Archosaur Hip Joint Anatomy and Its Significance in Body Size and Locomotor Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Archosaur Hip Joint Anatomy and Its Significance in Body Size and Locomotor Evolution ARCHOSAUR HIP JOINT ANATOMY AND ITS SIGNIFICANCE IN BODY SIZE AND LOCOMOTOR EVOLUTION HENRY P. TSAI JULY 2015 APPROVAL PAGE The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled ARCHOSAUR HIP JOINT ANATOMY AND ITS SIGNIFICANCE IN BODY SIZE AND LOCOMOTOR EVOLUTION Presented by Henry Tsai, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Casey Holliday Professor Carol Ward Professor Kevin Middleton Professor John Hutchinson Professor Libby Cowgill ACKNOWLEDGEMENTS I would like to acknowledge numerous individuals in aiding the completion of this project. I would like to thank my doctoral thesis committee: Casey Holliday, Carol Ward, Kevin Middleton, John Hutchinson, and Libby Cowgill, for their insightful comments and, as well as numerous suggestions throughout the course of this project. For access to specimens at their respective institution, I would like to thank Bill Mueller and Sankar Chatterjee (Museum of Texas Tech University), Gretchen Gürtler (Mesalands Community College's Dinosaur Museum), Alex Downs (Ruth Hall Museum of Paleontology), William Parker (Paleontological Collection at the Petrified Forest National Park), Robert McCord (Arizona Museum of Natural History), David and Janet Gillette (Museum of Northern Arizona), Kevin Padian (University of California Museum of Paleontology), Joseph Sertich and Logan Ivy (Denver Museum of Nature and Science), Peter Makovicky, William Simpson, and Alan Resetar (Field Museum of Natural History), Scott Williams (Burpee Museum of Natural History), Ruth Elsey (Rockefeller Wildlife Refuge), Yen-nien Cheng (National Museum of Natural Science, Taiwan), Randall Irmis and Carolyn Levitt (Natural History Museum of Utah), Daniel Chure (Dinosaur National Monument), Steve Sroka (Utah Field House of Natural History), Brooks Britt and Rodney Scheetz (Brigham Young University Museum of Paleontology), Luis Chiappe, Maureen Walsh, Gregory Pauly, Neftali Camacho, Kenneth Campbell, and Kimball Garrett (Los Angeles County Museum of Natural History), Oliver Rauhut (Paläontologisches Museum München), Rainer Schoch (Staatliches Museum für Naturkunde Stuttgart), Daniela Schwarz-Wings (Museum für Naturkunde Berlin), Matthew Brown and J. Christopher Sagebiel (Texas Memorial Museum), Daniel ii Brinkman (Yale Peabody Museum), Jessica Cundiff (Museum of Comparative Zoology, Harvard University), Matthew Lamanna and Amy Henrici (Carnegie Museum of Natural History), Diego Pol, José Luis Carballido and Eduardo Ruigómez (Museo Paleontológico Egidio Feruglio), Julia Desojo and Stella Alvarez (Museo Argentino de Ciencias Naturales). Travel funds for museum and institutional visits were provided by the Jurassic Foundation Research Grant, the Doris O. and Samuel P. Welles Research Fund, as well as the University of Missouri Life Science Travel Grant. Additionally, I would like to thank the following individuals for providing digital- and physical specimens used in this project. I thank Heinrich Mallison for providing CT- scan data of Plateosaurus, Bill Parker for providing laser scan data for Coelophysis, Sterling Nesbitt for providing the skeletal cast of Asilisaurus, John Hutchinson for sharing 3D scan data for numerous theropods, Ruth Elsey for providing the ontogenetic sample of Alligator, and Alan Resetar for allowing me the opportunity to dissect a Sphenodon specimen in the Field Museum’s herpetological collection. Discussions with the following individuals contributed to ideas and directions of this project: Ashley Hammond, Kaleb Sellers, Sarah Werning, Rachel Menegaz, Tomasz Owerkowicz, Victoria Ngo, Adam Summers, and Heinrich Mallison. I would like to thank Jimmy C. Lattimer (MU Veterinary Medical Diagnostic Laboratory) and Ashley Szczodroski (MU Veteran’s Hospital Biomolecular Imaging Center) for providing computed tomography services for wet specimens, as well as Kevin Middleton and Jill Harper-Judd for providing extensive help on the phylogenetic comparative analyses part of this project. I thank my cohort of MU Integrative Anatomy students for their constant moral support, as iii well as Johnny Yang, Barbara Williams, and Noelle Nelson for graciously providing me with boarding accommodations and work space during my collection visits. Lastly, I would like to thank my family for continued moral support during my tenure as a graduate student. In particular, I would like to recognize my parents, Steve and Debby Tsai, as well as my grandfather Tony Wu, for fostering my interest in biology and vertebrate paleontology ever since my kindergarten years, and continue to support it as my chosen field of study. This work would not have been possible without their unwavering encouragements. iv Table of Contents LIST OF FIGURES AND ILLUSTRATIONS.................................................................. vi LIST OF TABLES ........................................................................................................... viii ABSTRACT ........................................................................................................................ 1 CHAPTER 1: Introduction: The evolving view of saurischian locomotion ....................... 2 CHAPTER 2: ................................................................................................................... 15 INTRODUCTION ......................................................................................................... 