Identifying Novel Protein Interactors of the Glucagon Superfamily of Receptors

Total Page:16

File Type:pdf, Size:1020Kb

Identifying Novel Protein Interactors of the Glucagon Superfamily of Receptors Identifying Novel Protein Interactors of the Glucagon Superfamily of Receptors by Gregory Gaisano A thesis submitted in conformity with the requirements for the degree of Masters of Science Graduate Department of Physiology University of Toronto © Copyright by Gregory Gaisano (2009) Identifying Novel Protein Interactors of the Glucagon Superfamily of Receptors Gregory Gaisano Masters of Science Department of Physiology University of Toronto 2009 Abstract G-protein coupled receptors (GPCRs) have been shown to act as part of GPCR associated protein complexes (GAPCs) which are required to appropriately transduce downstream signaling pathways leading to specific cellular actions. I hypothesize that there are distinct molecular effectors that couple to the glucagon superfamily of B-class GPCRs (glucagon, GLP-1, GLP-2, GIP receptors) to effect the myriad of reported actions in numerous target cells including regulation of insulin secretion, intestinal growth and appetite suppression. GLP-1R, GIPR, GLP-2R and GCGR were screened using a newly developed membrane-based split-ubiquitin yeast two-hybrid (MYTH) system to reveal 181 novel candidate protein interactors associated with signal transduction, transport, metabolism and cell survival. Each candidate was validated using yeast two-hybrid prey retransformation tests and by co-purification to confirm coupling to each receptors. The present work is the first demonstration of a split- ubiquitin interaction screen using in situ membrane expressed GPCRs of the secretin- like B class. ii Acknowledgements I would like to express my sincere thanks to my supervisor Dr. Michael Wheeler who provided endless support on multiple levels throughout the project. His guidance on the scientific and personal levels has helped me tremendously throughout the development of this thesis. I would also like to express my heartfelt thanks to Dr. Feihan Dai for all her teachings, encouragements, and caring discussions. Her mentorship has been central to my understanding of the molecular biology field. My deep appreciation goes to Victoria Wong and Saranya Kittanakom for training me to use the membrane-based yeast-two hybrid system and for providing their expertise on all the biochemical aspects of this project. I would also like to thank my student, Kamyar Giglou, for his kind help in all my assays. A sincere thank you for Dr. Igor Stagljar and Dr. Anthony Gramolini and their respective laboratory staff for their guidance in yeast two-hybrid and large-scale proteomic screening techniques. Finally, I would like to express my deepest thanks to God, my family, girlfriend and friends whose endless support have made everything possible. iii TABLE OF CONTENTS ABSTRACT OF THESIS…………………………………………………………….………....ii ACKNOWLEDGEMENTS…………………………………………………………………….. iii TABLE OF CONTENTS………………………………………………..………………………iv LIST OF TABLES………………………………………………………………….……..…….ix LIST OF FIGURES……………….…………………………………………………………… x LIST OF ABBREVIATIONS………………………………………………………….………. xi CHAPTER 1: GENERAL INTRODUCTION……………………...………………………..... 1 1.1 G Protein-Coupled Receptors (GPCR)……………………………………...…..1 1.1.1 Structure……………………..………………………………………… .1 1.1.2 G-proteins…………………………………………………………… ….2 1.1.3 Interactomes………………………………………………………… ….3 1.2 Class-B GPCRs…………………………………………………………………...