Journal of Machine Learning Research 16 (2015) 861-911 Submitted 1/14; Revised 10/14; Published 4/15 A Statistical Perspective on Algorithmic Leveraging Ping Ma
[email protected] Department of Statistics University of Georgia Athens, GA 30602 Michael W. Mahoney
[email protected] International Computer Science Institute and Department of Statistics University of California at Berkeley Berkeley, CA 94720 Bin Yu
[email protected] Department of Statistics University of California at Berkeley Berkeley, CA 94720 Editor: Alexander Rakhlin Abstract One popular method for dealing with large-scale data sets is sampling. For example, by using the empirical statistical leverage scores as an importance sampling distribution, the method of algorithmic leveraging samples and rescales rows/columns of data matrices to reduce the data size before performing computations on the subproblem. This method has been successful in improving computational efficiency of algorithms for matrix problems such as least-squares approximation, least absolute deviations approximation, and low-rank matrix approximation. Existing work has focused on algorithmic issues such as worst-case running times and numerical issues associated with providing high-quality implementations, but none of it addresses statistical aspects of this method. In this paper, we provide a simple yet effective framework to evaluate the statistical properties of algorithmic leveraging in the context of estimating parameters in a linear regression model with a fixed number of predictors. In particular, for several versions of leverage-based sampling, we derive results for the bias and variance, both conditional and unconditional on the observed data. We show that from the statistical perspective of bias and variance, neither leverage-based sampling nor uniform sampling dominates the other.