Lower Palaeozoic Stratigraphy of the East Greenland Caledonides

Total Page:16

File Type:pdf, Size:1020Kb

Lower Palaeozoic Stratigraphy of the East Greenland Caledonides Lower Palaeozoic stratigraphy of the East Greenland Caledonides M. Paul Smith, Jan Audun Rasmussen, Steve Robertson, A.K. Higgins and A. Graham Leslie The Lower Palaeozoic stratigraphy of the East Greenland Caledonides, from the fjord region of North-East Greenland northwards to Kronprins Christian Land, is reviewed and a number of new lithostratigraphical units are proposed. The Slottet Formation (new) is a Lower Cambrian quartzite unit, containing Skolithos burrows, that is present in the Målebjerg and Eleonore Sø tectonic windows, in the nunatak region of North-East Greenland. The unit is the source of common and often-reported glacial erratic boulders containing Skolithos that are distributed throughout the fjord region. The Målebjerg Formation (new) overlies the Slottet Formation in the tectonic windows, and comprises limestones and dolostones of assumed Cambrian–Ordo- vician age. The Lower Palaeozoic succession of the fjord region of East Greenland (dominantly limestones and dolostones) is formally placed in the Kong Oscar Fjord Group (new). Amend- ments are proposed for several existing units in the Kronprins Christian Land and Lambert Land areas, where they occur in autochthonous, parautochthonous and allochthonous settings. Keywords: Early Palaeozoic, North-East Greenland, stratigraphy. M.P.S., Lapworth Museum, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK. E-mail: [email protected] J.A.R. & A.K.H., Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark. S.R. (deceased) & A.G.L., British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, UK. The East Greenland Caledonides extend for over 1300 work by the Survey in the Kong Oscar Fjord region km between Scoresby Sund (70°N) and Kronprins (72°–75°N). A number of new Lower Palaeozoic litho- Christian Land (81°30′N), cropping out in an ice-free stratigraphical units are proposed on the basis of this coastal strip of variable width (Fig. 1). In the south, work and amendments are proposed for some exist- the exposed width of the orogen is 300 km, but in the ing units. north this is reduced to less than 100 km. The orogen The Lower Palaeozoic sediments of Kronprins Chris- has been the subject of a series of systematic map- tian Land and Lambert Land (Fig. 2) were deposited ping programmes by the Survey since 1968, supple- on a subtidal to peritidal platform that constituted the menting and revising work by other groups, most not- south-easternmost part of the Franklinian Basin ably Lauge Koch’s long series of geological expedi- (Higgins et al. 1991), and lay at a marked inflexion of tions between 1926 and 1958 (see Haller 1971). This the Laurentian margin where it turns through 90° be- paper documents the key stratigraphical observations tween the present-day E–W-trending coast of North on Lower Palaeozoic rocks made during expeditions Greenland and the N–S-trending coast of East Green- from 1993 to 1995 by the former Geological Survey of land. The stratigraphy erected in the Caledonian fore- Greenland (GGU) to Kronprins Christian Land and land of eastern North Greenland (Peary Land and Lambert Land (78°–82°N), and the 1997–1998 field western Kronprins Christian Land; Peel 1985; Higgins Geological Survey of Denmark and Greenland Bulletin 6, 5–28 © GEUS, 2004 5 GEUS Bulletin 6.pmd 5 10-02-2005, 09:53 POST-CALEDONIAN Peary Land Wandel Sea 82°W Palaeogene basalts Station Nord Palaeogene intrusions Wandel Sea Basin: ▲ Carboniferous–Palaeogene sediments ▲ East Greenland basins: ▲ Carboniferous–Cretaceous sediments ▲ ▲ ▲ ▲ ▲ LATE TO POST-CALEDONIAN ▲ ▲ Kronprins Christian Land KronprinsCentrumsø Christian Land Devonian – continental sediments ▲ thin-skinned thrust belt ▲ (parautochthonous foreland) ▲ Fig. 2 CALEDONIAN OROGENIC BELT ▲ ▲ Lambert Land ▲ Late to post-kinematic granites ▲ Neoproterozoic–Ordovician sediments (East Greenland) BELT ▲ ▲ Neoproterozoic–Silurian sediments (eastern North Greenland) Nørreland window ° 78 N ▲ Palaeo-Mesoproterozoic sediments and basalts (eastern North Greenland) 35°W E Crystalline complexes and sediments C (Archaean–Mesoproterozoic) I ▲ THRUST▲ D CALEDONIAN FORELAND N Dronning ▲ A Neoproterozoic–Silurian sediments Louise ▲ Danmarkshavn L BELT (North Greenland) Land ▲ N I ▲ Palaeo-Mesoproterozoic sediments T S