C Olor Management

Total Page:16

File Type:pdf, Size:1020Kb

C Olor Management A Little Theory Management abcde Color Color Introduction If you are not just interested in the practical side of Color Manage- ment but also wish to know more about the theories behind color reproduction, then this booklet will provide you with some background information. It will explain to you in a concise, yet detailed manner the various aspects concerning color reproduc- tion, i.e. the principles of color and what goes on physically, additive color mixing, the different color spaces and color space transforma- tion in its mathematical context. Even if you never advance beyond this introduction in the booklet, you can still work perfectly well with your Color Management system. However, if you find that the theory which this system is based on is something which attracts to you, you should not just put this booklet aside. Have fun reading this booklet! Color as a physical variable Color as a sensory perception The physical aspect of color is Man’s color vision consists of the represented by light of different analysis, evaluation and encoding of spectral composition. If you record a information which the eye receives spectrogram of the color radiation from such color stimuli. Only after by means of a spectrophotometer subsequent processing of the stimuli you get the color stimulus function does this information become a as a result of this measurement.This color sensation. In this context, the function shows how the radiant eye can be regarded as a reproduc- energy of the light from a color sam- tion system. The retina analyzes the ple is distributed over the entire visi- light reflected from the objects into ble spectrum varying according to three spectral components – namely its wavelength. Radiant Energy red, green and blue.The information UV Blue Green Red Infrared this provides is, according to the Wavelength very latest research results, encoded Additive color mixing into one element of information If we employ additive color defining the brightness and two mixing to mix red and green light defining the chroma. This will be (e.g. by projecting red- and green- examined later in greater detail. filtered light from two slide projec- Color impression: Blue First of all, however, additive tors) we get yellow: color mixing will be described. The highest value of the color sti- mulus function provides information Green Yellow Red on the hue. In the following diagram, a blue hue is suggested: Radiant Energy UV Blue Green Red Infrared Wavelength We can represent this mixing pro- cess in colorimetric terms by means of a small diagram: GreenYellow Red The steeper the rise and fall of the Red curve in the proximity of the maxi- Laser light Red and green are two primary mum value, the purer (more chro- colors. Yellow, on the other hand, is matic) the color. One example of an a mixed color. In our diagram, the extremely pure color is laser light. mixed color – consisting of equal This depicts the color stimulus func- components of the primary colors – tion of a spectral line: Radiant Energy UV Blue Green Red Infrared lies at the exact center of the Wavelength connecting lines. By stopping down the lens in one of the projectors (and thus changing the intensity of one primary color) it is possible to influ- ence the hue of the mixed color. A reduction in green while main- Color spaces taining the intensity of red, for When observing a color, there are Colors of different chroma retain example, will produce orange: three characteristics important to their original hue since the relation- us: ship between the color values of red and green has not changed. In the ● the hue color triangle, they move along the ● the chroma straight connecting line for example ● the brightness (or luminance) from the yellow color locus towards Green Orange Red The term ”hue” refers to the blue: basic color of an object such as green or red.When we look at some- Green Yellow Red thing, it is the first criterium we use to discriminate colors. Achromatic The color locus for the mixed The term ”chroma” describes the Yellow color now moves along the straight purity of colors. If blue is gradually connecting line towards the primary added to a yellow which has been color red.The original hue of the yel- mixed from red and green this gives low has thus changed in the direc- rise to yellow steps of decreasing tion of orange: purity. These are then less chroma- tic: Green Orange Red The diagram now assumes the form of a color triangle: In order to mix a color like cyan, Green Yellow Red Blue a third primary color (blue) is need- ed since mixing the primary colors Increasing the amount of the red and green cannot produce cyan. White third primary color until all three Three primary colors are all that is primary colors are present in equal needed to mix most colors: components will give white. The chroma level is then equal to zero. Cyan Magenta The achromatic point lies in the middle of the color triangle: Blue Magenta Green Yellow Red Blue Cyan White Red This color triangle shows mixed Yellow Achromatic colors cyan, magenta and yellow in Green Point the middle of the straight connecting lines between the primary colors red, green and blue. According to the law of additive color mixing, changes in hue – seen in colorimetric terms – thus mean the movement of color loci along the sides of the color triangle. Blue All other colors which can be pro- The triangle drawn between the Green duced by additive mixing of the coordinates is the chromaticity tri- B = 0,4 three primary colors red, green and angle. A color locus in the color blue lie in the area enclosed by this space is defined by three color vec- Color: Yellowy- color