Muon Absorption Tomography of a Lead Structure

Total Page:16

File Type:pdf, Size:1020Kb

Muon Absorption Tomography of a Lead Structure MUON ABSORPTION TOMOGRAPHY OF A LEAD STRUCTURE THROUGH THE USE OF ITERATIVE ALGORITHMS APREPRINT Guglielmo Baccani Department of Physics and Astronomy University of Florence P.zza S.Marco 4, 50121 Florence, Italy [email protected] National Institute for Nuclear Physics (INFN) Unit of Florence Via Sansone 1, 50019 Sesto Fiorentino (FI), Italy October 27, 2020 ABSTRACT The muon radiography technique is part of the straight-ray scanning imaging methods and it is usually employed to produce two-dimensional images of the integrated density in the radial direction from the detector position. However, in the literature there are already some examples of muon tomographies made by combining several measurements from different observation points. The work presented in this article fits into this line of research: a tomography of a target composed of lead blocks arranged in a non-trivial geometry was carried out by means of muon absorption radiography measurements. To solve the inversion problem, an iterative algorithm called SART was employed, obtaining better results than using a Chi-squared minimization. Keywords Muon tomography · Muography · Computerized Tomography (CT) · Computed Radiography (CR) · Micropattern gaseous detectors (MICROMEGAS) · Particle tracking detectors (Gaseous detectors) 1 Muon radiography and scattering tomography Muon radiography (or muography) is a geophysical technique that allows to study the density and the atomic number of large dimension systems taking advantage of cosmic ray muons. The muon is an unstable lepton with a mean life of 2:2 µs and a mass 200 times greater than that of the electron 2 (mµ ≈ 106 MeV=c ). Muons are the most frequent charged particles from cosmic rays at the sea level, with a vertical flux of about 70 m−2 s−1sr−1 for energies greater than 1 GeV [1, chapter 30.3]. The integral muon flux depends on the zenith angle θ approximately as cos2 θ, while it weakly depends on the azimuth angle φ because of the interaction of the mainly positive particles in the primarily cosmic radiation with the Earth’s magnetic field (this is the so called arXiv:2010.13562v1 [physics.ins-det] 22 Oct 2020 East-West asymmetry). Going into more detail, the muons spectrum depends on the measuring site (on its altitude, latitude and longitude) and varies with time: solar activity and variations in the atmospheric pressure influence the flux of cosmic muons [2, 3]. There are mainly two muographic techniques that are based on two different interaction phenomena of muons within matter: muon transmission (and absorption) radiography and muon scattering tomography. All of these techniques relies on the detection of muon tracks by means of particle detectors called trackers. Some general reviews can be found in [4, 3]. Muon transmission and absorption radiography are based on the energy loss (and the eventual decay) of muons when they interact with matter [1, chapter 34.2]. A muon with a given impulse pmin, before being stopped, will be able to cross on average a certain opacity X defined as X = R ρ dL, where ρ is the density of the material and L is the particle A PREPRINT -OCTOBER 27, 2020 Figure 1: Transmitted muon flux as a function of the crossed opacity (in meter water equivalent) and of the elevation angle (the dependency from the zenith angle is neglected). path length. The relationship between minimum impulse and crossed opacity can be found tabulated in reference [5]. The higher the opacity of the target, the lower the number (and flux) of muons that have an impulse high enough to cross it. Fixed a certain angular direction (θ; φ) and a certain opacity, the expected value of the flux transmitted through the target can be estimated as the integral from pmin to infinity of the differential flux in that direction. In figure 1 the transmitted muon flux is depicted as a function of the opacity of the crossed object and of the elevation angle (the dependence of the muon flux from the azimuth angle is neglected). This histogram has been obtained from the knowledge of the differential muon flux on Earth measured with the ADAMO spectrometer [6]. With the previous conversion map or using appropriate calibration measurements (as in this work), the fraction of transmitted (absorbed) muons can be converted into an opacity measurement for each direction of observation. Dividing the opacity by the total target length, one eventually obtains the average density along the inspected direction. For the transmission technique a single tracker is placed downstream the target to detect the transmitted muons, while for the absorption one the object under inspection is placed between the tracker and a veto plane (respectively above and below the target) to identify those muons that have been stopped within the target. Although the two techniques