Lecture 20: Outliers and Influential Points 1 Modified Residuals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review on Outlier/Anomaly Detection in Time Series Data
A review on outlier/anomaly detection in time series data ANE BLÁZQUEZ-GARCÍA and ANGEL CONDE, Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), Spain USUE MORI, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Spain JOSE A. LOZANO, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Spain and Basque Center for Applied Mathematics (BCAM), Spain Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide a structured and comprehensive state-of-the-art on outlier detection techniques in the context of time series. To this end, a taxonomy is presented based on the main aspects that characterize an outlier detection technique. Additional Key Words and Phrases: Outlier detection, anomaly detection, time series, data mining, taxonomy, software 1 INTRODUCTION Recent advances in technology allow us to collect a large amount of data over time in diverse research areas. Observations that have been recorded in an orderly fashion and which are correlated in time constitute a time series. Time series data mining aims to extract all meaningful knowledge from this data, and several mining tasks (e.g., classification, clustering, forecasting, and outlier detection) have been considered in the literature [Esling and Agon 2012; Fu 2011; Ratanamahatana et al. -
Outlier Identification.Pdf
STATGRAPHICS – Rev. 7/6/2009 Outlier Identification Summary The Outlier Identification procedure is designed to help determine whether or not a sample of n numeric observations contains outliers. By “outlier”, we mean an observation that does not come from the same distribution as the rest of the sample. Both graphical methods and formal statistical tests are included. The procedure will also save a column back to the datasheet identifying the outliers in a form that can be used in the Select field on other data input dialog boxes. Sample StatFolio: outlier.sgp Sample Data: The file bodytemp.sgd file contains data describing the body temperature of a sample of n = 130 people. It was obtained from the Journal of Statistical Education Data Archive (www.amstat.org/publications/jse/jse_data_archive.html) and originally appeared in the Journal of the American Medical Association. The first 20 rows of the file are shown below. Temperature Gender Heart Rate 98.4 Male 84 98.4 Male 82 98.2 Female 65 97.8 Female 71 98 Male 78 97.9 Male 72 99 Female 79 98.5 Male 68 98.8 Female 64 98 Male 67 97.4 Male 78 98.8 Male 78 99.5 Male 75 98 Female 73 100.8 Female 77 97.1 Male 75 98 Male 71 98.7 Female 72 98.9 Male 80 99 Male 75 2009 by StatPoint Technologies, Inc. Outlier Identification - 1 STATGRAPHICS – Rev. 7/6/2009 Data Input The data to be analyzed consist of a single numeric column containing n = 2 or more observations. -
A Machine Learning Approach to Outlier Detection and Imputation of Missing Data1
Ninth IFC Conference on “Are post-crisis statistical initiatives completed?” Basel, 30-31 August 2018 A machine learning approach to outlier detection and imputation of missing data1 Nicola Benatti, European Central Bank 1 This paper was prepared for the meeting. The views expressed are those of the authors and do not necessarily reflect the views of the BIS, the IFC or the central banks and other institutions represented at the meeting. A machine learning approach to outlier detection and imputation of missing data Nicola Benatti In the era of ready-to-go analysis of high-dimensional datasets, data quality is essential for economists to guarantee robust results. Traditional techniques for outlier detection tend to exclude the tails of distributions and ignore the data generation processes of specific datasets. At the same time, multiple imputation of missing values is traditionally an iterative process based on linear estimations, implying the use of simplified data generation models. In this paper I propose the use of common machine learning algorithms (i.e. boosted trees, cross validation and cluster analysis) to determine the data generation models of a firm-level dataset in order to detect outliers and impute missing values. Keywords: machine learning, outlier detection, imputation, firm data JEL classification: C81, C55, C53, D22 Contents A machine learning approach to outlier detection and imputation of missing data ... 1 Introduction .............................................................................................................................................. -
Chapter 4: Model Adequacy Checking