triangle.The further away they tors which represent the compo- Green are from the center of the triangle nents of the primary colors. These G = 1,1 the higher their chroma. A mixed components are known as color Yellow color has a high chroma level if it values. A color, for example, which Cyan Chromaticity: Yellowy- has only a small amount of its third consists of 0.6 red, 1.1 green and Green component or indeed none at all. A 0.4 blue, would be something like a Black maximum of chroma is found in all yellowy-green which is not very colors mixed from only two primary chromatic: R = 0,6 colors. Red If all three color components of a Magenta combination consisting of three pri- In the color triangle we were able Blue mary colors are reduced simulta- to define both hue and chroma. The The point of intersection of the neously while retaining their mixing colors are thus expressed in terms of resulting vector represents the chro- ratio, the hue remains unchanged. their chromaticity and form a chro- maticity ”yellowy-green”, the end The color decreases in brightness, maticity triangle. All colors in the point of the vector being the color however. If the components of all chromaticity triangle are defined by yellowy-green with the inclusion of three primary colors are reduced to their hue and chroma only and not its brightness value. zero, the resulting color will be by their brightness.There can be any black. Like white, black has a amount of brightness in the chroma- chroma level of zero. ticity triangle. In order to integrate brightness into our diagram we need to turn the two-dimensional chroma- ticity triangle into a spatial body known as a color space. The color Green space is a three-dimensional coordi- nate system with coordinates for red, green and blue: Yellow The further the color loci of the primary colors from the origin, the Cyan Green greater the volume of the cuboid color gamut which is formed and White thus the higher the quality of any Chromaticity Color color reproduction system which is Triangle Gamut based on it. All colors lying inside the color Yellow Red gamut can be reproduced by a Cyan White reproduction system which is based Blue Magenta on these primary colors (for exam- Black ple a color monitor). Colors outside the color space cannot be repro- duced.The primary colors of a color Red space are determined essentially by Magenta the equipment which generates Blue them. The CIE color system This is only meaningful, however, The creation of a global color if appropriate standardization is standard which embraces the most performed at the same time which important color gamuts and allows allows the lost value (Z) to be read colors to be communicated is of from the new two-dimensional great importance for the develop- model. This standardization is a- ment of a color reproduction chieved by introducing the chromati- system. city coordinates x, y and z. The following are defined: The CIE color system is such a standard. x = X / (X + Y + Z) In the standard color triangle, the y = Y / (X + Y + Z) right-angled chromaticity triangle This CIE color standard is based z = Z / (X + Y + Z) drawn between zero, x = 1 and y =1 on the imaginary primary colors represents the boundaries of this where: XYZ which cannot be realized physi- reference system. Chromaticities cally.They have been generated on a x + y+ z = 1 cannot lie outside the triangle. The purely theoretical basis and are thus closed curve section represents the The value z of any desired color independent of device-dependent position of the spectral colors: color gamuts such as RGB or can be obtained by subtracting the CMYK.These virtual primary colors chromaticity coordinates x and y y have, however, been selected so that from 1: 1,0 Spectral color all colors which can be perceived by 1 - x -y = z gamut the human eye lie within this color space.
Recommended publications
  • Alternative Processes a Few Essentials Introduction
    Alternative Processes A Few Essentials Introduction Chapter 1. Capture Techniques From Alternative Photographic Processes: Crafting Handmade Images Chapter 2. Digital Negatives for Gum From Gum Printing: A Step-by-Step Manual, Highlighting Artists and Their Creative Practice Chapter 3. Fugitive and Not-So-Fugitive Printing From Jill Enfield?s Guide to Photographic Alternative Processes: Popular Historical and Contemporary Techniques 2 Featured Books on Alternative Process Photography from Routledge | Focal Press Use discount code FLR40 to take 20% off all Routledge titles. Simply visit www.routledge.com/photography to browse and purchase books of interest. 3 Introduction A young art though it may be, photography already has a rich history. As media moves full steam ahead into the digital revolution and beyond, it is a natural instinct to look back at where we?ve come from. With more artists rediscovering photography?s historical processes, the practice of photography continually redefines and re-contextualizes itself. The creative possibilities of these historical processes are endless, spawning a growing arena of practice - alternative processes, which combines past, present and everything in between, in the creation of art. This collection is an introduction to and a sample of these processes and possibilities. With Alternative Photographic Processes, Brady Wilks demonstrates techniques for manipulating photographs, negatives and prints ? emphasizing the ?hand-made? touch. Bridging the gap between the simplest of processes to the most complex, Wilks? introduction demonstrates image-manipulation pre-capture, allowing the artist to get intimate with his or her images long before development. In the newly-released Gum Printing, leading gum expert Christina Z.