and basalts (eastern North Greenland) U ▲ R Mainly crystalline rocks – H ▲ T Bessel Fjord parautochthonous windows E L ▲ O ▲ Thrust S N Fault/shear zone A I Fig. 8 N O MARGINAL Tectonic zone boundary D E L ▲ A ▲ ▲ THRUST C ▲ Eleonore Sø ▲ Wollaston 74°N window ▲ Forland ▲ ▲ ▲ Hamberg ▲ Gletscher foreland ▲ ▲ Greenland Målebjerg CALEDONIDES window ▲ Charcot ▲ Land Traill Ø ▲ SKINNED window ▲ ▲ ▲ ▲ ▲ ▲ ▲ Jameson Land Fig. 1. Geological map of the East Greenland Caledo- THICK nides, showing location of the foreland windows in Gåseland ▲ S window co the western marginal thrust belt. Modified from ▲ re ▲ s by Sund 100 km Higgins & Leslie (2000). Frames indicate the regions ▲ 25°W 70°N shown at larger scales in Figs 2 and 8. 6 GEUS Bulletin 6.pmd 6 10-02-2005, 09:53 et al. 1991; Smith & Bjerreskov 1994) can, to a signifi- with more scattered outcrops on the plateaus. The cant degree, be applied to the successions farther to discontinuous exposure is disrupted by a series of the east and south within the study area (Figs 2, 3), eastward-dipping thrusts with displacements of sev- although many of the units differ in detail. This re- eral hundred metres to a few kilometres. Correlation gion is the only part of the Franklinian Basin to have of superficially similar Middle Ordovician to Silurian been subsequently affected by the Caledonian oroge- sediments in alternating units of peritidal dolostone ny, and the Lower Palaeozoic units described here and subtidal burrow-mottled limestones required de- occur both in the foreland and in the thin-skinned tailed sedimentary facies analysis. Macrofaunal bio- parautochthonous fold-and-thrust belt beneath the stratigraphy in the field was supplemented by the bio- Vandredalen thrust sheet (Fig. 2; Higgins et al. 2001b). stratigraphic analysis of conodonts, which in almost The Lower Palaeozoic successions of the fjord re- all cases verified the field determinations (Rasmussen gion of the southern parts of North-East Greenland & Smith 2001). Cambrian sediments are restricted to (72°–74°30′N; see Fig. 8) have been the subject of a the sandstones of the Kap Holbæk Formation (see more protracted research effort that extends back to below), scattered representatives of which occur in the 19th century. The Cambrian–Ordovician of the fjord autochthonous, parautochthonous and allochthonous region has become one of the classic reference areas settings. for this stratigraphical interval, but it was only during the 1997–1998 Survey field seasons that the tectonic context was fully elucidated (Higgins et al. 2004a). It is now clear that the Cambrian–Ordovician of the fjord Kap Holbæk Formation region, together with the underlying, Neoproterozoic revised Tillite Group and Eleonore Bay Supergroup, make up the upper part of the highest thrust sheet in the orogen, History. The Kap Holbæk Formation was first docu- which has been transported several hundred kilome- mented by Adams & Cowie (1953) during a geologi- tres from the east-south-east (Higgins & Leslie 2000; cal reconnaissance around the head of Danmark Fjord, Higgins et al. 2004a). Furthermore, notably different and was informally divided into five members. Fränkl developments of Lower Palaeozoic rocks were dis- (1954) demonstrated that the unit was also present in covered cropping out in tectonic windows adjacent to Kronprins Christian Land around Sæfaxi Elv, and Hurst the Inland Ice; the successions within these windows & McKerrow (1985) interpreted it as occurring within are disturbed by Caledonian deformation, and are in- thrust sheets north of Romer Sø. Initial biostratigraph- terpreted as autochthonous to parautochthonous rep- ical determinations (Peel & Vidal 1988) concluded that, resentatives of the foreland (Smith & Robertson 1999a, on the basis of acritarchs, the unit was of latest Vendian b; Higgins et al. 2004a, b, this volume). The latter are (late Ediacaran) age. fully documented for the first time here, and provide Clemmensen & Jepsen (1992) revised the Hagen data critical for interpreting the Lower Palaeozoic evo- Fjord Group of Haller (1961) to encompass a phase of lution of the Iapetus passive margin and its subse- Neoproterozoic shallow marine sedimentation which quent deformation during the Caledonian orogeny. succeeds the Palaeoproterozoic–Mesoproterozoic In- dependence Fjord Group and the Mesoproterozoic Zig- Zag Dal Basalt Formation, and pre-dates Franklinian Basin sedimentation. Since