Setting and PrincipalEcological Drivers ...........184 Wet Meadow Classification and Gradients ....................190 Wet Meadow Vegetation in the Region .......................192 HRV of Wet Meadows in Region 2 . .195 9. Conclusions ............................................. 203 References . 205 1. Introduction Objectives of the Project ________________________ Although they comprise only a small percentage of the region’s land area, wet- land and riparian ecosystems are critical components of Rocky Mountain and Great Plains landscapes. These ecologically diverse ecosystems are found at all elevations and latitudes and provide a number of important economic and eco- logical functions (Gregory and others 1991; Mitsch and Gosselink 2007; Patten 1998). Critical as wildlife habitat (Brown and others 1996; Davidson and Knight 2001; Haukos 1992; Nelson and others 1984) and as local and regional centers of biodiversity (Naiman and others 1993; Nilsson and Svedmark 2002; Pollack 1998), these ecosystems support many biogeochemical, physical, and ecological processes not found elsewhere on western landscapes. As wetland and riparian functions and values have become better understood, a variety of laws and regulations have been promulgated that are aimed at pro- moting wetland and riparian conservation. However, wetland and riparian areas have historically been heavily impacted by anthropogenic activities throughout North America (Brinson and Malvarez 2002; Graf 1999; Office of Technology Assessment 1984; Shafroth and others 1998; Tiner 1984). Demand for water, fertile land, and forage for livestock in the arid and semi-arid West has already affected many aquatic, riparian, and wetland areas; and pressures will likely in- crease with time, threatening the integrity and long-term viability of these vital ecosystems and the biota they support (Baron and others 2002; Pringle 2000). As a principal land manager in the region, the U.S. Department of Agriculture, Forest Service (USFS) sits at the center of this conflict. Charged with simultane- ously providing natural resources goods and services and conserving biodiversity and ecosystem integrity, the USFS must balance these often conflicting goals—a task that is made more difficult by the complexity of the social, economic, and ecological systems involved (Kaufmann and others 1994; Landres and others 1999). Recognizing this complexity, managers have increasingly looked to the scientific community to help inform and guide management and planning activi- ties (Dale and others 2000; Thomas 1996). Over the last several decades, a paradigm shift has occurred in the field of ecology, from a focus on stability and equilibrium, to an emphasis on concepts of variability, change, and dynamism (Holling 1996; Holling and Meffe 1996). Scientists have increasingly stressed the importance of disturbances to ecologi- cal systems (Turner and others 1996, 1998), and in response, managers have begun to apply such concepts to both individual species conservation efforts and broad-scale land management (Dale and others 2000). New conceptual and quantitative tools have been developed to relate ecological pattern to process at USDA Forest Service Gen. Tech. Rep. RMRS-GTR-286WWW. 2013 1 different spatial and temporal scales (Turner 1989), often with an explicit focus on system variability. One concept that is increasingly relied upon to guide land management activities is the historical range of variability (HRV). Our primary objective in this assessment is to apply this concept, defined and described be- low, to riparian and wetland ecosystems
Recommended publications
  • A History of Northwest Colorado
    II* 88055956 AN ISOLATED EMPIRE BLM Library Denver Federal Center Bldg. 50, OC-521 P-O. Box 25047 Denver, CO 80225 PARE* BY FREDERIC J. ATHEARN IrORIAh ORADO STATE OFFICE BUREAU OF LAND MANAGEMENT 1976 f- W TABLE OF CONTENTS Wb Preface. i Introduction and Chronological Summary . iv I. Northwestern Colorado Prior to Exploitation . 1 II. The Fur Trade. j_j_ III. Exploration in Northwestern Colorado, 1839-1869 23 IV. Mining and Transportation in Early Western Colorado .... 34 V. Confrontations: Settlement Versus the Ute Indians. 45 VI. Settlement in Middle Park and the Yampa Valley. 63 VII. Development of the Cattle and Sheep Industry, 1868-1920... 76 VIII. Mining and Transportation, 1890-1920 .. 91 IX. The "Moffat Road" and Northwestern Colorado, 1903-1948 . 103 X. Development of Northwestern Colorado, 1890-1940. 115 Bibliography 2&sr \)6tWet’ PREFACE Pu£Eose: This study was undertaken to provide the basis for identification and evaluation of historic resources within the Craig, Colorado District of the Bureau of Land Management. The narrative of historic activities serves as a guide and yardstick regarding what physical evidence of these activities—historic sites, structures, ruins and objects—are known or suspected to be present on the land, and evaluation of what their historical significance may be. Such information is essential in making a wide variety of land management decisions effecting historic cultural resources. Objectives: As a basic cultural resource inventory and evaluation tool, the narrative and initial inventory of known historic resources will serve a variety of objectives: 1. Provide information for basic Bureau planning docu¬ ments and land management decisions relating to cultural resources.
