Visual Perception of Facial Emotional Expressions During Saccades
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Development of Emotion Recognition from Facial Expressions and Non‐Linguistic Vocalizations During Childhood
1 British Journal of Developmental Psychology (2014) © 2014 The British Psychological Society www.wileyonlinelibrary.com The development of emotion recognition from facial expressions and non-linguistic vocalizations during childhood Georgia Chronaki1,2*, Julie A. Hadwin2, Matthew Garner3, Pierre Maurage4 and Edmund J. S. Sonuga-Barke2,5 1Section of Clinical and Cognitive Neuroscience, School of Psychological Sciences, University of Manchester, UK 2Developmental Brain-Behaviour Laboratory, Psychology, University of Southampton, UK 3Psychology, Faculty of Social & Human Sciences & Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK 4Laboratory for Experimental Psychopathology, Psychological Sciences Research Institute, Catholic University of Louvain, Louvain-la-Neuve, Belgium 5Department of Experimental Clinical and Health Psychology, Ghent University, Belgium Sensitivity to facial and vocal emotion is fundamental to children’s social competence. Previous research has focused on children’s facial emotion recognition, and few studies have investigated non-linguistic vocal emotion processing in childhood. We compared facial and vocal emotion recognition and processing biases in 4- to 11-year-olds and adults. Eighty-eight 4- to 11-year-olds and 21 adults participated. Participants viewed/listened to faces and voices (angry, happy, and sad) at three intensity levels (50%, 75%, and 100%). Non-linguistic tones were used. For each modality, participants completed an emotion identification task. Accuracy and bias for each emotion and modality were compared across 4- to 5-, 6- to 9- and 10- to 11-year-olds and adults. The results showed that children’s emotion recognition improved with age; preschoolers were less accurate than other groups. Facial emotion recognition reached adult levels by 11 years, whereas vocal emotion recognition continued to develop in late childhood. -
Motion Perception of Saccade-Induced Retinal Translation
Motion perception of saccade-induced retinal translation Eric Castet*, Se´ bastien Jeanjean, and Guillaume S. Masson Institut de Neurosciences Physiologiques et Cognitives, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France Edited by Dale Purves, Duke University Medical Center, Durham, NC, and approved September 25, 2002 (received for review June 25, 2002) Active visual perception relies on the ability to interpret correctly to the occurrence of saccades (Fig. 1). Only two percepts were retinal motion signals induced either by moving objects viewed reported across trials; the grating appeared either as static or as with static eyes or by stationary objects viewed with moving eyes. moving against the saccade direction. Observers indicated their A motionless environment is not normally perceived as moving percept by pressing one of two buttons. In all experiments, during saccadic eye movements. It is commonly believed that this observers were encouraged to use a conservative criterion, that phenomenon involves central oculomotor signals that inhibit in- is, to respond ‘‘motion’’ only when the motion percept was trasaccadic visual motion processing. The keystone of this ex- conspicuous. To assess intrasaccadic perception of naı¨ve observ- traretinal theory relies on experimental reports showing that ers (who were not aware that the stimulus was always stationary physically stationary scenes displayed only during saccades, thus on the screen), we first run preliminary sessions in which the producing high retinal velocities, are never perceived as moving observers were not required to report any specific percept. At the but appear as static blurred images. We, however, provide evi- end of each of these preliminary sessions, observers were simply dence that stimuli optimized for high-speed motion detection elicit asked to describe the appearance of the stimuli presented across clear motion perception against saccade direction, thus making the trials. -
Subliminal Afterimages Via Ocular Delayed Luminescence: Transsaccade Stability of the Visual Perception and Color Illusion