15 MATERIALS AND METHODS .................................................................................. 19 RESULTS...................................................................................................................... 24 DISCUSSION ............................................................................................................... 36 CONCLUSION ............................................................................................................. 52 CHAPTER 3: Articular soft tissue anatomy of the archosaur hip joint: Structural homology and functional implications .............................................................................. 79 INTRODUCTION ......................................................................................................... 79 MATERIALS AND METHODS .................................................................................. 82 RESULTS...................................................................................................................... 86 DISCUSSION ............................................................................................................. 114 CONCLUSION ........................................................................................................... 137 CHAPTER 4: Convergence and disparity in saurischian dinosaur hip joints associated with gigantism ................................................................................................................. 159 INTRODUCTION ....................................................................................................... 159 MATERIALS AND METHODS ................................................................................ 162 RESULTS.................................................................................................................... 171 DISCUSSION ............................................................................................................. 175 CONCLUSION ........................................................................................................... 187 CHAPTER 5: Summary .................................................................................................. 212 LITERATURES CITED ................................................................................................. 215 VITA ............................................................................................................................... 239 v LIST OF FIGURES AND ILLUSTRATIONS Figure 1-1. Simplified phylogeny of Saurischia and its successive diapsid outgroups. Figure 2-1. Evolutionary relationships of the tetrapod epiphyseal region and their anatomical nomenclature. Figure 2-2. Orthogonal reference planes used to describe anatomical structures on the proximal femur of extant archosaurs. Figure 2-3. Schematic representation of hip joint tissues homology in Diapsida. Figure 2-4. Gross morphology of lepidosaur acetabular soft tissues. Figure 2-5. Microstructure of lizard supraacetabular tissues. Figure 2-6. Gross morphology of the crocodylian acetabulum and microstructure of the acetabular labrum. Figure 2-7. Morphology of the Alligator antitrochanter region. Figure 2-8. Gross morphology and microstructure of avian acetabular soft tissues. Figure 2-9. Gross morphology and microstructure of the lizard proximal femoral epiphyseal region. Figure 2-10. Gross morphology and microstructure of the crocodylian proximal femoral epiphyseal region. Figure 2-11. Gross morphology and microstructure of the avian proximal femoral epiphyseal region. Figure 2-12. Irregular rugosities on the growth plate surface (green arrow) are the osteological correlates of thick hyaline cartilage. Figure 2-13. Evolutionary history of the hip joint characters in sauropsids, with emphasis on archosaurs. Figure 3-1. Orthogonal reference planes used to describe articular structures on the proximal femur of Tyrannosaurus, and exemplary theropod. Tissues nomenclature and color schemes are labeled according
Recommended publications
  • The Paleontograph______
    __________The Paleontograph________ A newsletter for those interested in all aspects of Paleontology Volume 5 Issue 1 March, 2016 _________________________________________________________________ From Your Editor Welcome to our latest issue. I hope you enjoyed the holidays. If you are anything like me, you are looking forward to Spring. We've had a mild winter here in CO. Weather is different than the east coast. While the nights are colder, the days are warmer. It's a nice change for me. I finally have my fossil lab up and running and I am spending my days, or part thereof, working off my backlog of fossils. It has been a couple of months since our last issue but Bob has kept writing and so we have an interesting issue for you to enjoy. The Paleontograph was created in 2012 to continue what was originally the newsletter of The New Jersey Paleontological Society. The Paleontograph publishes articles, book reviews, personal accounts, and anything else that relates to Paleontology and fossils. Feel free to submit both technical and non-technical work. We try to appeal to a wide range of people interested in fossils. Articles about localities, specific types of fossils, fossil preparation, shows or events, museum displays, field trips, websites are all welcome. This newsletter is meant to be one by and for the readers. Issues will come out when there is enough content to fill an issue. I encourage all to submit contributions. It will be interesting, informative and fun to read. It can become whatever the readers and contributors want it to be, so it will be a work in progress.