…5 1.3 Glucagon Superfamily of Receptors…………………………………………… 6 1.4 Glucagon-Like Peptide 1 and GLP-1R………………………………...………...6 1.4.1 Expression……………………………………………………………… 6 1.4.2 Structure………………………………………………………………… 7 1.4.3 Function ……………...………………………………………………… 7 1.4.4 Signaling……………………………….……………………………….. 9 1.4.5 Regulation……………………………………………………………. 10 1.5 Glucose-Dependent Insulinotropic Polypeptide and GIPR…………………11 1.5.1 Expression………………………………………………………………11 1.5.2 Structure………………………………………………………………...11 1.5.3 Function ……………………………...…………………………………12 1.5.4 Signaling …………………………..……………………………………13 1.5.5 Regulation………………………..…………….……………………….13 1.6 Glucagon-Like Peptide 2 and GLP-2R………………………………..………..14 1.6.1 Expression……………………………………………………………...14 1.6.2 Structure……………………………………………………………......14 1.6.3 Function ………………………………………………………………..14 1.6.4 Signaling ……………………………………………………………….16 iv 1.6.5 Regulation ………………………………………………………..…... 16 1.7 Glucagon and GCGR…………………………………………………………......16 1.7.1 Expression……………………………………………………………..16 1.7.2 Structure……………………………..………………………………...17 1.7.3 Function …………………………...……………..……………………17 1.7.4 Signaling ……………………………………………………………… 19 1.7.5 Regulation…………………………………………………………….. 19 RATIONALE AND HYPOTHESIS OF THESIS………………………………………... 20 OBJECTIVES ………………………………………...……………………………….. …..21 CHAPTER 2: ESTABLISHMENT OF MYTH METHOD TO STUDY B-CLASS GPCR……. 22 2.1 Rationale…………………………………………………………………………… 22 2.2 Hypothesis……………………………………………………………………...…. 22 2.3 Introduction…………………………………………………………………..…… 22 2.3.1 Molecular Proteomic Screening Tools………………………..….. 22 2.3.2 Yeast Two-Hybrid Screening………………………………………. 23 2.3.3 Spilt Ubiquitin Membrane-based Yeast Two-Hybrid System….. 23 2.3.4 Variation of YTH systems ………………………………………… 25 2.3.5 Alternative Proteomic Screening Tools…………………………… 25 2.4 Method and Materials……………………………………………………………. 27 2.4.1 Reagents……………………………………………………………… 27 2.4.2 Cell Culture…………………………………………………………… 27 2.4.3 Polymerase Chain Reaction (PCR) and Gel Extraction…………. 27 2.4.4 Yeast Bait Construction …………………….………………………. 27 2.4.5 Immunofluorescence ………………………….…………………….. 28 2.4.6 NubG/NubI Test…………………………………………………....... 29 2.4.7 Receptor Cloning…………………………………………………….. 29 2.4.8 Intracellular cAMP Measurement………………………………….. 29 2.4.9 Statistics………………………………………………………………. 30 2.5 Results……………………………………………………………………………….30 2.5.1 Generating Receptor “Bait” Constructs……………………………. 30 2.5.2 Cub-TF Fused Receptors are Localized to Yeast Plasma Membrane…………………………………………………………….. 31 2.5.3 Cub-TF Fused Receptors are Compatible with MYTH system…. 31 2.5.4 Cloned Receptors can be Expressed in Mammalian Cells……… 32 v 2.5.5 Cloned Receptors are Functional in Mammalian Cells…………. 32 2.6 Summary of Findings……………………………………………………………. 35 2.7 Discussion………………………………………………………………………….36 2.7.1 MYTH Receptor Compatibility……………………………………… 36 2.7.2 GCGR Subcloning…………………………………………………… 36 2.7.3 IF Resolution…………………………………………………………. 37 CHAPTER 3: IDENTIFICATION OF NOVEL INTERACTORS OF RECEPTORS........ 38 3.1 Rationale…………………………………………………………………………… 38 3.2 Hypothesis………………………………………………………………………….38 3.3 Introduction…………………………………………………………………….…..38 3.3.1 Glucagon Receptor Superfamily – Known Interactors…………… 38 3.3.2 Limitation of MTYH System…………………………………………. 39 3.3.2.1 Absence of Receptor Activation…………………….. 39 3.3.2.2 False Negatives………………………………………. 39 3.4 Method and Materials……………………………………………………………. 40 3.4.1 Reagents ………………………………………………………..……. 40 3.4.2 cDNA Synthesis and RT-PCR……………………………………… 40 3.4.3 Large-scale Library Screen…………………………………………. 41 3.4.4 Prey Isolation…………………………………………………………. 