the Kap Holbæk Forma- Kronprins Christian Land tion was thought to be of Vendian age, the formation The Lower Palaeozoic units cropping out over a c. was considered to be representative of the youngest 5000 km2 area in southern Kronprins Christian Land, phase of sedimentation in the Hagen Fjord Group eastern North Greenland (Figs 2, 3), were mapped basin. However, two schemes of possible stratigraphic and documented in 1993–1995 as part of the 1:500 000 correlation could still be used to express the relation- mapping programme carried out by GGU. Within the ship of the Kap Holbæk Formation to the underlying thin-skinned parautochthonous fold-and-thrust belt Fyns Sø Formation, with radically different conse- forming much of this
Recommended publications
  • Soft−Part Preservation in Two Species of the Arthropod Isoxys from the Middle Cambrian Burgess Shale of British Columbia, Canada
    Soft−part preservation in two species of the arthropod Isoxys from the middle Cambrian Burgess Shale of British Columbia, Canada DIEGO C. GARCÍA−BELLIDO, JEAN VANNIER, and DESMOND COLLINS García−Bellido, D.C., Vannier, J., and Collins, D. 2009. Soft−part preservation in two species of the arthropod Isoxys from the middle Cambrian Burgess Shale of British Columbia, Canada. Acta Palaeontologica Polonica 54 (4): 699–712. doi:10.4202/app.2009.0024 More than forty specimens from the middle Cambrian Burgess Shale reveal the detailed anatomy of Isoxys, a worldwide distributed bivalved arthropod represented here by two species, namely Isoxys acutangulus and Isoxys longissimus. I. acutangulus had a non−mineralized headshield with lateral pleural folds (= “valves” of previous authors) that covered the animal’s body almost entirely, large frontal spherical eyes and a pair of uniramous prehensile appendages bearing stout spiny outgrowths along their anterior margins. The 13 following appendages had a uniform biramous design—i.e., a short endopod and a paddle−like exopod fringed with marginal setae with a probable natatory function. The trunk ended with a flap−like telson that protruded beyond the posterior margin of the headshield. The gut of I. acutangulus was tube−like, running from mouth to telson, and was flanked with numerous 3D−preserved bulbous, paired features inter− preted as digestive glands. The appendage design of I. acutangulus indicates that the animal was a swimmer and a visual predator living off−bottom. The general anatomy of Isoxys longissimus was similar to that of I. acutangulus although less information is available on the exact shape of its appendages and visual organs.
    [Show full text]
  • Abstract Volume
    https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E.
    [Show full text]
  • The Extent of the Sirius Passet Lagerstätte (Early Cambrian) of North Greenland
    The extent of the Sirius Passet Lagerstätte (early Cambrian) of North Greenland JOHN S. PEEL & JON R. INESON Ancillary localities for the Sirius Passet biota (early Cambrian; Cambrian Series 2, Stage 3) are described from the im- mediate vicinity of the main locality on the southern side of Sirius Passet, north-western Peary Land, central North Greenland, where slope mudstones of the Transitional Buen Formation abut against the margin of the Portfjeld Forma- tion carbonate platform. Whilst this geological relationship may extend over more than 500 km east–west across North Greenland, known exposures of the sediments yielding the lagerstätte are restricted to a 1 km long window at the south-western end of Sirius Passet. • Keywords: Early Cambrian, Greenland, lagerstätte. PEEL, J.S. & INESON, J.R. The extent of the Sirius Passet Lagerstätte (early Cambrian) of North Greenland. Bulletin of Geosciences 86(3), 535–543 (4 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received March 24, 2011; accepted in revised form July 8, 2011; published online July 28, 2011; issued September 30, 2011. John S. Peel, Department of Earth Sciences (Palaeobiology), Uppsala University, Villavägen 16, SE-75 236 Uppsala, Sweden; [email protected] • Jon R. Ineson, Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark; [email protected] Almost all of the fossils described from the early Cambrian The first fragmentary fossils from the Sirius Passet Sirius Passet Lagerstätte of northern Peary Land, North Lagerstätte (GGU collection 313035) were collected by Greenland, were collected from a single, west-facing talus A.K.