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • Birds of the Nova Scotia— New Brunswick Border Region by George F
    Birds of the Nova Scotia— New Brunswick border region by George F. Boyer Occasional Paper Number 8 Second edition Canadian Wildlife Service Environment Canada Environnement Canada Wildlife Service Service de la Faune Birds of the Nova Scotia - New Brunswick border region by George F. Boyer With addendum by A. J. Erskine and A. D. Smith Canadian Wildlife Service Occasional Paper Number 8 Second edition Issued under the authority of the Honourable Jack Davis, PC, MP Minister of the Environment John S. Tener, Director Canadian Wildlife Service 5 Information Canada, Ottawa, 1972 Catalogue No. CW69-1/8 First edition 1966 Design: Gottschalk-)-Ash Ltd. 4 George Boyer banding a barn swallow in June 1952. The author George Boyer was born in Woodstock, New Brunswick, on August 24, 1916. He graduated in Forestry from the University of New Brunswick in 1938 and served with the Canadian Army from 1939 to 1945. He joined the Canadian Wildlife Service in 1947, and worked out of the Sackville office until 1956. During that time he obtained an M.S. in zoology from the University of Illinois. He car­ ried on private research from April 1956 until July 1957, when he rejoined CWS. He worked out of Maple, Ontario, until his death, while on a field trip near Aultsville. While at Sackville, Mr. Boyer worked chiefly on waterfowl of the Nova Scotia-New Brunswick border region, with special emphasis on Pintails and Black Ducks. He also studied merganser- salmon interrelationships on the Miramichi River system, Woodcock, and the effects on bird popu­ lations of spruce budworm control spraying in the Upsalquitch area.
    [Show full text]
  • Effects of Age on Hummock Succession in Bogs
    Effects of age on hummock succession in bogs By Joel Vallier Abstract Ecological succession is the change in communities over time. We chose to study the successional stages of hummocks in a bog using age. We hypothesized that hummock plant richness should increase then decrease with age because of successional flora species mixing. We also hypothesized that hummock density, and hummock size will increase with age. Our study site was a bog at Mud Lake located in Cheboygan County, Michigan. We set up two 100 meter transects, divided them into zones based on age then recorded hummock surface area and hummock density. Plant richness was also recorded. There was a significant difference in plant richness with hummock age but only when surface area was used a covariant. Surface area was not significantly different among different aged zones. Hummock density did not have any correlation with age. Places were successional flora species mixed provided more plant richness and also showed trends of higher surface area. The tree line altered our results in the youngest zones because it had late successional species mixed with early successional species. This gave one of our youngest zones the highest plant richness. This shows that trends exist between hummock size, and plant richness but the surrounding morphology has a large impact. Introduction Succession within an ecological community is the change in species composition over time. This can change the biodiversity of the environment by altering conditions making it more adaptable by other species (Katz, 1926). This can be seen in the classic hydrosere succession model, where infilling of a shallow lake by sediments produces a sequential trend of vegetation communities staring with marsh shrub and moss species and ending with climax forests composed mostly of woody species (Klinger, 1996).