41 3.4.5 BLAST Analysis……………………………………………………… 42 3.5 Results……………………………………………………………………………… 42 3.5.1 RT-PCR: GLP-1R is Expressed in Human Fetal Brain cDNA….. 42 3.5.2 GLP-1R Large Scale Library Screen………………………………. 43 3.5.3 GIPR Large Scale Library Screen………………………………….. 45 3.5.4 GLP-2R Large Scale Library Screen……………………………..... 47 3.5.5 GCGR Large Scale Library Screen………………………………… 50 3.6 Summary of Findings…………………………………………………………… 52 3.7 Discussion………………………………………………………………………… 53 3.7.1 Human Fetal Brain Expression……………………………..………. 53 3.7.2 Selection of Yeast Colonies………………………………………… 54 3.7.3 Low Number of Interactors Screened……………………………… 54 3.7.4 List of Putative Interactors…………………………………………... 54 vi CHAPTER 4: VALIDATION OF NOVEL INTERACTORS………………………………. 56 4.1 Rationale…………………………………………………………………………… 56 4.2 Hypothesis……………………………………………………………………….... 56 4.3 Introduction……………………………………………………………………….. 56 4.3.1 False Positives in YTH screens……………….……………………. 56 4.3.2 Alternative Validation Tests…………………………………………. 57 4.4 Method and Materials………………………………………………………….....57 4.4.1 Reagents……………………………………………………………… 57 4.4.2 Cell Culture…………………………………………………………… 57 4.4.3 In Silico Analysis…………………………………..…………………. 57 4.4.4 Prey Retransformation Test …………………..……………………. 58 4.4.5 Interactor Cloning……………………………………………………. 58 4.4.6 Co-purification…………………………………………………………58 4.4.7 Immunoblotting ………………………………………………………. 59 4.5 Results………………………………………………………………………………59 4.5.1 Validation by Prey Retransformation Tests…………………..…… 59 4.5.2 In Silico analysis of Validated Receptor Interactors……………… 64 4.5.3 Validation by Co-purification……………………………................. 64 4.6 Summary of Findings……………………………………………………………. 66 4.7 Discussion………………………………………………………………………….66 4.7.1 Screening out False Positives……………………………………….66 4.7.2 Co-purification…………………………………………..................... 66 4.7.3 Potential Relevance of Validated Interactors …………………….. 67 4.7.3.1 APH1A…………………………………………………. 67 4.7.3.2 APLP1…………………………………………………..68 4.7.3.3 CD81…………………………………………………… 70 4.7.3.4 GABBR2…………………………………….……….....70 4.7.3.5 GPR37………………………………….……………… 71 4.7.3.6 HPN…………………………….……………………….72 4.7.3.7 STMN1………………………………………………….72 CHAPTER 5: GENERAL DISCUSSION……………………………….…………….......... 73 5.1 Summary of Findings……………………………………………………………. 73 5.2 MYTH system……………………………………………………………………… 73 vii 5.3 B-class GPCR Interactomes……………………………………………………. 74 5.4 Pharmacological Relevance……………………………………………………. 75 5.5 Function of Novel Interactors - Preliminary Data…………………………... 76 5.6 Future Directions…………………………………………………………………. 77 5.7 Conclusion………………………………………………………………………… 79 REFERENCE LIST…………………………………………………………………………… 80
Recommended publications
  • The Genetics of Nontraditional Glycemic Biomarkers of Type 2 Diabetes
    THE GENETICS OF NONTRADITIONAL GLYCEMIC BIOMARKERS OF TYPE 2 DIABETES by Stephanie J. Loomis, MPH A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland May, 2018 © 2018 Stephanie J. Loomis All rights reserved Abstract Type 2 diabetes is a major public health problem that affects over 10% of the US adult population. It is associated with substantially increased risks of mortality and serious clinical outcomes such as heart disease, stroke, kidney disease and retinopathy. Diabetes is defined by hyperglycemia, or elevated glucose concentrations in the blood, which are commonly measured by fasting glucose and hemoglobin A1c (HbA1c), but these have limitations. As a result, nontraditional glycemic biomarkers, fructosamine, glycated albumin and 1,5-anhydroglucitol (1,5-AG) are gaining interest. While it is established that genetics play a role in type 2 diabetes, fasting glucose, and HbA1c, the genetics of fructosamine, glycated albumin, and 1,5-AG have not been well explored. This dissertation sought to determine the amount of variation in each biomarker due to genetics through heritability estimation, and to determine the specific genetic variants associated with each biomarker though genome wide association study (GWAS) analysis, multivariate phenotype analysis, and exome sequencing analysis. Heritability estimates showed a substantial portion of fructosamine, glycated albumin and 1,5-AG variation was due to genetics, which is likely comprised of both common and rare variants. GWAS identified common variants associated with fructosamine and glycated albumin including a known diabetes variant and a likely nonglycemic variant. Exome sequencing did not identify variants associated with fructosamine and glycated albumin, but multivariate phenotype analysis identified a potentially interesting region in a gene that alters bilirubin levels that may affect fructosamine in a nonglycemic manner.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • SUPPLEMENTARY DATA Principal Investigators and Acknowledgment
    SUPPLEMENTARY DATA Principal Investigators and Acknowledgment Hispanic Community Health Study/Study of Latinos (HSHC/SOL) Robert Kaplan, Sylvia Wassertheil-Smoller (Bronx); Martha L. Daviglus, Aida L. Giachello (Chicago); Neil Schneiderman, David Lee, Leopoldo Raij, John Ryan (Miami); Greg Talavera, John Elder, Matthew Allison, Michael Criqui (San Deigo). The authors thank the staff and participants of HCHS/SOL for their important contributions. A complete list of staff and investigators has been provided by Sorlie P., et al. in Ann Epidemiol. 2010 ;20:642-649 and is also available on the study website http://www.cscc.unc.edu/hchs/. The baseline examination of the Hispanic Community Health Study/Study of Latinos was carried out as a collaborative study supported by contracts from the National Heart, Lung, and Blood Institute (NHLBI) to the University of North Carolina (N01-HC65233), University of Miami (N01-HC65234), Albert Einstein College of Medicine (N01-HC65235), Northwestern University (N01-HC65236), and San Diego State University (N01-HC65237). The following Institutes/Centers/Offices contributed to the HCHS/SOL first funding period through a transfer of funds to the NHLBI: National Institute on Minority Health and Health Disparities, the National Institute of Deafness and Other Communications Disorders, the National Institute of Dental and Craniofacial Research, the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institute of Neurological Disorders and Stroke, and the NIH Office of Dietary Supplements. The Genetic Analysis Center at the University of Washington was supported by NHLBI and NIDCR contracts (HHSN268201300005C AM03 and MOD03). Genotyping efforts were supported by NHLBI HSN 26220/20054C, NCATS CTSI grant UL1TR000123, and NIDDK Diabetes Research Center (DRC) grant DK063491.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Novel TMC8 Splice Site Mutation in Epidermodysplasia Verruciformis and Review of HPV Infections in Patients with the Disease