    [Show full text]
  • Th TRILO the Back to the Past Museum Guide to TRILO BITES
    With regard to human interest in fossils, trilobites may rank second only to dinosaurs. Having studied trilobites most of my life, the English version of The Back to the Past Museum Guide to TRILOBITES by Enrico Bonino and Carlo Kier is a pleasant treat. I am captivated by the abundant color images of more than 600 diverse species of trilobites, mostly from the authors’ own collections. Carlo Kier The Back to the Past Museum Guide to Specimens amply represent famous trilobite localities around the world and typify forms from most of the Enrico Bonino Enrico 250-million-year history of trilobites. Numerous specimens are masterpieces of modern professional preparation. Richard A. Robison Professor Emeritus University of Kansas TRILOBITES Enrico Bonino was born in the Province of Bergamo in 1966 and received his degree in Geology from the Depart- ment of Earth Sciences at the University of Genoa. He currently lives in Belgium where he works as a cartographer specialized in the use of satellite imaging and geographic information systems (GIS). His proficiency in the use of digital-image processing, a healthy dose of artistic talent, and a good knowledge of desktop publishing software have provided him with the skills he needed to create graphics, including dozens of posters and illustrations, for all of the displays at the Back to the Past Museum in Cancún. In addition to his passion for trilobites, Enrico is particularly inter- TRILOBITES ested in the life forms that developed during the Precambrian. Carlo Kier was born in Milan in 1961. He holds a degree in law and is currently the director of the Azul Hotel chain.
    [Show full text]
  • New Palaeoscolecidan Worms from the Lower Cambrian: Sirius Passet, Latham Shale and Kinzers Shale
    New palaeoscolecidan worms from the Lower Cambrian: Sirius Passet, Latham Shale and Kinzers Shale SIMON CONWAY MORRIS and JOHN S. PEEL Conway Morris, S. and Peel, J.S. 2010. New palaeoscolecidan worms from the Lower Cambrian: Sirius Passet, Latham Shale and Kinzers Shale. Acta Palaeontologica Polonica 55 (1): 141–156. Palaeoscolecidan worms are an important component of many Lower Palaeozoic marine assemblages, with notable oc− currences in a number of Burgess Shale−type Fossil−Lagerstätten. In addition to material from the lower Cambrian Kinzers Formation and Latham Shale, we also describe two new palaeoscolecidan taxa from the lower Cambrian Sirius Passet Fossil−Lagerstätte of North Greenland: Chalazoscolex pharkus gen. et sp. nov and Xystoscolex boreogyrus gen. et sp. nov. These palaeoscolecidans appear to be the oldest known (Cambrian Series 2, Stage 3) soft−bodied examples, being somewhat older than the diverse assemblages from the Chengjiang Fossil−Lagerstätte of China. In the Sirius Passet taxa the body is composed of a spinose introvert (or proboscis), trunk with ornamentation that includes regions bearing cuticu− lar ridges and sclerites, and a caudal zone with prominent circles of sclerites. The taxa are evidently quite closely related; generic differentiation is based on degree of trunk ornamentation, details of introvert structure and nature of the caudal re− gion. The worms were probably infaunal or semi−epifaunal; gut contents suggest that at least X. boreogyrus may have preyed on the arthropod Isoxys. Comparison with other palaeoscolecidans is relatively straightforward in terms of compa− rable examples in other Burgess Shale−type occurrences, but is much more tenuous with respect to the important record of isolated sclerites.