ACTIVITAS NERVOSA SUPERIOR Activitas Nervosa Superior 2012, 54, No. 1-2 REVIEW ARTICLE SUBLIMINAL AFTERIMAGES VIA OCULAR DELAYED LUMINESCENCE: TRANSSACCADE STABILITY OF THE VISUAL PERCEPTION AND COLOR ILLUSION István Bókkon1,2 & Ram L.P. Vimal2 1Doctoral School of Pharmaceutical and Pharmacological Sciences, Semmelweis University, Budapest, Hungary 2Vision Research Institute, Lowell, MA, USA Abstract Here, we suggest the existence and possible roles of evanescent nonconscious afterimages in visual saccades and color illusions during normal vision. These suggested functions of subliminal afterimages are based on our previous papers (i) (Bókkon, Vimal et al. 2011, J. Photochem. Photobiol. B) related to visible light induced ocular delayed bioluminescence as a possible origin of negative afterimage and (ii) Wang, Bókkon et al. (Brain Res. 2011)’s experiments that proved the existence of spontaneous and visible light induced delayed ultraweak photon emission from in vitro freshly isolated rat’s whole eye, lens, vitreous humor and retina. We also argue about the existence of rich detailed, subliminal visual short-term memory across saccades in early retinotopic areas. We conclude that if we want to understand the complex visual processes, mere electrical processes are hardly enough for explanations; for that we have to consider the natural photobiophysical processes as elaborated in this article. Key words: Saccades Nonconscious afterimages Ocular delayed bioluminescence Color illusion 1. INTRODUCTION Previously, we presented a common photobiophysical basis for various visual related phenomena such as discrete retinal noise, retinal phosphenes, as well as negative afterimages. These new concepts have been supported by experiments (Wang, Bókkon et al., 2011). They performed the first experimental proof of spontaneous ultraweak biophoton emission and visible light induced delayed ultraweak photon emission from in vitro freshly isolated rat’s whole eye, lens, vitreous humor, and retina. -
Recognising Spontaneous Facial Micro-Expressions
Recognising Spontaneous Facial Micro-expressions Tomas Pfister, Xiaobai Li, Guoying Zhao and Matti Pietik¨ainen Machine Vision Group, Department of Computer Science and Engineering, University of Oulu PO Box 4500, 90014 Oulu, Finland {tpfister,lxiaobai,gyzhao,mkp}@ee.oulu.fi Abstract Facial micro-expressions are rapid involuntary facial ex- pressions which reveal suppressed affect. To the best knowl- edge of the authors, there is no previous work that success- fully recognises spontaneous facial micro-expressions. In this paper we show how a temporal interpolation model together with the first comprehensive spontaneous micro- expression corpus enable us to accurately recognise these very short expressions. We designed an induced emotion Figure 1. An example of a facial micro-expression (top-left) be- suppression experiment to collect the new corpus using a ing interpolated through graph embedding (top-right); the result high-speed camera. The system is the first to recognise from which spatiotemporal local texture descriptors are extracted spontaneous facial micro-expressions and achieves very (bottom-right), enabling recognition with multiple kernel learning. promising results that compare favourably with the human micro-expression detection accuracy. proposed a suitable price. Since the human recognition accuracy is so low, an alternative method for recognising 1. Introduction micro-expressions would be very valuable. Humans are good at recognising full facial expressions The major challenges in recognising micro-expressions which present a rich source of affective information [6]. involve their very short duration and involuntariness. The However, psychological studies [4, 8] have shown that af- short duration means only a very limited number of frames fect also manifests itself as micro-expressions. -
Facial Expression and Emotion Paul Ekman
1992 Award Addresses Facial Expression and Emotion Paul Ekman Cross-cultural research on facial expression and the de- We found evidence of universality in spontaneous velopments of methods to measure facial expression are expressions and in expressions that were deliberately briefly summarized. What has been learned about emo- posed. We postulated display rules—culture-specific pre- tion from this work on the face is then elucidated. Four scriptions about who can show which emotions, to whom, questions about facial expression and emotion are dis- and when—to explain how cultural differences may con- cussed: What information does an expression typically ceal universal in expression, and in an experiment we convey? Can there