    [Show full text]
  • A N E W E R a I N O P T I
    A NEW ERA IN OPTICS EXPERIENCE AN UNPRECEDENTED LEVEL OF PERFORMANCE NIKKOR Z Lens Category Map New-dimensional S-Line Other lenses optical performance realized NIKKOR Z NIKKOR Z NIKKOR Z Lenses other than the with the Z mount 14-30mm f/4 S 24-70mm f/2.8 S 24-70mm f/4 S S-Line series will be announced at a later date. NIKKOR Z 58mm f/0.95 S Noct The title of the S-Line is reserved only for NIKKOR Z lenses that have cleared newly NIKKOR Z NIKKOR Z established standards in design principles and quality control that are even stricter 35mm f/1.8 S 50mm f/1.8 S than Nikon’s conventional standards. The “S” can be read as representing words such as “Superior”, “Special” and “Sophisticated.” Top of the S-Line model: the culmination Versatile lenses offering a new dimension Well-balanced, of the NIKKOR quest for groundbreaking in optical performance high-performance lenses Whichever model you choose, every S-Line lens achieves richly detailed image expression optical performance These lenses bring a higher level of These lenses strike an optimum delivering a sense of reality in both still shooting and movie creation. It offers a new This lens has the ability to depict subjects imaging power, achieving superior balance between advanced in ways that have never been seen reproduction with high resolution even at functionality, compactness dimension in optical performance, including overwhelming resolution, bringing fresh before, including by rendering them with the periphery of the image, and utilizing and cost effectiveness, while an extremely shallow depth of field.
    [Show full text]
  • Light and Color
    Chapter 9 LIGHT AND COLOR What Is Color? Color is a human phenomenon. To the physicist, the only difference be- tween light with a wavelength of 400 nanometers and that of 700 nm is Different wavelengths wavelength and amount of energy. However a normal human eye will see cause the eye to see another very significant difference: The shorter wavelength light will different colors. cause the eye to see blue-violet and the longer, deep red. Thus color is the response of the normal eye to certain wavelengths of light. It is nec- essary to include the qualifier “normal” because some eyes have abnor- malities which makes it impossible for them to distinguish between certain colors, red and green, for example. Note that “color” is something that happens in the human seeing ap- Only light itself paratus—when the eye perceives certain wavelengths of light. There is causes sensations of no mention of paint, pigment, ink, colored cloth or anything except light color. itself. Clear understanding of this point is vital to the forthcoming discus- sion. Colorants by themselves cannot produce sensations of color. If the proper light waves are not present, colorants are helpless to produce a sensation of color. Thus color resides in the eye, actually in the retina- optic-nerve-brain combination which teams up to provide our color sen- Color vision is sations. How this system works has been a matter of study for many years complex and not and recent investigations, many of them based on the availability of new completely brain scanning machines, have made important discoveries.
    [Show full text]
  • Irix 45Mm F1.4
    Explore the magic of medium format photography with the Irix 45mm f/1.4 lens equipped with the native mount for Fujifilm GFX cameras! The Irix Lens brand introduces a standard 45mm wide-angle lens with a dedicated mount that can be used with Fujifilm GFX series cameras equipped with medium format sensors. Digital medium format is a nod to traditional analog photography and a return to the roots that defined the vividness and quality of the image captured in photos. Today, the Irix brand offers creators, who seek iconic image quality combined with mystical vividness, a tool that will allow them to realize their wildest creative visions - the Irix 45mm f / 1.4 G-mount lens. It is an innovative product because as a precursor, it paves the way for standard wide-angle lenses with low aperture, which are able to cope with medium format sensors. The maximum aperture value of f/1.4 and the sensor size of Fujifilm GFX series cameras ensure not only a shallow depth of field, but also smooth transitions between individual focus areas and a high dynamic range. The wide f/1.4 aperture enables you to capture a clear background separation and work in low light conditions, and thanks to the excellent optical performance, which consists of high sharpness, negligible amount of chromatic aberration and great microcontrast - this lens can successfully become the most commonly used accessory that will help you create picturesque shots. The Irix 45mm f / 1.4 GFX is a professional lens designed for FujiFilm GFX cameras. It has a high-quality construction, based on the knowledge of Irix Lens engineers gained during the design and production of full-frame lenses.