are similar, transmission muon radiography is the most common as it allows to examine very large objects. Transmission muography sees its greatest development in the field of volcanology [7, 8, 9, 10, 11, 12, 13, 14]. The first studies were able to provide a description of the internal architecture of volcanoes and afterwards dynamic studies have been carried out, demonstrating the possibility of monitoring volcanoes in real time so as to prevent the risks associated with an eruptive event. Apart from volcanology there are several other applications in the fields of archaeology, geology, mining and civil engineering. Following in the footsteps of Luis Alvarez’s pioneering measure inside the Chefren pyramid from the 1970’s [15], more recently a hidden chamber inside the Cheops pyramid was discovered by the ScanPyramids collaboration [16]. In the field of geology the technique has been employed to determine the shape of the bedrock underneath alpine glaciers in Switzerland [17], while there are numerous uses in the mining sector [18, 19, 20, 21, 22]. For all of these applications a typical acquisition lasts from a few days up to a month. The scattering muon tomography technique takes advantage of another phenomena: the deflection of muons from their straight trajectory due to multiple coulomb interactions [1, chapter 34.3]. The deflection angle has null average and depends on velocity and impulse of the particle, and on opacity and atomic number Z of the crossed material. The deflection of muons is particularly relevant for low impulse muons and it can constitute a not negligible background for the transmission (absorption) radiography [3]. Scattering tomography allows to directly reconstruct the density and the atomic number of the target by measuring the deflection of muons trough it. To do that two tracking detectors, one upstream and one downstream the target, are needed, thus limiting the size of the objects that can be studied (that is limited also by the fact that the technique is no longer sensible when multiple deflections occur). Given the higher level of information obtained from these measurements, acquisition times are generally reduced (around a few minutes) 2 A PREPRINT -OCTOBER 27, 2020 compared to transmission radiography. The technique is particularly suitable to discriminate materials with an high atomic number [23] opening applications in the nuclear sector and in homeland security [24, 25, 26, 27, 28, 29, 30, 31]. 2 3D reconstruction with muon radiography 2.1 Tomographic reconstruction While muon scattering tomography is naturally a three-dimensional imaging technique, muon radiography provides bidimensional maps of density integrated on the radial direction from the point of view of the detector. Nonetheless, just like in medical CT, combining multiple muon radiography measures from different positions, it is possible to obtain the tree-dimensional distribution of density. Some tomographic reconstructions using muon radiography have already been carried out and each has its own peculiarity which depends on the system under observation [32, 22, 21, 33, 34, 20, 35, 19]: unlike the work presented in this article, some of these reconstructions involve a combination of muographic and gravimetrical measurements [34, 35, 19] and many of them use regularization terms based on a priori information to reduce the non-uniqueness typical of these problems [21, 33, 34, 20, 19]. 2.2 Inversion problem definition In all these reconstructions the inspected volume, from now on World, is modeled as a 3D grid of Voxels usually cuboids in shape (except in [22]) with unknown uniform density. Then the muographic information is organized in a series of Rays each characterized by an opacity measurement and by geometrical limits: in case the tracker can be considered point-like, each Ray will correspond to a precise solid angle. Supposing to have I Rays and J Voxels, after this discretization process, from the equation of the opacity definition we obtain the following system of equations: J X Xi = Lijρj = L~ i~ρ; i = 1; 2;:::;I; (1) j=1 where Xi is the opacity of the ith Ray, ρj is the density of the jth Voxel and Lij is the average intersection length between the ith Ray and the jth Voxel. For a given Ray, just a few Voxels will be intersected and will contribute with their density to the Ray’s opacity and therefore Lij is an element of a sparse matrix (L). The goal will be to determine the density values that solve the system of equations 1. In case of real opacity measurements with errors σi, one will have to find the density vector that minimizes the Chi-squared I ~ !2 X Xi − Li~ρ χ2 = : (2) σ i=1 i 2.3 The ART family algorithms Given the usually high values for I and J (see section 3.3 for example) the minimization of the Chi-squared defined in 2 is computationally expensive. To reduce the computational time and still achieve a good result, iterative methods can be used.