be emotion without facial expression? showed how that could occur. Can there be a facial expression of emotion without emo- In the last five years, there have been a few challenges tion? How do individuals differ in their facial expressions to the evidence of universals, particularly from anthro- of emotion? pologists (see review by Lutz & White, 1986). There is. however, no quantitative data to support the claim that expressions are culture specific. The accounts are more In 1965 when I began to study facial expression,1 few- anecdotal, without control for the possibility of observer thought there was much to be learned. Goldstein {1981} bias and without evidence of interobserver reliability. pointed out that a number of famous psychologists—F. There have been recent challenges also from psychologists and G. Allport, Brunswik, Hull, Lindzey, Maslow, Os- (J. A. Russell, personal communication, June 1992) who good, Titchner—did only one facial study, which was not study how words are used to judge photographs of facial what earned them their reputations. -
Saccade Generation for a Space-Variant Artificial Retina
Saccade Generation for a Space-Variant Artificial Retina Sumitha Balasuriya and Paul Siebert Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland {sumitha,psiebert}@dcs.gla.ac.uk Abstract Biological and artificial systems that use a space-variant strategy to extract visual information from a scene using a retina face the problem of targeting their sensor so that the central high acuity foveal region inspects salient regions in the scene. At the same time the coarse peripheral region of the retina must extract visual information over a wide field of view to find new interesting locations for future detailed examination with the fovea. This paper describes the saccadic exploration of an image using an artificial retina with a space- variant pseudo-random receptive field tessellation. A space-variant vision hierarchy extracts visual information and accumulates space-variant saliency data to determine the location for the next saccadic fixation. 1. Introduction This paper reports an investigation into a vision architecture that supports machine sensors which resemble the space-variant sampling characteristics found in human retinae. These artificial retinae have a very high acuity in their central or foveal region and have increasingly reduced acuity towards the retina’s periphery. Such a retina will therefore have a wide field of view but only a limited high resolution centre. In a human retina only a tiny fraction of the field of view is sampled with the fovea. Ballistic eye movements called saccades are used to target different scene locations such that we perceive a seamless integrated whole and are rarely consciously aware that our visual system is based on a space-variant sensor. -
The Role of Erg/Vep and Eye Movement Recordings in Children with Ocular Motor Apraxia
THE ROLE OF ERG/VEP AND EYE MOVEMENT RECORDINGS IN CHILDREN WITH OCULAR MOTOR APRAXIA FATIMA S. SHAWKAT, CHRISTOPHER M. HARRIS, DAVID S. I. TAYLOR and ANTHONY KRISS London SUMMARY several reports of OMA or saccade failure occurring Ocular motor apraxia (OMA) is characterised by an congenitally, with no other clinical entity?-5 How intermittent inability to initiate voluntary sacca des, and ever, it can also occur as part of a wider neurological a failure to produce optokinetic and vestibular quick disorder: for example with structural brain abnorm phases. Some patients have no other abnormalities alities, such as agenesis of the corpus callosum6 and (idiopathic OMA), whereas in others it appears vermis hypoplasia;7 with neurodegenerative condi associated with a variety of neurological conditions tions;8 and with acquired neurological disease such as which may affect the sensory visual pathway. Electro posterior fossa tumours,9 ataxia telangiectasia,lO retinograms (ERGs), flash and pattern visual evoked fronto-parietal lesions,l1.l2 occipital cortex lesions,13 potentials (VEPs) and eye movements were assessed in cerebellar and brains tern neoplasm14 and olivoponto 53 children with OMA (age range 17 days to 14 years) cerebellar degeneration. 15.16 The inability to gener to determine their efficacy in helping to distinguish ate saccades often leads to the development of between idiopathic and non-idiopathic cases. Seven patients (13.2%) had idiopathic OMA and the remain compensatory behaviour to shift direction of gaze; ing 46 (86.8%) had other associated clinical conditions. this includes headthrusting, blinking and tilted head All patients had episodes of absent quick phases ('lock posture, which enables the use of vertical eye up') during optokinetic nystagmus (OKN) and/or movements that are usually unaffected. -