    [Show full text]
  • Basic View Camera
    PROFICIENCY REQUIRED Operating Guide for MEDIA LOAN CALUMET 4X5 VIEW CAMERA Media Loan Operating Guides are available online at www.evergreen.edu/medialoan/ View cameras are usually tripod mounted and lend When checking out a 4x5 camera from Media Loan, themselves to a more contemplative style than the more patrons will need to obtain a tripod, a light meter, one portable 35mm and 2 1/4 formats. The Calumet 4x5 or both types of film holders, and a changing bag for Standard model view camera is a lightweight, portable sheet film loading. Each sheet holder can be loaded tool that produces superior, fine grained images because with two sheets of film, a process that must be done in of its large format and ability to adjust for a minimum of total darkness. The Polaroid holders can only be loaded image distortion. with one sheet of film at a time, but each sheet is light Media Loan's 4x5 cameras come equipped with a 150mm protected. lens which is a slightly wider angle than normal. It allows for a 44 degree angle of view, while the normal 165mm lens allows for a 40 degree angle of view. Although the controls on each of Media Loan's 4x5 lens may vary in terms of placement and style, the functions remain the same. Some of the lenses have an additional setting for strobe flash or flashbulb use. On these lenses, use the X setting for use with a strobe flash (It’s crucial for the setting to remain on X while using the studio) and the M setting for use with a flashbulb (Media Loan does not support flashbulbs).
    [Show full text]
  • Lens Openings and Shutter Speeds
    Illustrations courtesy Life Magazine Encyclopedia of Photography Lens Openings & Shutter Speeds Controlling Exposure & the Rendering of Space and Time Equal Lens Openings/ Double Exposure Time Here is an analogy to photographic exposure. The timer in this illustration represents the shutter speed portion of the exposure. The faucet represents the lens openings. The beaker represents the complete "filling" of the sensor chip or the film, or full exposure. You can see that with equal "openings" of the "lens" (the faucet) the beaker on the left is half full (underexposed) in 2 seconds, and completely full in 4 seconds... Also note that the capacity of the beaker is analogous to the ISO or light sensitivity setting on the camera. A large beaker represents a "slow" or less light sensitive setting, like ISO 100. A small beaker is analogous to a "fast" or more light sensitive setting, like ISO 1200. Doubling or halving the ISO number doubles or halves the sensitivity, effectively the same scheme as for f/stops and shutter speeds. 200 ISO film is "one stop faster" than ISO 100. Equal Time One f/stop down In the second illustration, the example on the left, the faucet (lens opening, f-stop, or "aperture"- all the same meaning here) is opened twice as much as the example on the right- or one "stop." It passes twice as much light as the one on the right, in the same period of time. Thus by opening the faucet one "stop," the beaker will be filled in 2 seconds. In the right example, with the faucet "stopped down" the film is underexposed by half- or one "stop." On the left, the "lens" is "opened by one stop." Equivalent Exposure: Lens Open 1 f/stop more & 1/2 the Time In this illustration, we have achieved "equivalent exposure" by, on the left, "opening the lens" by one "stop" exposing the sensor chip fully in 2 seconds.