Recommended publications
  • Muon Tomography Sites for Colombian Volcanoes
    Muon Tomography sites for Colombian volcanoes A. Vesga-Ramírez Centro Internacional para Estudios de la Tierra, Comisión Nacional de Energía Atómica Buenos Aires-Argentina. D. Sierra-Porta1 Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Centro de Modelado Científico, Universidad del Zulia, Maracaibo-Venezuela, J. Peña-Rodríguez, J.D. Sanabria-Gómez, M. Valencia-Otero Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia. C. Sarmiento-Cano Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. , M. Suárez-Durán Departamento de Física y Geología, Universidad de Pamplona, Pamplona-Colombia H. Asorey Laboratorio Detección de Partículas y Radiación, Instituto Balseiro Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Bariloche-Argentina; Universidad Nacional de Río Negro, 8400, Bariloche-Argentina and Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. L. A. Núñez Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Departamento de Física, Universidad de Los Andes, Mérida-Venezuela. December 30, 2019 arXiv:1705.09884v2 [physics.geo-ph] 27 Dec 2019 1Corresponding author Abstract By using a very detailed simulation scheme, we have calculated the cosmic ray background flux at 13 active Colombian volcanoes and developed a methodology to identify the most convenient places for a muon telescope to study their inner structure. Our simulation scheme considers three critical factors with different spatial and time scales: the geo- magnetic effects, the development of extensive air showers in the atmosphere, and the detector response at ground level. The muon energy dissipation along the path crossing the geological structure is mod- eled considering the losses due to ionization, and also contributions from radiative Bremßtrahlung, nuclear interactions, and pair production.
    [Show full text]
  • Muon Tomography Algorithms for Nuclear Threat Detection
    Muon Tomography Algorithms for Nuclear Threat Detection Richard Hoch 1, Debasis Mitra 1, Kondo Gnanvo 2, and Marcus Hohlmann 2 1D epartment of Computer Science & 2D epartment of Physics and Space Sciences Florida Institute of Technology, Melbourne, Florida, USA [email protected], {rhoch, hohlmann, kgnanvo}@fit.edu Abstract. In this article on Muon Tomography we report our work on the development of an intelligent pattern detection system for materials with high atomic numbers (Z) for Homeland Security application. Muons are naturally produced in the upper atmosphere by primary cosmic rays and are used as passive probes of a cargo volume. By sensing the incoming and outgoing tracks and measuring the momentum of each muon for a probed volume one may derive the scattering parameters. A statistical algorithm is being used to estimate scattering densities of the material in each unit volume (voxel) of the probed volume. The article describes the algorithm and some results from our simulation experiments. 1. Introduction Nuclear materials that pose a homeland security threat typically have high atomic numbers (Z > 82). It is of vital importance to develop smart, efficient, and inexpensive systems to detect such high­Z materials without opening a container. Muons are produced by primary cosmic rays at the upper atmosphere provide an excellent source as passive probes for discriminating materials with different Z, without extra radiation or incurring any extra cost for the probe generation. Highly penetrating muon tracks may suffer from multiple scatterings by Coulomb Fig. 1. Scattering of a particle interaction with nuclei of atoms on its path. The amount of scattering depends on the charge Z of the corresponding nucleus [3] (Fig.