    Novel TMC8 splice site mutation in epidermodysplasia verruciformis and review of HPV infections in patients with the disease E Imahorn1, Z Yüksel2, I Spoerri1, G Gürel3, C Imhof4, ZN Saraçoğlu5, AE Koku Aksu6, PL Rady7, SK Tyring7, W Kempf8, PH Itin1,9, B Burger1 1) Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland 2) Medical Genetics Department, Eskişehir Osmangazi University, Eskişehir, Turkey 3) Dermatology Department, Bozok University, Yozgat, Turkey 4) Stadtpraxis Brig, Brig, Switzerland 5) Dermatology Department, Eskişehir Osmangazi University, Eskişehir, Turkey 6) Dermatology Clinics, Istanbul Education and Research Hospital, Istanbul, Turkey 7) Department of Dermatology, McGovern Medical School at UTHealth, Houston, TX, USA 8) Kempf und Pfaltz Histologische Diagnostik, Zurich, Switzerland 9) Department of Dermatology, University Hospital Basel, Basel, Switzerland Contact: Bettina Burger Hebelstrasse 20 4031 Basel +41 61 328 69 03 [email protected] Funding sources: none Conflict of interest: none Keywords: Epidermodysplasia verruciformis, human papilloma virus, splice site mutation, TMC6, TMC8, genetic skin disease, genodermatosis Abstract Background: Epidermodysplasia verruciformis (EV) is a genodermatosis leading to infections with cutaneous HPV, persistent plane warts and a high rate of non-melanoma skin cancer (NMSC). Biallelic loss-of-function mutations in TMC6 and TMC8 are known to be causative. Objective: The aim of this study was to report EV-causing mutations in four patients with EV and to give an overview of all described EV patients. Patients and methods: We investigated four patients with classical features of EV from two families. All patients were affected by plane warts with typical EV histology since early childhood and β-HPVs were detected on their skin.
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • Tissue-Specific Alteration of Metabolic Pathways Influences Glycemic Regulation
    bioRxiv preprint doi: https://doi.org/10.1101/790618; this version posted October 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Tissue-Specific Alteration of Metabolic Pathways Influences Glycemic Regulation 1,2 3 4 5,6,7 Natasha H. J. Ng *, Sara M. Willems *, Juan Fernandez , Rebecca S. Fine , Eleanor Wheeler8,3, Jennifer Wessel9,10, Hidetoshi Kitajima4, Gaelle Marenne8, Jana K. Rundle1, Xueling Sim11,12, Hanieh Yeghootkar13, Nicola L. Beer1, Anne Raimondo1, Andrei I. Tarasov1, Soren K. Thomsen1,14, Martijn van de Bunt4,1, Shuai Wang15, Sai Chen12, Yuning Chen15, Yii-Der Ida Chen16, Hugoline G. de Haan17, Niels Grarup18, Ruifang Li-Gao17, Tibor V. Varga19, Jennifer L Asimit8,20, Shuang Feng21, Rona J. Strawbridge22,23, Erica L. Kleinbrink24, Tarunveer S. Ahluwalia25,26, Ping An27, Emil V. Appel18, Dan E Arking28, Juha Auvinen29,30, Lawrence F. Bielak31, Nathan A. Bihlmeyer28, Jette Bork-Jensen18, Jennifer A. Brody32,33, Archie Campbell34, Audrey Y Chu35, Gail Davies36,37, Ayse Demirkan38, James S. Floyd32,33, Franco Giulianini35, Xiuqing Guo16, Stefan Gustafsson39, Benoit Hastoy1, Anne U. Jackson12, Johanna Jakobsdottir40, Marjo-Riitta Jarvelin41,29,42, Richard A. Jensen32,33, Stavroula Kanoni43, Sirkka Keinanen- Kiukaanniemi44,45, Jin Li46, Man Li47,48, Kurt Lohman49, Yingchang Lu50,51, Jian'an Luan3, Alisa K. Manning52,53, Jonathan Marten54, Carola Marzi55,56, Karina Meidtner57,56, Dennis O. Mook- Kanamori17,58, Taulant Muka59,38, Giorgio Pistis60,61, Bram Prins8, Kenneth M.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • The Effect of Phototherapy on Cancer Predisposition Genes of Diabetic and Normal Human Skin Fibroblasts