    [Show full text]
  • The Braincase, Brain and Palaeobiology of the Basal Sauropodomorph Dinosaur Thecodontosaurus Antiquus
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2020, XX, 1–22. With 10 figures. Downloaded from https://academic.oup.com/zoolinnean/advance-article/doi/10.1093/zoolinnean/zlaa157/6032720 by University of Bristol Library user on 14 December 2020 The braincase, brain and palaeobiology of the basal sauropodomorph dinosaur Thecodontosaurus antiquus ANTONIO BALLELL1,*, J. LOGAN KING1, JAMES M. NEENAN2, EMILY J. RAYFIELD1 and MICHAEL J. BENTON1 1School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK 2Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK Received 27 May 2020; revised 15 October 2020; accepted for publication 26 October 2020 Sauropodomorph dinosaurs underwent drastic changes in their anatomy and ecology throughout their evolution. The Late Triassic Thecodontosaurus antiquus occupies a basal position within Sauropodomorpha, being a key taxon for documenting how those morphofunctional transitions occurred. Here, we redescribe the braincase osteology and reconstruct the neuroanatomy of Thecodontosaurus, based on computed tomography data. The braincase of Thecodontosaurus shares the presence of medial basioccipital components of the basal tubera and a U-shaped basioccipital–parabasisphenoid suture with other basal sauropodomorphs and shows a distinct combination of characters: a straight outline of the braincase floor, an undivided metotic foramen, an unossified gap, large floccular fossae, basipterygoid processes perpendicular to the cultriform process in lateral view and a rhomboid foramen magnum. We reinterpret these braincase features in the light of new discoveries in dinosaur anatomy. Our endocranial reconstruction reveals important aspects of the palaeobiology of Thecodontosaurus, supporting a bipedal stance and cursorial habits, with adaptations to retain a steady head and gaze while moving.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • The Sauropodomorph Biostratigraphy of the Elliot Formation of Southern Africa: Tracking the Evolution of Sauropodomorpha Across the Triassic–Jurassic Boundary
    Editors' choice The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary BLAIR W. MCPHEE, EMESE M. BORDY, LARA SCISCIO, and JONAH N. CHOINIERE McPhee, B.W., Bordy, E.M., Sciscio, L., and Choiniere, J.N. 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica 62 (3): 441–465. The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other simi- larly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i) synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii) systematically reappraising the strati- graphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought.
    [Show full text]
  • Perinate and Eggs of a Giant Caenagnathid Dinosaur from the Late Cretaceous of Central China
    ARTICLE Received 29 Jul 2016 | Accepted 15 Feb 2017 | Published 9 May 2017 DOI: 10.1038/ncomms14952 OPEN Perinate and eggs of a giant caenagnathid dinosaur from the Late Cretaceous of central China Hanyong Pu1, Darla K. Zelenitsky2, Junchang Lu¨3, Philip J. Currie4, Kenneth Carpenter5,LiXu1, Eva B. Koppelhus4, Songhai Jia1, Le Xiao1, Huali Chuang1, Tianran Li1, Martin Kundra´t6 & Caizhi Shen3 The abundance of dinosaur eggs in Upper Cretaceous strata of Henan Province, China led to the collection and export of countless such fossils. One of these specimens, recently repatriated to China, is a partial clutch of large dinosaur eggs (Macroelongatoolithus) with a closely associated small theropod skeleton. Here we identify the specimen as an embryo and eggs of a new, large caenagnathid oviraptorosaur, Beibeilong sinensis. This specimen is the first known association between skeletal remains and eggs of caenagnathids. Caenagnathids and oviraptorids share similarities in their eggs and clutches, although the eggs of Beibeilong are significantly larger than those of oviraptorids and indicate an adult body size comparable to a gigantic caenagnathid. An abundance of Macroelongatoolithus eggs reported from Asia and North America contrasts with the dearth of giant caenagnathid skeletal remains. Regardless, the large caenagnathid-Macroelongatoolithus association revealed here suggests these dinosaurs were relatively common during the early Late Cretaceous. 1 Henan Geological Museum, Zhengzhou 450016, China. 2 Department of Geoscience, University of Calgary, Calgary, Alberta, Canada T2N 1N4. 3 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China. 4 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9. 5 Prehistoric Museum, Utah State University, 155 East Main Street, Price, Utah 84501, USA.