    [Show full text]
  • Muon Tomography for Imaging and Verification of Spent Fuel
    IAEA-CN-184/9 Muon Tomography for Imaging and Verification of Spent Fuel G. Jonkmans1, V. N. P. Anghel1, C. Jewett, M. Thompson1 1 Atomic Energy of Canada Limited, Chalk River Labs, Chalk River, Canada [email protected] Abstract This paper explores the use of cosmic ray muons to image the content of, and to detect high-Z Special Fissionable Material inside, shielded containers. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high-Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity to perform material accountancy, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy. 1. Introduction Because of their unique ability to penetrate matter, cosmic ray muons can be used to image the interior of structures. Recently, a number of groups have extended the concept of muon radiography to the tracking of individual muons as they enter and exit a structure. Most current efforts have been toward demonstrating the potential for muon tomography to detect the smuggling of Special Nuclear Material (SFM) in cargo. This paper explores the application of muon tomography for nuclear material accountancy of spent fuel inside Dry Storage Containers (DSC) used to store spent CANDU® fuel.
    [Show full text]
  • Imaging the Core of Fukushima Reactor with Muons
    MUON TOMOGRAPHY IMAGING THE CORE OF FUKUSHIMA REACTOR WITH MUONS The 9.0-magnitude earthquake, followed by the vast tsunami on March 11, 2011, caused a nuclear crisis at the Fukushima Daiichi reactors. Damage of the reactor cores attracted worldwide attention to the issue of the fundamental safety of nuclear energy. The Japanese government announced a cold shutdown in December 2011, and began a new phase of cleanup and decommissioning. However, it is difficult to plan the dismantling of the reactors without a used experiments and modeling to show how muon imaging with de- realistic estimate of the extent of the damage to the cores and knowl- tectors external to the reactors can enable damage assessment inside edge of the location of the melted fuel. Access to the reactor buildings Fukushima. Physical Review Letters, AIP Advances, and the Journal of is very limited due to high radiation fields. Los Alamos researchers have Applied Physics have published different aspects of this work. Image from “Los Alamos, Toshiba probing Fukushima with cosmic rays,” Los Alamos National Laboratory YouTube video. Muon imaging offers the potential to image the nuclear reactor cores with- out access to the cores. The method utilizes naturally occurring cosmic-ray muons to image dense objects. There are two types of muon imaging: transmission and scattering. In practical applications, muon transmission imaging often suffers from poor position resolution due to the continuous scattering along the muon path, and from poor signal-to-noise ratio due to the small detection area (typically on the order of 2 m2). In addition, calcu- lating transmission requires precise knowledge the incident muon flux that can be difficult to estimate.
    [Show full text]
  • Muon Geotomography: Selected Case Studies Rsta.Royalsocietypublishing.Org Doug Schouten
    Muon geotomography: selected case studies rsta.royalsocietypublishing.org Doug Schouten CRM Geotomography Technologies, Inc., 4004 Wesbrook Mall, Review Vancouver, Canada DS, 0000-0002-0452-6320 Cite this article: Schouten D. 2018 Muon geotomography: selected case studies. Phil. Muon attenuation in matter can be used to infer the average material density along the path length Trans. R. Soc. A 377: 20180061. of muons underground. By mapping the intensity http://dx.doi.org/10.1098/rsta.2018.0061 of cosmic ray muons with an underground sensor, a radiographic image of the overburden above the Accepted: 12 October 2018 sensor can be derived. Multiple such images can be combined to reconstruct a three-dimensional density model of the subsurface. This article One contribution of 22 to a Theo Murphy summarizes selected case studies in applying muon meeting issue ‘Cosmic-ray muography’. tomography to mineral exploration, which we call muon geotomography. Subject Areas: This article is part of the Theo Murphy meeting geophysics, high energy physics, issue ‘Cosmic-ray muography’. particle physics Keywords: 1. Introduction muon tomography, muon geotomography, geophysics Muon radiography is a means of inferring average material density by measuring the attenuation of muons along a path length through matter. Muon tomography Author for correspondence: uses tomographic methods to derive three-dimensional Doug Schouten density maps from multiple muon radiographic images. e-mail: [email protected] Measurements of the muon intensity attenuation were first used by George [1] to measure the overburden of a railway tunnel, and by Alvarez et al. [2]insearches for hidden chambers within pyramids. More recently, muon radiography has been used in volcanology [3–7], in mineral exploration [8,9] and in various other industrial and security applications as summarized in [10].