    [Show full text]
  • Colorado Natural Areas Program 2018- 2020 Review
    COLORADO PARKS & WILDLIFE Colorado Natural Areas Program 2018- 2020 Review Triennial Report to Governor Polis 1 Pagosa skyrocket cpw.state.co.us Colorado Natural Areas Program Showcasing & protecting our state’s natural treasures since 1977 The Colorado Natural Areas Program (CNAP) is a statewide conservation program created in 1977 by the Colorado Natural Areas Act (C.R.S. 33-33). The Program is housed within Colorado Parks and Mission: Wildlife (CPW) and is advised by the Colorado Natural Areas Council To identity, evaluate, and protect specific examples of (CNAC), a seven member Governor appointed board. Program natural features and phenomena as enduring resources staff includes one full-time coordinator and one to two seasonal for present and future generations, through a statewide technicians. CNAP’s small base is supported by a contract botanist system of Designated Natural Areas. [C.R.S 33-33-102] and over 50 dedicated volunteer stewards. Table of Contents CNAP Background ......................................................................................2 Natural Features .........................................................................................3 t Natural Areas Council ...............................................................................4 Volunteer Steward Program ....................................................................5 Rare Plant Conservation ...........................................................................6 3 Year Program Highlights .......................................................................7
    [Show full text]
  • Chapter 5: Vegetation of Sphagnum-Dominated Peatlands
    CHAPTER 5: VEGETATION OF SPHAGNUM-DOMINATED PEATLANDS As discussed in the previous chapters, peatland ecosystems have unique chemical, physical, and biological properties that have given rise to equally unique plant communities. As indicated in Chapter 1, extensive literature exists on the classification, description, and ecology of peatland ecosystems in Europe, the northeastern United States, Canada, and the Rocky Mountains. In addition to the references cited in Chapter 1, there is some other relatively recent literature on peatlands (Verhoeven 1992; Heinselman 1963, 1970; Chadde et al., 1998). Except for efforts on the classification and ecology of peatlands in British Columbia by the National Wetlands Working Group (1988), the Burns Bog Ecosystem Review (Hebda et al. 2000), and the preliminary classification of native, low elevation, freshwater vegetation in western Washington (Kunze 1994), scant information exists on peatlands within the more temperate lowland or maritime climates of the Pacific Northwest (Oregon, Washington, and British Columbia). 5.1 Introduction There are a number of classification schemes and many different peatland types, but most use vegetation in addition to hydrology, chemistry and topological characteristics to differentiate among peatlands. The subject of this report are acidic peatlands that support acidophilic (acid-loving) and xerophytic vegetation, such as Sphagnum mosses and ericaceous shrubs. Ecosystems in Washington state appear to represent a mosaic of vegetation communities at various stages of succession and are herein referred to collectively as Sphagnum-dominated peatlands. Although there has been some recognition of the unique ecological and societal values of peatlands in Washington, a statewide classification scheme has not been formally adopted or widely recognized in the scientific community.
    [Show full text]
  • Summits on the Air – ARM for Canada (Alberta – VE6) Summits on the Air
    Summits on the Air – ARM for Canada (Alberta – VE6) Summits on the Air Canada (Alberta – VE6/VA6) Association Reference Manual (ARM) Document Reference S87.1 Issue number 2.2 Date of issue 1st August 2016 Participation start date 1st October 2012 Authorised Association Manager Walker McBryde VA6MCB Summits-on-the-Air an original concept by G3WGV and developed with G3CWI Notice “Summits on the Air” SOTA and the SOTA logo are trademarks of the Programme. This document is copyright of the Programme. All other trademarks and copyrights referenced herein are acknowledged Page 1 of 63 Document S87.1 v2.2 Summits on the Air – ARM for Canada (Alberta – VE6) 1 Change Control ............................................................................................................................. 4 2 Association Reference Data ..................................................................................................... 7 2.1 Programme derivation ..................................................................................................................... 8 2.2 General information .......................................................................................................................... 8 2.3 Rights of way and access issues ..................................................................................................... 9 2.4 Maps and navigation .......................................................................................................................... 9 2.5 Safety considerations ..................................................................................................................
    [Show full text]
  • Grand Mesa, Uncompahgre, and Gunnison National Forests DRAFT Wilderness Evaluation Report August 2018
    United States Department of Agriculture Forest Service Grand Mesa, Uncompahgre, and Gunnison National Forests DRAFT Wilderness Evaluation Report August 2018 Designated in the original Wilderness Act of 1964, the Maroon Bells-Snowmass Wilderness covers more than 183,000 acres spanning the Gunnison and White River National Forests. In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English. To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at http://www.ascr.usda.gov/complaint_filing_cust.html and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form.