    [Show full text]
  • Titanosauriform Teeth from the Cretaceous of Japan
    “main” — 2011/2/10 — 15:59 — page 247 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 247-265 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Titanosauriform teeth from the Cretaceous of Japan HARUO SAEGUSA1 and YUKIMITSU TOMIDA2 1Museum of Nature and Human Activities, Hyogo, Yayoigaoka 6, Sanda, 669-1546, Japan 2National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan Manuscript received on October 25, 2010; accepted for publication on January 7, 2011 ABSTRACT Sauropod teeth from six localities in Japan were reexamined. Basal titanosauriforms were present in Japan during the Early Cretaceous before Aptian, and there is the possibility that the Brachiosauridae may have been included. Basal titanosauriforms with peg-like teeth were present during the “mid” Cretaceous, while the Titanosauria with peg-like teeth was present during the middle of Late Cretaceous. Recent excavations of Cretaceous sauropods in Asia showed that multiple lineages of sauropods lived throughout the Cretaceous in Asia. Japanese fossil records of sauropods are conformable with this hypothesis. Key words: Sauropod, Titanosauriforms, tooth, Cretaceous, Japan. INTRODUCTION humerus from the Upper Cretaceous Miyako Group at Moshi, Iwaizumi Town, Iwate Pref. (Hasegawa et al. Although more than twenty four dinosaur fossil local- 1991), all other localities provided fossil teeth (Tomida ities have been known in Japan (Azuma and Tomida et al. 2001, Tomida and Tsumura 2006, Saegusa et al. 1998, Kobayashi et al. 2006, Saegusa et al. 2008, Ohara 2008, Azuma and Shibata 2010).
    [Show full text]
  • Boletim Informativo Da SBP Ano 35, N° 73, 2020 · ISSN 1807-2550 PALEO 2019
    Boletim Informativo da SBP Ano 35, n° 73, 2020 · ISSN 1807-2550 PALEO 2019 RELATOS E RESUMOS SOCIEDADE BRASILEIRA DE PALEONTOLOGIA Presidente: Dr. Renato Pirani Ghilardi (UNESP/Bauru) Vice-Presidente: Dr. Rodrigo Miloni Santucci (UnB) 1ª Secretária: Dra. SoniaMaria Oliveira Agostinho da Silva (UFPE) 2º Secretário: Me. Victor Rodrigues Ribeiro (UNESP/Bauru) 1º Tesoureiro: Me. Marcos César Bissaro Júnior (USP/Ribeirão Preto) 2º Tesoureiro: Dr. Hermínio Ismael de Araújo Junior (UERJ) Diretor de Publicações: Dr. Sandro Marcelo Scheffler (UFRJ) P a l e o n t o l o g i a e m D e s t a q u e Boletim Informativo da Sociedade Brasileira de Paleontologia Ano 35, n° 73, dezembro/2020 · ISSN 1807-2550 Web: http://www.sbpbrasil.org/, Editores: Sandro Marcelo Scheffler, Maria Izabel Lima de Manes. Agradecimentos: Aos organizadores dos eventos científicos. Capa: Afloramento com pegadas de terópodas nas margens do rio Nioaque, Mato Grosso do Sul, durante trabalho de campo. Foto: Rafael Costa da Silva. 1. Paleontologia 2. Paleobiologia 3. Geociências Distribuído sob a Licença de Atribuição Creative Commons. EDITORIAL As Paleos acontecem anualmente e são encontros promovidos pela Sociedade Brasileira de Paleontologia com o objetivo de integrar estudantes, pesquisadores, profissionais e entusiastas da paleontologia. Por serem reuniões regionais, contribuem para o desenvolvimento de pesquisas através das trocas estabelecidas entre os participantes, além de unir diferentes instituições em prol da ciência. O Boletim Informativo da Sociedade Brasileira de Paleontologia traz todo ano uma compilação dos resumos apresentados nas Paleos como forma de registrar e conservar a memória desses eventos que são tão importantes para a ciência brasileira.