    [Show full text]
  • An Abstract of the Dissertation Of
    AN ABSTRACT OF THE DISSERTATION OF Can Liao for the degree of Doctor of Philosophy in Nuclear Engineering presented on May 31, 2018. Title: A Cosmic-ray Muon Tomography System for Safeguarding Dry Storage Casks. Abstract approved: ______________________________________________________ Haori Yang Because of the growth of the nuclear power industry in the United States and the policy to ban reprocessing of commercial spent nuclear fuel, the spent fuel inventory at commercial reactor sites has been increasing. With the Yucca Mountain project on hold, more spent fuel is expected to be stored in dry storage casks (DSC) at the independent spent fuel storage installation (ISFSI) for extended periods of time. These fuel assemblies are practically inaccessible for inspection purposes, as reopening a DSC would require special facilities and be tremendously expensive. There is currently no practical method to verify the content of a DSC once continuity of knowledge is lost, but cosmic ray muon imaging is under development as a method that could meet this need. Imaging with these muons has been demonstrated to be a viable non-destructive assay method for high-Z materials, such as those inside used nuclear fuel assemblies. Most often a gas-based detector system has been used. In this work, we report on a proof-of-concept muon tomography system made out of plastic scintillator and wavelength shifting (WLS) fibers. The prototype muon tomography system was designed, built, assembled and tested for the purpose of monitoring used nuclear fuel content inside dry storage casks. First, the simulation study suggested muon was a promising tool to image dense objects and benchmarked the idea of utilizing the muon image for cask inspection.
    [Show full text]
  • Forward Scattering Effects on Muon Imaging
    Prepared for submission to JINST Forward scattering effects on muon imaging H. Gómez,a;1 D. Gibert,b;c C. Goy,d K. Jourde,e Y. Karyotakis,d S. Katsanevas,a J. Marteau,f M. Rosas-Carbajal,g A. Tonazzo.a aAstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, 75205 Paris Cedex 13, France bOSUR - Géosciences Rennes (CNRS UMR 6118), Université Rennes 1, Rennes, France. cNational Volcano Observatories Service, Institut de Physique du Globe de Paris (CNRS UMR 7154), Paris, France. dLaboratoire d’Annecy de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, Annecy, France eBureau de Recherches Géologiques et Minières (BRGM), Orléans, France. f Institut de Physique Nucléaire de Lyon (IPNL) - Université de Lyon UCBL, Lyon, France gInstitut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, UMR 7154 CNRS, Paris, France. E-mail: [email protected] Abstract: Muon imaging is one of the most promising non-invasive techniques for density struc- ture scanning, specially for large objects reaching the kilometre scale. It has already interesting applications in different fields like geophysics or nuclear safety and has been proposed for some others like engineering or archaeology. One of the approaches of this technique is based on the well-known radiography principle, by reconstructing the incident direction of the detected muons after crossing the studied objects. In this case, muons detected after a previous forward scattering on the object surface represent an irreducible background noise, leading to a bias on the mea- surement and consequently on the reconstruction of the object mean density.