    [Show full text]
  • Buenellus Chilhoweensis N. Sp. from the Murray Shale (Lower Cambrian Chilhowee Group) of Tennessee, the Oldest Known Trilobite from the Iapetan Margin of Laurentia
    Journal of Paleontology, 92(3), 2018, p. 442–458 Copyright © 2018, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/18/0088-0906 doi: 10.1017/jpa.2017.155 Buenellus chilhoweensis n. sp. from the Murray Shale (lower Cambrian Chilhowee Group) of Tennessee, the oldest known trilobite from the Iapetan margin of Laurentia Mark Webster,1 and Steven J. Hageman2 1Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 〈[email protected]〉 2Department of Geology, Appalachian State University, Boone, North Carolina 28608, USA 〈[email protected]〉 Abstract.—The Ediacaran to lower Cambrian Chilhowee Group of the southern and central Appalachians records the rift-to-drift transition of the newly formed Iapetan margin of Laurentia. Body fossils are rare within the Chilhowee Group, and correlations are based almost exclusively on lithological similarities. A critical review of previous work highlights the relatively weak biostratigraphic and radiometric age constraints on the various units within the succession. Herein, we document a newly discovered fossil-bearing locality within the Murray Shale (upper Chilhowee Group) on Chilhowee Mountain, eastern Tennessee, and formally describe a nevadioid trilobite, Buenellus chilhoweensis n. sp., from that site. This trilobite indicates that the Murray Shale is of Montezuman age (provisional Cambrian Stage 3), which is older than the Dyeran (provisional late Stage 3 to early Stage 4) age suggested by the historical (mis)identification of “Olenellus sp.” from within the unit as reported by workers more than a century ago.
    [Show full text]
  • A Problematical Trilobite from the Lower Cambrian of Freuchen Land, Central North Greenland
    A problematical trilobite from the Lower Cambrian of Freuchen Land, central North Greenland Philip D. Lane and Adrian W. A. Rushton A single specimen of a remarkable trilobite is described from the Early Cambrian Buen Formation of north-east Freuchen Land, central North Greenland. It is re­ ferred with doubt to Alacephalus Repina, 1960, as a new species A? davisi sp. nov. It possibly lacked eyes, which makes it one of, if not the, earliest non-agnostoid trilobite with this adaptation. Its thoracic segments have a unique morphology. In some respects the morphology resembles that of various trilobites adapted to low-energy benthic environments of low oxygenation; such trilobites tend to be widely distrib­ uted, and in agreement with this Alacephalus appears to be interprovincial. P. D. L., Department ofGeology, Vniversity ofKeele, Keele, Staffordshire ST5 5BG, V.K. A. W. A. R., British Geological Survey, Keyworth, Nottingham NG12 5GG, U.K. The trilobite described below was collected by Neil C. olenellid trilobite Buenellus higginsi Blaker, 1988 (Fam- ~ Davis from laminated, locally bioturbated, mudstones ily Nevadiidae) is associated with an abundant soft- in north-east Freuchen Land (Fig. l; Geological Survey bodied fauna (Conway Morris et al.. 1987; Conway of Greenland collection 319544) which are estimated to Morris & Peel, 1990; Peel, 1990), together with large be not more than 5 m from the top of the Buen Forma­ articulated sponges such as the demosponge Choia hin­ tion. This formation has been interpreted as a silic­ dei Rigby, 1986; the same kinds of sponges are associ­ ic1astic shelf deposit forming part of the sequence on the ated with the new trilobite in GGU collection 319544.