Facial Micro-Expression Analysis Jingting Li
Facial Micro-Expression Analysis Jingting Li To cite this version: Jingting Li. Facial Micro-Expression Analysis. Computer Vision and Pattern Recognition [cs.CV]. CentraleSupélec, 2019. English. NNT : 2019CSUP0007. tel-02877766 HAL Id: tel-02877766 https://tel.archives-ouvertes.fr/tel-02877766 Submitted on 22 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE CENTRALESUPELEC COMUE UNIVERSITE BRETAGNE LOIRE ECOLE DOCTORALE N° 601 Mathématiques et Sciences et Technologies de l'Information et de la Communication Spécialité : Signal, Image, Vision Par « Jingting LI » « Facial Micro-Expression Analysis » Thèse présentée et soutenue à « Rennes », le « 02/12/2019 » Unité de recherche : IETR Thèse N° : 2019CSUP0007 Rapporteurs avant soutenance : Composition du Jury : Olivier ALATA Professeur, Université Jean Monnet, Président / Rapporteur Saint-Etienne Olivier ALATA Professeur, Fan YANG-SONG Professeur, Université de Bourgogne, Université Jean Monnet, Dijon Saint-Etienne Rapporteuse Fan YANG-SONG Professeur, Université de Bourgogne, -
The Effect of Eye Movements and Blinks on Afterimage Appearance and Duration
Journal of Vision (2015) 15(3):20, 1–15 http://www.journalofvision.org/content/15/3/20 1 The effect of eye movements and blinks on afterimage appearance and duration School of Psychology, Cardiff University, # Georgina Powell Cardiff, Wales, UK $ School of Psychology, Cardiff University, # Petroc Sumner Cardiff, Wales, UK $ Lyon Neuroscience Research Center, # Aline Bompas Centre Hospitalier Vinatier, Bron, Cedex, France $ The question of whether eye movements influence argued that afterimage signals are inherently ambigu- afterimage perception has been asked since the 18th ous, and this could explain why their visibility is century, and yet there is surprisingly little consensus on influenced by cues, such as surrounding luminance how robust these effects are and why they occur. The edges, more than are real stimuli (Powell, Bompas, & number of historical theories aiming to explain the Sumner, 2012). Helmholtz (1962) identified another cue effects are more numerous than clear experimental that is important to take into account when conducting demonstrations of such effects. We provide a clearer afterimage experiments: characterization of when eye movements and blinks do or do not affect afterimages with the aim to distinguish For obtaining really beautiful positive after- between historical theories and integrate them with a images, the following additional rules should be modern understanding of perception. We found neither saccades nor pursuit reduced strong afterimage observed. Both before and after they are devel- duration, and blinks actually increased afterimage oped, any movement of the eye or any sudden duration when tested in the light. However, for weak movement of the body must be carefully avoided, afterimages, we found saccades reduced duration, and because under such circumstances they invariably blinks and pursuit eye movements did not. -
How the Brain Moves Your Eyes About
C. Casanova and M. Ptito (Eds.) Progress in Brain Research, Vol. 134 2001 Elsevier Science B.V. All rights reserved CHAPTER 9 Look and see: how the brain moves your eyes about Peter H. Schiller Ł and Edward J. Tehovnik Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Abstract: Two major cortical streams are involved in the generation of visually guided saccadic eye movements: the anterior and the posterior. The anterior stream from the frontal and medial eye fields has direct access to brainstem oculomotor centers. The posterior stream from the occipital cortices reaches brainstem oculomotor centers through the superior colliculus. The parietal cortex interconnects with both streams. Our findings suggest that the posterior stream plays an unique role in the execution of rapid, short latency eye movements called ‘express saccades’. Both the anterior and posterior streams play a role in the selection of targets to which saccades are to be generated, but do so in different ways. Areas V1, V2 and LIP contribute to decisions involved in where to look as well as where not to look. In addition, area LIP is involved in decisions about how long to maintain fixation prior to the execution of a saccade. Area V4 does not appear to be directly involved in eye-movement generation. In the anterior stream, the frontal eye fields, and to a lesser extent the medial eye fields, are involved in the correct execution of saccades subsequent to decisions made about where to look and where not to look. Introduction studied quite a number of brain areas that include V1, V2, V4, the lateral intraparietal sulcus (LIP), the Our eyes are on the move most of the time during frontal eye fields (FEF), the medial eye fields (MEF), our waking hours. -