    [Show full text]
  • Goethe's Theory of Colors Between the Ancient Philosophy, Middle Ages
    CULTURE, MEDIA & FILM | RESEARCH ARTICLE Goethe’s theory of colors between the ancient philosophy, middle ages occultism and modern science Victor Barsan and Andrei Merticariu Cogent Arts & Humanities (2016), 3: 1145569 Page 1 of 29 Barsan & Merticariu, Cogent Arts & Humanities (2016), 3: 1145569 http://dx.doi.org/10.1080/23311983.2016.1145569 CULTURE, MEDIA & FILM | RESEARCH ARTICLE Goethe’s theory of colors between the ancient philosophy, middle ages occultism and modern science 1 2 Received: 18 February 2015 Victor Barsan * and Andrei Merticariu Accepted: 20 January 2016 Published: 18 February 2016 Abstract: Goethe’s rejection of Newton’s theory of colors is an interesting example *Corresponding author: Victor Barsan, of the vulnerability of the human mind—however brilliant it might be—to fanati- Department of Theoretical Physics, cism. After an analysis of Goethe’s persistent fascination with magic and occultism, Horia Hulubei Institute of Physics and Nuclear Engineering, Aleea Reactorului of his education, existential experiences, influences, and idiosyncrasies, the authors nr. 30, Magurele, Bucharest, Romania E-mail: [email protected] propose an original interpretation of his anti-Newtonian position. The relevance of Goethe’s Farbenlehre to physics and physiology, from the perspective of modern sci- Reviewing editor: Peter Stanley Fosl, Transylvania ence, is discussed in detail. University, USA Subjects: Aristotle; Biophysics; Experimental Physics; Fine Art; Medical Physics; Ophthal- Additional information is available at the end of the article mology; Philosophy of Art; Philosophy of Science; Presocratics Keywords: ancient philosophy; Greek–Roman classicism; middle ages science; Newtonian science; occultism; pantheism; optics; theory of colors; primordial phenomenon (urphaeno men) 1. Introduction Light is one of the most interesting components of the physical universe.
    [Show full text]
  • Fuzzy Set Theoretical Approach to the Tone Triangular System
    JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011 2345 Fuzzy Set Theoretical Approach to the Tone Triangular System Naotoshi Sugano Tamagawa University, Tokyo, Japan [email protected] Abstract—The present study considers a fuzzy color system gravity of the attribute information of vague colors. This in which three input fuzzy sets are constructed on the tone fuzzy set theoretical approach is useful for vague color triangle. This system can process a fuzzy input to a tone information processing, color identification, and similar triangular system and output to a color on the RGB applications. triangular system. Three input fuzzy sets (not black, white, and light) are applied to the tone triangle relationship. By treating three attributes of chromaticness, whiteness, and II. METHODS blackness on the tone triangle, a target color can be easily A. Color Triangle and Additive Color Mixture obtained as the center of gravity of the output fuzzy set. In Additive color mixing occurs when two or three beams the present paper, the differences between fuzzy inputs and inference outputs are described, and the relationship of differently colored light combine. It has been found between inference outputs for crisp inputs and for fuzzy that mixing just three additive primary colors, red, green, inputs on the RGB triangular system are shown by the and blue, can produce the majority of colors. In general, a input-output characteristics between chromaticness, color vector can be described by certain quantities as a whiteness, and blackness as the inputs and redness (as one scalar and a direction. These quantities are referred to as of the outputs).
    [Show full text]
  • Big Bertha/Baby Bertha
    Big Bertha /Baby Bertha by Daniel W. Fromm Contents 1 Big Bertha As She Was Spoke 1 2 Dreaming of a Baby Bertha 5 3 Baby Bertha conceived 8 4 Baby Bertha’s gestation 8 5 Baby cuts her teeth - solve one problem, find another – and final catastrophe 17 6 Building Baby Bertha around a 2x3 Cambo SC reconsidered 23 7 Mistakes/good decisions 23 8 What was rescued from the wreckage: 24 1 Big Bertha As She Was Spoke American sports photographers used to shoot sporting events, e.g., baseball games, with specially made fixed lens Single Lens Reflex (SLR) cameras. These were made by fitting a Graflex SLR with a long lens - 20" to 60" - and a suitable focusing mechanism. They shot 4x5 or 5x7, were quite heavy. One such camera made by Graflex is figured in the first edition of Graphic Graflex Photography. Another, used by the Fort Worth, Texas, Star-Telegram, can be seen at http://www.lurvely.com/photo/6176270759/FWST_Big_Bertha_Graflex/ and http://www.flickr.com/photos/21211119@N03/6176270759 Long lens SLRs that incorporate a Graflex are often called "Big Berthas" but the name isn’t applied consistently. For example, there’s a 4x5 Bertha in the George Eastman House collection (http://geh.org/fm/mees/htmlsrc/mG736700011_ful.html) identified as a "Little Bertha." "Big Bertha" has also been applied to regular production Graflexes, e.g., a 5x7 Press Graflex (http://www.mcmahanphoto.com/lc380.html ) and a 4x5 Graflex that I can’t identify (http://www.avlispub.com/garage/apollo_1_launch.htm). These cameras lack the usual Bertha attributes of long lens, usually but not always a telephoto, and rapid focusing.