    [Show full text]
  • From the Franconian Forest, Germany, with a Review of the Bradoriids Described from West Gondwana and a Revision of Material from Baltica
    PalZ https://doi.org/10.1007/s12542-019-00448-z RESEARCH PAPER Middle Cambrian Bradoriida (Arthropoda) from the Franconian Forest, Germany, with a review of the bradoriids described from West Gondwana and a revision of material from Baltica Michael Streng1 · Gerd Geyer2 Received: 20 April 2018 / Accepted: 5 January 2019 © The Author(s) 2019 Abstract Bradoriid arthropods (class Bradoriida) are described for the frst time from the lower–middle Cambrian boundary interval (regional Agdzian Stage) of the Franconian Forest in eastern Bavaria, Germany. The specimens originate from the Tan- nenknock and Triebenreuth formations, which are part of a shallow marine succession deposited at the margin of West Gondwana. Five diferent forms have been distinguished, Indiana af. dermatoides (Walcott), Indiana sp., Indota? sp., Pseudobeyrichona monile sp. nov., and an undetermined svealutid, all of which belong to families that have previously been reported from and are typical of West Gondwana. However, at the generic level, all taxa are new for the region. Indiana is typical of shallow marine environments. So far it has been reported from Laurentia, Avalonia, and Baltica, and is considered to characterize the paleogeographic vicinity of Cambrian continents. Pseudobeyrichona has previously only been recorded from South China, and its new occurrence corroborates previous documentation of taxa from South China in northern West Gondwana. The presence of Indiana as a typical “western” taxon and Pseudobeyrichona among other typical “eastern taxa” confrms the unique biogeographical position of West Gondwana. The poorly known Indiana anderssoni (Wiman) and Indiana minima Wiman from the late early Cambrian of Scandinavia have been restudied in order to re-evaluate the two species and to refne the defnition of Indiana.
    [Show full text]
  • Lower Cambrian Trace Fossils from the Buen Formation of Central North Greenland: Preliminary Observations Ian D
    Lower Cambrian trace fossils from the Buen Formation of central North Greenland: preliminary observations Ian D. Bryant and Ran K. Pickerill The trace fossils Cruziana cf. C. stromnessi (Trewin, 1976), Curvolithus Fritsch, 1908, Hormosiroidea Schaffer, 1928, Monomorphichnus cf. M. bilinearis Crimes, 1970, Monomorphichnus lineatus Crimes et al., 1977, cf. Palaeobullia Gotzinger & Becker, 1932, Palaeophycus tubularis Hall, 1847, Phycodes pedum Seilacher, 1955, Psam­ michnites Toreli, 1870, Rusophycus Hall, 1852, Skolithos Haldeman, 1840 and cf. Zoophycos Massalongo, 1855 are recorded and briefly described from the Lower Cambrian Buen Formation, central North Greenland. Interbedded sandstones, silt­ stones and shales of the Buen Formation were deposited in a tide and storm­ dominated shallow marine shelf environment. Ichnofaunal diversity is low in mono­ lithologic cross-bedded sandstones, which characterise the basal portion of the se­ quence, and considerably higher in heterolithologic sandstones, siltstones and shales, which occur higher in the sequence. I. D. B., Kon.lShell Exploratie Produktie Laboratorium, Postbus 60, 2280 AB Rij­ swijk (ZH), Nederland. Present address: Shell, BP & Todd ail Services Ltd., Private Bag, New Plymouth, New Zealand. R. K. P., Department of Geology, University ofNew Brunswick, Fredericton, N.B., Canada, E3B 5A3. Seilacher (1956) was the first to recognise that trace This paper briefly describes aseleetion of trace fossils fossils could provide an important tool in correlating collected by I. D. B., as part of field work carried out by sparsely fossiliferous Precambrian to Lower Cambrian the Geological Survey of Greenland in 1984, from the sequences and potentially playan important role in the Buen Formation (middle to late Early Cambrian) ex­ establishment of the Precambrian-Cambrian boundary posed in the land area south of Nares Land, central on a global basis.