    [Show full text]
  • Note on the Sauropod and Theropod Dinosaurs from the Upper Cretaceous of Madagascar*
    EXTRACT FROM THE BULLETIN DE LA SOCIÉTÉ GÉOLOGIQUE DE FRANCE 3rd series, volume XXIV, page 176, 1896. NOTE ON THE SAUROPOD AND THEROPOD DINOSAURS FROM THE UPPER CRETACEOUS OF MADAGASCAR* by Charles DEPÉRET. (PLATE VI). Translated by Matthew Carrano Department of Anatomical Sciences SUNY at Stony Brook, September 1999 The bones of large dinosaurian reptiles described in this work were brought to me by my good friend, Mr. Dr. Félix Salètes, primary physician for the Madagascar expedition, from the environs of Maevarana, where he was charged with installing a provisional hospital. This locality is situated on the right bank of the eastern arm of the Betsiboka, 46 kilometers south of Majunga, on the northwest coast of the island of Madagascar. Not having the time to occupy himself with paleontological studies, Dr. Salètes charged one of his auxiliary agents, Mr. Landillon, company sergeant-major of the marines, with researching the fossils in the environs of the Maevarana post. Thanks to the zeal and activity of Mr. Landillon, who was not afraid to gravely expose his health in these researches, I have been able to receive the precious bones of terrestrial reptiles that are the object of this note, along with an important series of fossil marine shells. I eagerly seize the opportunity here to thank Mr. Landillon for his important shipment and for the very precise geological data which he communicated to me concerning the environs of Maevarana, and of which I will now give a short sketch. 1st. Geology of Maevarana and placement of the localities. * Original reference: Depéret, C.
    [Show full text]
  • Massospondylus Carinatus Owen 1854 (Dinosauria: Sauropodomorpha) from the Lower Jurassic of South Africa: Proposed Conservation of Usage by Designation of a Neotype
    Massospondylus carinatus Owen 1854 (Dinosauria: Sauropodomorpha) from the Lower Jurassic of South Africa: Proposed conservation of usage by designation of a neotype Adam M. Yates1* & Paul M. Barrett2 1Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa 2Department of Palaeontology, The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K. Received 17 February 2010. Accepted 12 November 2010 The purpose of this article is to preserve the usage of the binomen Massospondylus carinatus by designating a neotype specimen. Massospondylus is the most abundant basal sauropodomorph dinosaur from the Early Jurassic strata of southern Africa. This taxon forms the basis for an extensive palaeobiological literature and is the eponym of Massospondylidae and the nominal taxon of a biostratigraphical unit in current usage, the ‘Massospondylus Range Zone’. The syntype series of M. carinatus (five disarticulated and broken vertebrae) was destroyed during World War II, but plaster casts and illustrations of the material survive. Nonetheless, these materials cannot act as type material for this taxon under the rules of the ICZN Code. In order to avoid nomenclatural instability, we hereby designate BP/1/4934 (a skull and largely complete postcranial skeleton) as the neotype of Massospondylus carinatus. Keywords: Dinosauria, Sauropodomorpha, Massospondylidae, Massospondylus, Massospondylus carinatus, neotype, South Africa, upper Elliot Formation, Early Jurassic. INTRODUCTION same taxon, possibly even the same individual, as at least Richard Owen described and named Massospondylus some of the syntype series of Massospondylus carinatus. carinatus (1854, p. 97) with carinatus as the type species of Their initial separation from Massospondylus carinatus the genus by monotypy.