    [Show full text]
  • Hábitats De Turbera En La Red Natura 2000 Diagnosis Y Criterios Para Su Conservación Y Gestión En La Región Biogeográfica Atlántica
    Hábitats de turbera en la Red Natura 2000 Diagnosis y criterios para su conservación y gestión en la Región Biogeográfica Atlántica Pablo Ramil-Rego Manuel A. Rodríguez Guitián (Editores) Hábitats de turbera en la Red Natura 2000 Diagnosis y criterios para su conservación y gestión en la Región Biogeográfica Atlántica Pablo Ramil-Rego - Manuel A. Rodríguez Guitián (Eds.) Lugo 2017 Título: Hábitats de turbera en la Red Natura 2000. Diagnosis y criterios para su conservación y gestión en la Región Biogeográfica Atlántica Editores: Pablo Ramil-Rego, Manuel A. Rodríguez Guitián A efectos bibliográficos a obra debe citarse: Obra Completa: Ramil-Rego, P, Rodríguez Guitián M.A. (Eds.) (2017). Hábitats de turbera en la Red Natura 2000. Diag- nosis y criterios para su conservación y gestión en la Región Biogeográfica Atlántica. Horreum-Ibader, Lugo. 427p. Capítulo concreto: Ramil-Rego, P., López Castro, H., Muñoz Sobrino. C., Rodríguez Guitián, M.A., Gómez Orellana, L., Ferreiro Da Costa, J. (2017). Información Territorial: Unión Europea. En: Ramil-Rego, P, Rodríguez Guitián M.A. (Eds.), Hábitats de turbera en la Red Natura 2000. Diagnosis y criterios para su conservación y gestión en la Región Biogeográfica Atlántica: 149-190. Horreum-Ibader, Lugo. Esta publicación foi sometida a un proceso de revisión por pares. Edita: Horreum - IBADER Copyright: IBADER - Horreum A totalidade dos textos, gráficos e imaxes publicadas nesta obra están protexidos por copyright. Queda prohibida a repro- dución total ou parcial por calquera medio gráfico ou electrónico
    [Show full text]
  • The Structure and Composition of Vegetation in the Lake-Fill Peatlands of Indiana
    2001. Proceedings of the Indiana Academy of Science 1 10:51-78 THE STRUCTURE AND COMPOSITION OF VEGETATION IN THE LAKE-FILL PEATLANDS OF INDIANA Anthony L. Swinehart 1 and George R. Parker: Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907 Daniel E. Wujek: Department of Biology, Central Michigan University, Mount Pleasant, Michigan 48859 ABSTRACT. The vegetation of 16 lake-fill peatlands in northern Indiana was systematically sampled. Peatland types included fens, tall shrub bogs, leatherleaf bogs and forested peatlands. No significant difference in species richness among the four peatland types was identified from the systematic sampling. Vegetation composition and structure, along with water chemistry variables, was analyzed using multi- variate statistical analysis. Alkalinity and woody plant cover accounted for much of the variability in the herbaceous and ground layers of the peatlands, and a successional gradient separating the peatlands was evident. A multivariate statistical comparison of leatherleaf bogs from Indiana, Michigan, Ohio, New York, New Jersey and New Hampshire was made on the basis of vegetation composition and frequency and five climatic variables. The vascular vegetation communities of Indiana peatlands and other peatlands in the southern Great Lakes region are distinct from those in the northeastern U.S., Ohio and the northern Great Lakes. Some of these distinctions are attributed to climatic factors, while others are related to biogeo- graphic history of the respective regions. Keywords: Peatlands, leatherleaf bogs, fens, ecological succession, phytogeography Within midwestern North America, the such as Chamaedaphne calyculata, Androm- northern counties of Illinois, Indiana and Ohio eda glaucophylla, and Carex oligospermia of- 1 represent the southern extent of peatland com- ten make "southern outlier peatlands ' con- munities containing characteristic plant spe- spicuous to botanists, studies of such cies of northern or boreal affinity.