Chapter 4: Model Adequacy Checking In this chapter, we discuss some introductory aspect of model adequacy checking, including: • Residual Analysis, • Residual plots, • Detection and treatment of outliers, • The PRESS statistic • Testing for lack of fit. The major assumptions that we have made in regression analysis are: • The relationship between the response Y and the regressors is linear, at least approximately. • The error term ε has zero mean. • The error term ε has constant varianceσ 2 . • The errors are uncorrelated. • The errors are normally distributed. Assumptions 4 and 5 together imply that the errors are independent. Recall that assumption 5 is required for hypothesis testing and interval estimation. Residual Analysis: The residuals , , , have the following important properties: e1 e2 L en (a) The mean of is 0. ei (b) The estimate of population variance computed from the n residuals is: n n 2 2 ∑()ei−e ∑ei ) 2 = i=1 = i=1 = SS Re s = σ n − p n − p n − p MS Re s (c) Since the sum of is zero, they are not independent. However, if the number of ei residuals ( n ) is large relative to the number of parameters ( p ), the dependency effect can be ignored in an analysis of residuals. Standardized Residual: The quantity = ei ,i = 1,2, , n , is called d i L MS Re s standardized residual. The standardized residuals have mean zero and approximately unit variance. A large standardized residual ( > 3 ) potentially indicates an outlier. d i Recall that e = (I − H )Y = (I − H )(X β + ε )= (I − H )ε Therefore, / Var()e = var[]()I − H ε = (I − H )var(ε )(I −H ) = σ 2 ()I − H . -
LSAR: Efficient Leverage Score Sampling Algorithm for the Analysis
LSAR: Efficient Leverage Score Sampling Algorithm for the Analysis of Big Time Series Data Ali Eshragh∗ Fred Roostay Asef Nazariz Michael W. Mahoneyx December 30, 2019 Abstract We apply methods from randomized numerical linear algebra (RandNLA) to de- velop improved algorithms for the analysis of large-scale time series data. We first develop a new fast algorithm to estimate the leverage scores of an autoregressive (AR) model in big data regimes. We show that the accuracy of approximations lies within (1 + O (")) of the true leverage scores with high probability. These theoretical results are subsequently exploited to develop an efficient algorithm, called LSAR, for fitting an appropriate AR model to big time series data. Our proposed algorithm is guaranteed, with high probability, to find the maximum likelihood estimates of the parameters of the underlying true AR model and has a worst case running time that significantly im- proves those of the state-of-the-art alternatives in big data regimes. Empirical results on large-scale synthetic as well as real data highly support the theoretical results and reveal the efficacy of this new approach. 1 Introduction A time series is a collection of random variables indexed according to the order in which they are observed in time. The main objective of time series analysis is to develop a statistical model to forecast the future behavior of the system. At a high level, the main approaches for this include the ones based on considering the data in its original time domain and arXiv:1911.12321v2 [stat.ME] 26 Dec 2019 those arising from analyzing the data in the corresponding frequency domain [31, Chapter 1]. -
Outlier Detection and Influence Diagnostics in Network Meta- Analysis
Outlier detection and influence diagnostics in network meta- analysis Hisashi Noma, PhD* Department of Data Science, The Institute of Statistical Mathematics, Tokyo, Japan ORCID: http://orcid.org/0000-0002-2520-9949 Masahiko Gosho, PhD Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan Ryota Ishii, MS Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan Koji Oba, PhD Interfaculty Initiative in Information Studies, Graduate School of Interdisciplinary Information Studies, The University of Tokyo, Tokyo, Japan Toshi A. Furukawa, MD, PhD Departments of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan *Corresponding author: Hisashi Noma Department of Data Science, The Institute of Statistical Mathematics 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan TEL: +81-50-5533-8440 e-mail: [email protected] Abstract Network meta-analysis has been gaining prominence as an evidence synthesis method that enables the comprehensive synthesis and simultaneous comparison of multiple treatments. In many network meta-analyses, some of the constituent studies may have markedly different characteristics from the others, and may be influential enough to change the overall results. The inclusion of these “outlying” studies might lead to biases, yielding misleading results. In this article, we propose effective methods for detecting outlying and influential studies in a frequentist framework. In particular, we propose suitable influence measures for network meta-analysis models that involve missing outcomes and adjust the degree of freedoms appropriately. We propose three influential measures by a leave-one-trial-out cross-validation scheme: (1) comparison-specific studentized residual, (2) relative change measure for covariance matrix of the comparative effectiveness parameters, (3) relative change measure for heterogeneity covariance matrix. -