    [Show full text]
  • The Anatomy and Phylogenetic Relationships of Antetonitrus Ingenipes (Sauropodiformes, Dinosauria): Implications for the Origins of Sauropoda
    THE ANATOMY AND PHYLOGENETIC RELATIONSHIPS OF ANTETONITRUS INGENIPES (SAUROPODIFORMES, DINOSAURIA): IMPLICATIONS FOR THE ORIGINS OF SAUROPODA Blair McPhee A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2013 i ii ABSTRACT A thorough description and cladistic analysis of the Antetonitrus ingenipes type material sheds further light on the stepwise acquisition of sauropodan traits just prior to the Triassic/Jurassic boundary. Although the forelimb of Antetonitrus and other closely related sauropododomorph taxa retains the plesiomorphic morphology typical of a mobile grasping structure, the changes in the weight-bearing dynamics of both the musculature and the architecture of the hindlimb document the progressive shift towards a sauropodan form of graviportal locomotion. Nonetheless, the presence of hypertrophied muscle attachment sites in Antetonitrus suggests the retention of an intermediary form of facultative bipedality. The term Sauropodiformes is adopted here and given a novel definition intended to capture those transitional sauropodomorph taxa occupying a contiguous position on the pectinate line towards Sauropoda. The early record of sauropod diversification and evolution is re- examined in light of the paraphyletic consensus that has emerged regarding the ‘Prosauropoda’ in recent years. iii ACKNOWLEDGEMENTS First, I would like to express sincere gratitude to Adam Yates for providing me with the opportunity to do ‘real’ palaeontology, and also for gladly sharing his considerable knowledge on sauropodomorph osteology and phylogenetics. This project would not have been possible without the continued (and continual) support (both emotionally and financially) of my parents, Alf and Glenda McPhee – Thank you.
    [Show full text]
  • Virginia Tidwell, Kenneth Carpenter & Williams Brooks, New
    ORYCTOS, V ol . 2 : 21 - 37, Décembre 1999 NEW SAUROPOD FROM THE LOWER CRETACEOUS OF UTAH, USA Virginia TIDWELL, Kenneth CARPENTER and William BROOKS Department of Earth and Space Sciences, Denver Museum of Natural History, 2001 Colorado Blvd., Denver, CO 80205, USA. Abstract : The sauropod record for the Lower Cretaceous is poor in North America and consists mostly of iso - lated bones. Recently, however, a partial semiarticulated skeleton of a brachiosaurid, Cedarosaurus weiskopfae n.g., n.sp, was recovered from the Yellow Cat Member of the Cedar Mountain Formation, Utah, USA. The humeral leng - th is almost the same as the femur, while the dorsal and caudal vertebrae, and the metacarpal all display characters that identify the specimen as brachiosaurid. The forelimb and caudal vertebrae distinctly set it apart from all cur - rently described genera in that family. A brief review of Early to Middle Cretaceous brachiosaurs sorts through the confusing jumble of taxa that has developed over the years. In North America, most brachiosaurids found in Lower or Middle Cretaceous strata have historically been referred to the genus Pleurocoelus. The review illustrates the need for a reexamination of Pleurocoelus type material, as well as several specimens referred to that genus. Other material previously assigned to Pleurocoelus may yet prove to be the same as Cedarosaurus weiskopfae . Key words: Lower Cretaceous, brachiosaurid, new taxon, South-central United States. INTRODUCTION and several manus and pes elements. Only the proxi - mal end of the femur was recovered from the left side Until recently remains of Cretaceous sauropods and it is likely that all other elements were eroded in North America have been limited to the advanced away.
    [Show full text]
  • Redalyc.Angolatitan Adamastor, a New Sauropod Dinosaur and the First Record from Angola
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil MATEUS, OCTÁVIO; JACOBS, LOUIS L.; SCHULP, ANNE S.; POLCYN, MICHAEL J.; TAVARES, TATIANA S.; BUTA NETO, ANDRÉ; MORAIS, MARIA LUÍSA; ANTUNES, MIGUEL T. Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola Anais da Academia Brasileira de Ciências, vol. 83, núm. 1, marzo, 2011, pp. 221-233 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32717681011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative “main” — 2011/2/10 — 15:47 — page 221 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 221-233 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola , OCTÁVIO MATEUS1 2, LOUIS L. JACOBS3, ANNE S. SCHULP4, MICHAEL J. POLCYN3, TATIANA S. TAVARES5, ANDRÉ BUTA NETO5, MARIA LUÍSA MORAIS5 and MIGUEL T. ANTUNES6 1CICEGe, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal 2Museu da Lourinhã, Rua João Luis de Moura, 2530-157 Lourinhã, Portugal 3Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX, 75275, USA 4Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL6211 KJ Maastricht, The Netherlands 5Geology Department, Universidade Agostinho Neto, Av.
    [Show full text]