    [Show full text]
  • Bulletin of the Geological Society of Denmark, Vol. 20/3 Pp. 197-239
    THE NORTH GREENLAND FOLD BELT AND ENVIRONS PETER ROBERT DAWES DAWES, P. R.: The North Greenland fold belt and environs. Bull. geol. Soc. Denmark, vol. 20, pp. 197-239- Copenhagen, January, 6th, 1971. A review of our present knowledge of the North Greenland fold belt and environs is presented. Precambrian crystalline basement, which is exposed at places adja- cent to the Inland Ice and can be expected to form larger areas now covered by its northern extremity, is overlain with marked angular unconformity by a Proterozoic to Lower Palaeozoic sedimentary pile. These sediments dip gently northwards forming a platform and hinter- land to the North Greenland fold belt which occupies the extreme northern part of Greenland as a roughly E-W zone of deformation and metamorphism. In Peary Land, where the widest part of the zone occurs, the effects of deformation and metamorphism increase north- wards towards the assumed centre of the erogenic belt. In eastern Peary Land, the folded Lower Palaeozoic sediments are unconformably overlain by strata of. Pennsylvanian, Permian, Triassic and Cretaceous- Tertiary age. This sequence has been affected by Tertiary earth move- ments. Field evidence in Greenland, together with evidence from the Innuitian orogenic system in Arctic Canada, suggests that the main Palaeozoic diastrophism affected the sediments of 'the Greenland part of the Franklinian geosyncline between Late Silurian and Late De- vonian time. Field work since 1965 on both the.folded and platform rocks of the fold belt has led to a reinterpretation
    [Show full text]
  • Newsletter 99 2 Editorial
    The Palaeontology Newsletter Contents 99 Editorial 2 Association Business 3 PalAss Wants You! 15 Become the YouTube face of PalAss 16 Association Meetings 17 News 22 From our correspondents A Palaeontologist Abroad 32 Legends of Rock: Gertrude Elles 35 Mystery Fossil 26 38 The bones of Gaia 39 Stan Wood & the challenge of Wardie 44 Future meetings of other bodies 48 Meeting Reports 53 Grant Reports 76 Book Reviews 99 Palaeontology vol. 61 parts 5 & 6 105–108 Papers in Palaeontology vol. 4 parts 3 & 4 109 Reminder: The deadline for copy for Issue no. 100 is 11th February 2019. On the Web: <http://www.palass.org/> ISSN: 0954-9900 Newsletter 99 2 Editorial This issue sadly sees the last ever news column from Liam Herringshaw, whose tenure is estimated to stretch back as far as the Permian1. He has used this opportunity to explore depictions of palaeontology in British children’s television and his piece is jam-packed with libellous statements about the workings of Council. Speaking of which, our outgoing president Paul Smith gives us his promised Legends of Rock piece on Gertrude Elles, whose name now adorns the newly constituted public engagement prize (replacing the narrower-scoped Golden Trilobite), the first winner(s) of which will be announced at the Annual Meeting in Bristol. Other highlights of the current issue include Jan Zalasiewicz’s piece, which features an athletic Darwin and ponders the distribution of biomass across time and taxa. Tim Smithson, Nick Fraser and Mike Coates tell the story of Stan Wood’s remarkable contribution to Carboniferous vertebrate palaeontology through his many years of collecting at Wardie in Scotland and announce the digital availability of a previously incredibly hard to find publication by Stan2.
    [Show full text]
  • Sophisticated Digestive Systems in Early Arthropods
    ARTICLE Received 19 Jan 2014 | Accepted 12 Mar 2014 | Published 2 May 2014 DOI: 10.1038/ncomms4641 Sophisticated digestive systems in early arthropods Jean Vannier1,*, Jianni Liu2,*, Rudy Lerosey-Aubril1, Jakob Vinther3 & Allison C. Daley4,5 Understanding the way in which animals diversified and radiated during their early evolutionary history remains one of the most captivating of scientific challenges. Integral to this is the ‘Cambrian explosion’, which records the rapid emergence of most animal phyla, and for which the triggering and accelerating factors, whether environmental or biological, are still unclear. Here we describe exceptionally well-preserved complex digestive organs in early arthropods from the early Cambrian of China and Greenland with functional similarities to certain modern crustaceans and trace these structures through the early evolutionary lineage of fossil arthropods. These digestive structures are assumed to have allowed for more efficient digestion and metabolism, promoting carnivory and macrophagy in early arthropods via predation or scavenging. This key innovation may have been of critical importance in the radiation and ecological success of Arthropoda, which has been the most diverse and abundant invertebrate phylum since the Cambrian. 1 Universite´ Lyon 1, UMR 5276 du CNRS, Laboratoire de ge´ologie de Lyon: Terre, Plane`tes, Environnement, baˆtiment GEODE, 2, rue Raphae¨l Dubois, Villeurbanne 69622, France. 2 Early Life Institute, State Key Laboratory of Continental Dynamics, Geology Department, Northwest University, Taibai Road 229, Xi’an 710069, China. 3 University of Bristol, Departments of Earth Sciences and Biological Sciences, Woodland Road, Bristol BS8 1UG, UK. 4 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]