Residuals, Part II
Biostatistics 650 Mon, November 5 2001 Residuals, Part II Key terms External Studentization Outliers Added Variable Plot — Partial Regression Plot Partial Residual Plot — Component Plus Residual Plot Key ideas/results ¢ 1. An external estimate of ¡ comes from refitting the model without observation . Amazingly, it has an easy formula: £ ¦!¦ ¦ £¥¤§¦©¨ "# 2. Externally Studentized Residuals $ ¦ ¦©¨ ¦!¦)( £¥¤§¦&% ' Ordinary residuals standardized with £*¤§¦ . Also known as R-Student. 3. Residual Taxonomy Names Definition Distribution ¦!¦ ¦+¨-,¥¦ ,0¦ 1 Ordinary ¡ 5 /. &243 ¦768¤§¦©¨ ¦ ¦!¦ 1 ¦!¦ PRESS ¡ &243 9' 5 $ Studentized ¦©¨ ¦ £ ¦!¦ ¤0> % = Internally Studentized : ;<; $ $ Externally Studentized ¦+¨ ¦ £?¤§¦ ¦!¦ ¤0>¤A@ % R-Student = 4. Outliers are unusually large observations, due to an unmodeled shift or an (unmodeled) increase in variance. 5. Outliers are not necessarily bad points; they simply are not consistent with your model. They may posses valuable information about the inadequacies of your model. 1 PRESS Residuals & Studentized Residuals Recall that the PRESS residual has a easy computation form ¦ ¦©¨ PRESS ¦!¦ ( ¦!¦ It’s easy to show that this has variance ¡ , and hence a standardized PRESS residual is 9 ¦ ¦ ¦!¦ ¦ PRESS ¨ ¨ ¨ ¦ : £ ¦!¦ £ ¦!¦ £ ¦ ¦ % % % ' When we standardize a PRESS residual we get the studentized residual! This is very informa- ,¥¦ ¦ tive. We understand the PRESS residual to be the residual at ¦ if we had omitted from the 3 model. However, after adjusting for it’s variance, we get the same thing as a studentized residual. Hence the standardized residual can be interpreted as a standardized PRESS residual. Internal vs External Studentization ,*¦ ¦ The PRESS residuals remove the impact of point ¦ on the fit at . But the studentized 3 ¢ ¦ ¨ ¦ £?% ¦!¦ £ residual : can be corrupted by point by way of ; a large outlier will inflate the residual mean square, and hence £ . -
Chapter 39 Fit Analyses
Chapter 39 Fit Analyses Chapter Table of Contents STATISTICAL MODELS ............................568 LINEAR MODELS ...............................569 GENERALIZED LINEAR MODELS .....................572 The Exponential Family of Distributions ....................572 LinkFunction..................................573 The Likelihood Function and Maximum-Likelihood Estimation . .....574 ScaleParameter.................................576 Goodness of Fit .................................576 Quasi-Likelihood Functions ..........................577 NONPARAMETRIC SMOOTHERS ......................580 SmootherDegreesofFreedom.........................581 SmootherGeneralizedCrossValidation....................582 VARIABLES ...................................583 METHOD .....................................585 OUTPUT .....................................587 TABLES ......................................590 ModelInformation...............................590 ModelEquation.................................590 X’X Matrix . .................................591 SummaryofFitforLinearModels.......................592 SummaryofFitforGeneralizedLinearModels................593 AnalysisofVarianceforLinearModels....................594 AnalysisofDevianceforGeneralizedLinearModels.............595 TypeITests...................................595 TypeIIITests..................................597 ParameterEstimatesforLinearModels....................599 ParameterEstimatesforGeneralizedLinearModels..............601 C.I.forParameters...............................602 Collinearity -
Effects of Outliers with an Outlier
• The mean is a good measure to use to describe data that are close in value. • The median more accurately describes data Effects of Outliers with an outlier. • The mode is a good measure to use when you have categorical data; for example, if each student records his or her favorite color, the color (a category) listed most often is the mode of the data. In the data set below, the value 12 is much less than Additional Example 2: Exploring the Effects of the other values in the set. An extreme value such as Outliers on Measures of Central Tendency this is called an outlier. The data shows Sara’s scores for the last 5 35, 38, 27, 12, 30, 41, 31, 35 math tests: 88, 90, 55, 94, and 89. Identify the outlier in the data set. Then determine how the outlier affects the mean, median, and x mode of the data. x x xx x x x 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 55, 88, 89, 90, 94 outlier 55 1 Additional Example 2 Continued Additional Example 2 Continued With the Outlier Without the Outlier 55, 88, 89, 90, 94 55, 88, 89, 90, 94 outlier 55 mean: median: mode: mean: median: mode: 55+88+89+90+94 = 416 55, 88, 89, 90, 94 88+89+90+94 = 361 88, 89,+ 90, 94 416 5 = 83.2 361 4 = 90.25 2 = 89.5 The mean is 83.2. The median is 89. There is no mode. -
How Significant Is a Boxplot Outlier?