    [Show full text]
  • Imaging a Dry Storage Cask with Cosmic Ray Muons
    Project No. 14-6656 Imaging a Dry Storage Cask with Cosmic Ray Muons Fuel Cycle Research and Development Haori Yang Oregon State University Collaborators University of Tennessee, Knoxville Dan Vega, Federal POC Mike Miller, Technical POC Final Technical Report Project Title: Imaging a Dry Storage Cask with Cosmic Ray Muons Covering Period: October 2014 through December 2017 Date of Report: Mar. 31, 2018 Recipient: Oregon State University B308 Kerr Administration Corvallis, OR 97331 Identification Number: DE-NE0008292 Principal Investigator: Haori Yang, 541-737-7057, [email protected] Co-PI: Jason Hayward, University of Tennessee, Knoxville (UTK); David Chichester, Idaho National Laboratory (INL) Graduate Students: Can Liao, [email protected] Zhengzhi Liu, [email protected] Project Objective: The goal of this project is to build a scaled prototype system for monitoring used nuclear fuel (UNF) dry storage casks (DSCs) through cosmic ray muon imaging. Such a system will have the capability of verifying the content inside a DSC without opening it. Because of the growth of the nuclear power industry in the U.S. and the policy decision to ban reprocessing of commercial UNF, the used fuel inventory at commercial reactor sites has been increasing. Currently, UNF needs to be moved to independent spent fuel storage installations (ISFSIs), as its inventory approaches the limit on capacity of on-site wet storage. Thereafter, the fuel will be placed in shipping containers to be transferred to a final disposal site. The ISFSIs were initially licensed as temporary facilities for ~20-yr periods. Given the cancellation of the Yucca mountain project and no clear path forward, extended dry-cask storage (~100 yr.) at ISFSIs is very likely.
    [Show full text]
  • Creation of a Geant4 Muon Tomography Package for Imaging of Nuclear Fuel in Dry Cask Storage
    Project No. 13-5376 Creation of a Geant4 Muon Tomography Package for Imaging of Nuclear Fuel in Dry Cask Storage Fuel Cycle Research and Development Leeri Tsoukalas Purdue University Dan Vegas, Federal POC Mike Miller, Technical POC PURDUE UNIVERSITY School of Nuclear Engineering 400 Central Drive West Lafayette, IN 47907 FINAL REPORT Project Title: Creation of a Geant4 Muon Tomography Package for Imaging of Nuclear Fuel in Dry Cask Storage (13-5376) Institution: School of Nuclear Engineering, Purdue University Workscope: FC-3 PICSNE Workpackage: NU-13-IN-PU__0301-03 Project Period: December 1, 2013 to November 30, 2015 Principal Investigator: Prof. Lefteri H. Tsoukalas, 765-496-9696, [email protected] West Lafayette, IN March 2016 ii PURDUE UNIVERSITY Document No: School of Nuclear Engineering Document Title: Final Report DOCUMENT REVISION SHEET Revision Description of Date Initials Notes Revision Prepared Reviewed 1 Original Version March 2016 SC LHT For submission to NEUP File Name: NEUP_Project_13-5376_FY2013_Final Report Revision: 1 iii Executive Summary This is the final report of the NEUP project “Creation of a Geant4 Muon Tomography Package for Imaging of Nuclear Fuel in Dry Cask Storage”, DE-NE0000695. The project started on December 1, 2013 and this report covers the period December 1, 2013 through November 30, 2015. The project was successfully completed and this report provides an overview of the main achievements, results and findings throughout the duration of the project. Additional details can be found in the main body of this report and on the individual Quarterly Reports and associated Deliverables of the project, uploaded in PICS-NE.
    [Show full text]
  • Data Analysis and Detector Troubleshooting for the Silicon Muon Scanner
    DOE/NV/03624--0230 FERMILAB-PUB-18-503-E Data Analysis and Detector Troubleshooting for the Silicon Muon Scanner V. Glasser, Cuyamaca College R. Lipton, Fermi National Accelerator Laboratory August %&'( Abstract Muon tomography is the calculation of the density distribution of a material from the probable angles of muon Coulomb scattering in a sampled object. This allows the probing of internal object structures that cannot otherwise be observed. It has many important applications for both national security and other fields, such as archaeology and geology. Its uses range from detecting radioactive material intended for nuclear *eaponry to searching for hidden chambers in the ,gyptian pyramids. In this project *e intend to demonstrate the capability of a tomographic system *hich uses cosmic rays as the muon source and tracks each muon's initial and final trajectories to ascertain information about their scattering pattern. This method can be used to determine the structure or composition of an object, such as testing to see if a nuclear fuel cask is empty or full. /e intend this as an early R&D exploration into the practicality of implementing silicon microstrip sensors in border scans for radioactive contraband, as an alternative to existing drift tube technology. 1. Introduction 2ne of they key advantages to muon tomography is the ability to probe matter at sufficiently accurate resolution *ith ambient particles that are constantly penetrating the sample under normal conditions, exposing it to no additional radiation. /e can use muons present due to cosmic rays to image sam!les *ith no additional muon source necessary [1, 2].