    [Show full text]
  • A Correlated Color Temperature for Illuminants
    . (R P 365) A CORRELATED COLOR TEMPERATURE FOR ILLUMINANTS By Raymond Davis ABSTRACT As has long been known, most of the artificial and natural illuminants do not match exactly any one of the Planckian colors. Therefore, strictly speaking, they can not be assigned a color temperature. A color of this type may, however, be correlated with a representative Planckian color. The method of determining correlated color temperature described in this paper consists in comparing the relative luminosities of each of the three primary red, green, and blue components of the source with similar values for the Planckian series. With such a comparison three component temperatures are obtained; that is, the red component of the source corresponds with that of the Planckian radiator at one temperature, its green component with that of the Planckian radiator at a second temperature, and its blue component with that of the Planckian radiator at a third temperature. The average of these three component temperatures is designated as the correlated color temperature of the source. The mean devia- tion of the component temperatures from the average temperature is used as a basis for specifying the color (chromaticity) departure of the source from that of the Planckian radiator at the correlated color temperature. The conjunctive wave length indicates the kind of color departure. CONTENTS Page I. Introduction 659 II. The proposed method 662 III. Procedure 665 1. The Planckian radiator evaluated in terms of relative lumi- nosity of the primary components 665 2. Computation of the correlated color temperature 670 3. Calculation of color departure in terms of sensation steps 672 4.
    [Show full text]
  • Aberration Invariant Optical/Digital Incoherent Optical Systems
    Imaging Systems Laboratory, Department of Electrical Engineering University of Colorado, Boulder, Colorado 80309 Aberration Invariant Optical/Digital Incoherent Optical Systems Edward R. Dowski, Jr., W. Thomas Cathey, and Joseph van der Gracht Abstract Control of optical aberrations is a principal objective of any optical design. High performance optical designs with well-corrected aberrations typically have a very low tolerance to fabrication and alignment errors and are composed of very specific optical materials. Such systems are almost always more costly than equivalent systems with less well-corrected aberrations. By optimum combination of optical pre-processing and digital post-processing, or optical coding and digital decoding of the image information, incoherent optical systems invariant to numerous aberrations can be formed. The theory of aberration invariance can also be used with low-cost, low-precision optics to produce systems that image with the performance of high-cost, high-precision, or near diffraction-limited, spatial resolution. We can show that the central aberration to be controlled is second order, or misfocus. Systems that are invariant to misfocus are also invariant to chromatic aberration, astigmatism, thermal effects, and spherical aberration. This paper therefore describes, with experimental evidence, a focus-invariant optical system. Research The most common approach to approximating a focus-invariant imaging system is to stop down the pupil aperture. Although stopping down the aperture does increase the amount of focus invariance, or depth of field, there is an attendant loss in optical power at the image plane, as well as a reduction of the diffraction-limited image resolution. The aperture can be viewed as a simple absorptive mask in the pupil plane of an optical imaging system; however, this absorptive nature results in a loss of light.
    [Show full text]
  • Raphics & Visualization
    Graphics & Visualization Chapter 11 COLOR IN GRAPHICS & VISUALIZATION Graphics & Visualization: Principles & Algorithms Chapter 11 Introduction • The study of color, and the way humans perceive it, a branch of: Physics Physiology Psychology Computer Graphics Visualization • The result of graphics or visualization algorithms is a color or grayscale image to be viewed on an output device (monitor, printer) Graphics programmer should be aware of the fundamental principles behind color and its digital representation Graphics & Visualization: Principles & Algorithms Chapter 11 2 Grayscale • Intensity: achromatic light; color characteristics removed • Intensity can be represented by a real number between 0 (black) and 1 (white) Values between these two extremes are called grayscales • Assume use of d bits to represent the intensity of each pixel n=2d different intensity values per pixel • Question: which intensity values shall we represent ? • Answer: Linear scale of intensities between the minimum & maximum value, is not a good idea: Human eye perceives intensity ratios rather than absolute intensity values. Light bulb example: 20-40-60W Therefore, we opt for a logarithmic distribution of intensity values Graphics & Visualization: Principles & Algorithms Chapter 11 3 Grayscale (2) • Let Φ0 be the minimum intensity value For typical monitors: Φ0 = (1/300) * maximum value 1 (white) Such monitors have a dynamic range of 300:1 • Let λ be the ratio between successive intensity values • Then we take: Φ1 = λ* Φ0 2 Φ1 = λ* Φ1=λ *Φ0 …
    [Show full text]