Journal of Statistics Education, Volume 19, Number 2(2011) How Significant Is A Boxplot Outlier? Robert Dawson Saint Mary’s University Journal of Statistics Education Volume 19, Number 2(2011), www.amstat.org/publications/jse/v19n2/dawson.pdf Copyright © 2011 by Robert Dawson all rights reserved. This text may be freely shared among individuals, but it may not be republished in any medium without express written consent from the author and advance notification of the editor. Key Words: Boxplot; Outlier; Significance; Spreadsheet; Simulation. Abstract It is common to consider Tukey’s schematic (“full”) boxplot as an informal test for the existence of outliers. While the procedure is useful, it should be used with caution, as at least 30% of samples from a normally-distributed population of any size will be flagged as containing an outlier, while for small samples (N<10) even extreme outliers indicate little. This fact is most easily seen using a simulation, which ideally students should perform for themselves. The majority of students who learn about boxplots are not familiar with the tools (such as R) that upper-level students might use for such a simulation. This article shows how, with appropriate guidance, a class can use a spreadsheet such as Excel to explore this issue. 1. Introduction Exploratory data analysis suddenly got a lot cooler on February 4, 2009, when a boxplot was featured in Randall Munroe's popular Webcomic xkcd. 1 Journal of Statistics Education, Volume 19, Number 2(2011) Figure 1 “Boyfriend” (Feb. 4 2009, http://xkcd.com/539/) Used by permission of Randall Munroe But is Megan justified in claiming “statistical significance”? We shall explore this intriguing question using Microsoft Excel. -
Lecture 14 Testing for Kurtosis
9/8/2016 CHE384, From Data to Decisions: Measurement, Kurtosis Uncertainty, Analysis, and Modeling • For any distribution, the kurtosis (sometimes Lecture 14 called the excess kurtosis) is defined as Testing for Kurtosis 3 (old notation = ) • For a unimodal, symmetric distribution, Chris A. Mack – a positive kurtosis means “heavy tails” and a more Adjunct Associate Professor peaked center compared to a normal distribution – a negative kurtosis means “light tails” and a more spread center compared to a normal distribution http://www.lithoguru.com/scientist/statistics/ © Chris Mack, 2016Data to Decisions 1 © Chris Mack, 2016Data to Decisions 2 Kurtosis Examples One Impact of Excess Kurtosis • For the Student’s t • For a normal distribution, the sample distribution, the variance will have an expected value of s2, excess kurtosis is and a variance of 6 2 4 1 for DF > 4 ( for DF ≤ 4 the kurtosis is infinite) • For a distribution with excess kurtosis • For a uniform 2 1 1 distribution, 1 2 © Chris Mack, 2016Data to Decisions 3 © Chris Mack, 2016Data to Decisions 4 Sample Kurtosis Sample Kurtosis • For a sample of size n, the sample kurtosis is • An unbiased estimator of the sample excess 1 kurtosis is ∑ ̅ 1 3 3 1 6 1 2 3 ∑ ̅ Standard Error: • For large n, the sampling distribution of 1 24 2 1 approaches Normal with mean 0 and variance 2 1 of 24/n 3 5 • For small samples, this estimator is biased D. N. Joanes and C. A. Gill, “Comparing Measures of Sample Skewness and Kurtosis”, The Statistician, 47(1),183–189 (1998). -
Remedies for Assumption Violations and Multicollinearity Outliers • If the Outlier Is Due to a Data Entry Error, Just Correct the Value
Newsom Psy 522/622 Multiple Regression and Multivariate Quantitative Methods, Winter 2021 1 Remedies for Assumption Violations and Multicollinearity Outliers • If the outlier is due to a data entry error, just correct the value. This is a good reason why raw data should be retained for many years after it is collected as some professional associations recommend. With direct computer entry during interviews, entry errors cannot always be determined for certain. • If the outlier is due to an invalid case because the protocol was not followed or the inclusion criteria was incorrectly applied for that case, the researcher may be able to just eliminate that case. I recommend at least reporting the number of cases excluded and the reason. Consider analyzing the data and/or reporting analyses with and without the deleted case(s). • Transformation of the data might be considered (see overhead on transformations). Square root transformations, for instance, bring outlying cases closer to the others. Transformations, however, can make results difficult to interpret sometimes. • Analyze the data with and without the outlier(s). If the implications of the results do not differ, one could simply state that the analyses were conducted with and without the outlier(s) and that the results do not differ substantially. If they do differ, both results could be presented and a discussion about the potential causes of the outlier(s) could be discussed (e.g., different subgroup of cases, potential moderator effect). • An alternative estimation method could be used, such as least absolute residuals, weighted least squares, bootstrapping, or jackknifing. See discussion of these below.