Convexity Bias and Perspective Cues in the Reverse-Perspective Illusion
Short Report i-Perception Convexity Bias and January-February 2016: 1–7 ! The Author(s) 2016 DOI: 10.1177/2041669516631698 Perspective Cues in the ipe.sagepub.com Reverse-Perspective Illusion Joshua J. Dobias Department of Psychology and Counseling, Marywood University, Scranton, PA, USA Thomas V. Papathomas Department of Biomedical Engineering and Laboratory of Vision Research, Rutgers University, Piscataway, NJ, USA Vanja M. Vlajnic Department of Statistics, The Pennsylvania State University, University Park, PA, USA Abstract The present experiment was designed to examine the roles of painted linear perspective cues, and the convexity bias that are known to influence human observers’ perception of three-dimensional (3D) objects and scenes. Reverse-perspective stimuli were used to elicit a depth-inversion illusion, in which far points on the stimulus appear to be closer than near points and vice versa, with a 2 (Type of stimulus) Â 2 (Fixation mark position) design. To study perspective, two types of stimuli were used: a version with painted linear perspective cues and a version with blank (unpainted) surfaces. To examine the role of convexity, two locations were used for the fixation mark: either in a locally convex or a locally concave part of each stimulus (painted and unpainted versions). Results indicated that the reverse-perspective illusion was stronger when the stimulus contained strong perspective cues and when observers fixated a locally concave region within the scene. Keywords Three-dimensional shape, reverse perspective, convexity bias, linear perspective, fixation location, visual context Introduction When viewing reverse-perspective stimuli (Wade & Hughes, 1999), painted linear perspective cues can compete with bottom-up monocular (motion parallax, shading, lens accommodation) and binocular (disparity, vergence angle) depth cues, thus creating a Corresponding author: Joshua J. -
Perception of Intra-Saccadic Motion
Chapter 10 Perception of Intra-saccadic Motion Eric Castet Abstract A typical saccadic eye movement lasts about 40 ms. During this short period of time, the image of the stationary world around us rapidly moves on the retina with a complex accelerating and decelerating profile. The reason why this 40 ms retinal motion flow does not elicit motion perception in everyday life is an issue that has received considerable interest. The present chapter first presents a brief history of the main ideas and experiments bearing on this issue since the seventies. Some key experimental paradigms and results in psychophysics are then described in detail. Finally, some suggestions for future investigations, both psychophysical and physiological, are made. A major goal of the chapter is to pinpoint some fundamental confusions that are often encountered in the literature. It is hoped that understanding these confusions will help identify more clearly the theoretical points – among which the role of temporal masking – on which scien- tists strongly disagree. 10.1 Introduction The stationary world around us does not appear to move during saccadic eye move- ments. Early authors already wondered why we are not aware of the activity elicited during the short saccadic period (about 40 ms) in which the image of the world does move on the retina (Dodge 1900, 1905; Holt 1903). This intra-saccadic issue should not be confused with another one usually referred to as the trans-saccadic fusion issue (Deubel et al. 2002). In the latter case, the problem is to understand why the E. Castet (*) Dynamics of Visual Perception and Action, Institut de Neurosciences Cognitives de la Méditerranée, CNRS and Université de la Méditerranée, 31 Chemin Joseph Aiguier, 13402, Marseille, France e-mail: [email protected] U.J.