    [Show full text]
  • High-Resolution Computed Muon Tomography
    High-resolution Computed Muon Tomography 2017-12-15 Laboratori Nazionali del Gran Sasso B. Suerfu Outline 1. What is computed tomography? 2. Why muon tomography 3. Advantage of using muon beams 4. Potential applications What is Computed Tomography Tomography : image by section Computed Tomography : application of computer in obtaining a cross section image. CT-scan : using X-ray for medical imaging and diagnostics What is Computed Tomography X-ray scan: only projection CT: 3D reconstruction Tomographic Reconstruction Mathematically: given a 2D scalar function (e.g. density), if it’s integral projection (e.g. intensity loss in X-ray) is known at every direction, is it possible to find out the original scalar function. Plainly: if you scan a suitcase in every orientation, can you find out the shape of the object. Tomographic Reconstruction Answer is yes (obviously) First introduced in 1917 by Johann Radon, known as Radon transform. Later filtered back projection, iterative algorithm and many more proprietary algorithms ● Better algorithm means better precision at lower dosage e.g. Filtered Backprojection FBP in action - 3 back projections FBP in action - 6 back projections FBP in action - 18 back projections Initial Motivation for Muon Tomography 100 keV X-ray: attenuation coefficient ~ 3.5 /cm ○ After 2 cm of Cu, intensity is 0.1% Why Muon Tomography Muon is more penetrating than photons: ● Muons lose roughly 2 MeV per cm of water, ● 100 keV X-ray: attenuation coefficient ~ 3.5 /cm ○ After 2 cm of Cu, intensity is 0.1% Cosmic muon has been used to image Pyramids, volcanoes, nuclear reactors and cargos.
    [Show full text]
  • CNEC Newsletter Issue 4 | January 2018 Cnec.Ncsu.Edu
    Dr. Yousry Azmy, Director Dr. John Mattingly, PI, Chief Scientist Stefani Buster, J.D., Assistant Director CNEC Newsletter Issue 4 | January 2018 cnec.ncsu.edu The Future of Nuclear Nonproliferation During a visit to CNEC, NNSA Program Manager Dr. Victoria Franques sits with students to talk about opportunities and the future of nuclear nonproliferation In 2014 NC State was awarded a five-year, The Consortium for Nonproliferation Enabling $25 million grant by the National Nuclear Security Capabilities (CNEC) was created and comprises Administration’s (NNSA) Office of Defense Nuclear seven partner universities (NC State, Georgia Nonproliferation Research and Development Tech, Kansas State University, NC A&T State to develop the next generation of leaders with University, Purdue University, University of Illinois practical experience in technical fields relevant to at Urbana-Champaign, and University of Michigan) nuclear nonproliferation. NC State was selected and four national laboratories (Los Alamos, Oak by NNSA over 22 other proposals following a Ridge, Pacific Northwest, and Lawrence Livermore competitive process that began in May 2013. National Laboratories). Our Vision Create a preeminent research and education hub dedicated to the development of enabling technologies and technical talent for meeting the present and future grand challenges of nuclear nonproliferation. Our Mission Through an intimate mix of innovative research and development (R&D) and education activities, CNEC will enhance national capabilities in the detection and characterization of special nuclear material (SNM) and facilities processing SNM to enable the U.S. to meet its international nonproliferation goals, as well as to investigate the replacement of radiological sources so that they could not be misappropriated and used in dirty bombs or other deleterious uses.
    [Show full text]