    [Show full text]
  • Does Soil Fertility Influence the Vegetation Diversity of a Tropical Peat Swamp
    Does soil fertility influence the vegetation diversity of a tropical peat swamp forest in Central Kalimantan, Indonesia? By Leanne Elizabeth Milner Dissertation presented for the Honours degree of BSc Geography Department of Geography University of Leicester 24 th February 2009 Approx number of words (12,000) 1 Contents Page LIST OF FIGURES I LIST OF TABLES II ABSTRACT III ACKNOWLEGEMENTS IV Chapter 1: Introduction 1 1.1 Aim 2 1.2 Objectives 2 1.3 Hypotheses 2 1.4 Scientific Background and Justification 3 1.5 Literature Review 7 1.5.1 Soil Fertility and Vegetation Species Diversity 7 1.5.2 Tropical Peatlands 7 1.5.3 Vegetation and Soil in tropical peatlands 8 1.5.4 Hydrology 14 1.5.5 Phenology and Rainfall 15 Chapter 2 : Methodology 17 2.1 Study Site and Transects 18 2.2 Soil Analysis 21 2.3 Chemical Analysis 22 2.4 Tree Data 25 2.5 Phenology Data 25 2.6 Rainfall Data 26 2.7 Data Analysis 26 2.7.1 Soil Data Analysis 26 2.7.2 Tree Data Analysis 26 2.7.3 Phenology Data Analysis 28 2 2.7.4 Rainfall Data Analysis 28 Chapter 3: Analysis 29 3.1 Tree and Liana Analysis 30 3.1.1 Basal Area and Density 31 3.1.2 Relative Importance Values 33 3.2 Peat Chemistry Analysis 35 3.3 Tree Phenology Analysis 43 3.4 Rainfall Analysis 46 Chapter 4: Discussion 47 4.1 Overall Findings 48 4.2 Peat Chemistry 48 4.3 Vegetation and Phenology 51 4.4 Peat Depth and Gradient 53 4.5 Significance of the Water Table 54 4.6 Limitations and Areas for further Research 56 Chapter 5: Conclusion 59 5.0 Conclusion 60 REFERENCES 62 APPENDICES 67 Appendix A: Soil Nutrient Analysis 68 Appendix B: Regression Outputs 70 Appendix C: Tree Data ON CD Appendix D: Phenology Data ON CD 3 List of Figures Figure 1 – Distribution of tropical peatlands in South East Asia and location of the study area.
    [Show full text]
  • CHEMICAL and PHYSICAL CHARACTERISTICS of SHALLOW GROUND WATERS in NORTHERN MICHIGAN BOGS, SWAMPS, and Fensl
    Amer. J. Bot. 69(8): 1231-1239. 1982. CHEMICAL AND PHYSICAL CHARACTERISTICS OF SHALLOW GROUND WATERS IN NORTHERN MICHIGAN BOGS, SWAMPS, AND FENSl 2 4 CHRISTA R. SCHWINTZER ,3 AND THOMAS J. TOMBERLIN The University of Michigan Biological Station," Pellston, Michigan 49769, Harvard University, Harvard Forest, Petersham, Massachusetts 01366, and Department of Statistics! Harvard University, Cambridge, Massachusetts 02138 ABSTRACT Fifteen chemical and physical characteristics were examined in samples of shallow ground water taken in midsummerat 15-30em below the surface in six bogs, 15 swamps, and six fens. The wetland types were identified on the basis of their vegetation. Three groups of covarying water characteristics were identified by factor analysis. Factor I included Ca, Mg, Si, pH, alkalinity, conductivity and to a much lesser extent Na, and reflects the degree of telluric water influence in the wetland. Factor 2 included reactive-P, total-P, NH,,-N, and to a lesser extent K, and consists of elements that primarily enter interstitial water via organic matter decom­ position. Factor 3 included Na, Cl, and to a much lesser extent K. The wetlands formed two distinct groups with respect to water chemistry: weakly minero­ trophic (pH 3.8-4.3) including all bogs and moderately to strongly minerotrophic (pH 5.5-7.4) includingall swamps and fens. The bogs had very low values for Factor 1 characteristics and moderate values for the remaining characteristics. The swamps and fens had moderate to high values for Factor I characteristics and showed considerable overlap in this respect. The fens had consistently low values for Factor 2 characteristics but overlapped with some swamps which also had low Factor 2 scores.
    [Show full text]