    Hindawi BioMed Research International Volume 2017, Article ID 7604861, 9 pages https://doi.org/10.1155/2017/7604861 Research Article The Effect of Phototherapy on Cancer Predisposition Genes of Diabetic and Normal Human Skin Fibroblasts Pongsathorn Chotikasemsri,1 Boonsin Tangtrakulwanich,2 and Surasak Sangkhathat3 1 Biomedical Engineering Institute, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 2Department of Orthopedic Surgery and Physical Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 3Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand Correspondence should be addressed to Pongsathorn Chotikasemsri; [email protected] Received 3 October 2016; Accepted 19 February 2017; Published 12 March 2017 Academic Editor: Tokuya Omi Copyright © 2017 Pongsathorn Chotikasemsri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The purpose of this study was to investigate whether LED light at different wavelengths affects the expression profile of 143cancer predisposition genes in both diabetic and normal human fibroblasts. In this study, both diabetic and normal fibroblast cell lines were 2 cultured and irradiated with red (635 nm), green (520 nm), and blue (465 nm) LED light for 10 minutes at 0.67 J/cm each. After that, mRNA from all cell lines was extracted for microarray analysis. We found that green light activates EPHB2, KIT, ANTXR2, ESCO2, MSR1, EXT1, TSC1, KIT, NF1, BUB1B, FANCD2, EPCAM, FANCD2, NF, DIS3L2, and RET in normal fibroblast cells, while blue and red light can upregulate RUNX1, PDGFRA, EHBP1, GPC3, AXIN2, KDR, GLMN, MSMB, EPHB2, MSR1, KIT, FANCD2, BMPR1A, BUB1B, PDE11A, and RET.
    [Show full text]
  • The Kinesin Spindle Protein Inhibitor Filanesib Enhances the Activity of Pomalidomide and Dexamethasone in Multiple Myeloma
    Plasma Cell Disorders SUPPLEMENTARY APPENDIX The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma Susana Hernández-García, 1 Laura San-Segundo, 1 Lorena González-Méndez, 1 Luis A. Corchete, 1 Irena Misiewicz- Krzeminska, 1,2 Montserrat Martín-Sánchez, 1 Ana-Alicia López-Iglesias, 1 Esperanza Macarena Algarín, 1 Pedro Mogollón, 1 Andrea Díaz-Tejedor, 1 Teresa Paíno, 1 Brian Tunquist, 3 María-Victoria Mateos, 1 Norma C Gutiérrez, 1 Elena Díaz- Rodriguez, 1 Mercedes Garayoa 1* and Enrique M Ocio 1* 1Centro Investigación del Cáncer-IBMCC (CSIC-USAL) and Hospital Universitario-IBSAL, Salamanca, Spain; 2National Medicines Insti - tute, Warsaw, Poland and 3Array BioPharma, Boulder, Colorado, USA *MG and EMO contributed equally to this work ©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2017.168666 Received: March 13, 2017. Accepted: August 29, 2017. Pre-published: August 31, 2017. Correspondence: [email protected] MATERIAL AND METHODS Reagents and drugs. Filanesib (F) was provided by Array BioPharma Inc. (Boulder, CO, USA). Thalidomide (T), lenalidomide (L) and pomalidomide (P) were purchased from Selleckchem (Houston, TX, USA), dexamethasone (D) from Sigma-Aldrich (St Louis, MO, USA) and bortezomib from LC Laboratories (Woburn, MA, USA). Generic chemicals were acquired from Sigma Chemical Co., Roche Biochemicals (Mannheim, Germany), Merck & Co., Inc. (Darmstadt, Germany). MM cell lines, patient samples and cultures. Origin, authentication and in vitro growth conditions of human MM cell lines have already been characterized (17, 18). The study of drug activity in the presence of IL-6, IGF-1 or in co-culture with primary bone marrow mesenchymal stromal cells (BMSCs) or the human mesenchymal stromal cell line (hMSC–TERT) was performed as described previously (19, 20).
    [Show full text]
  • Supplemental Table 1A. Differential Gene Expression Profile of Adehcd40l and Adehnull Treated Cells Vs Untreated Cells
    Supplemental Table 1a. Differential Gene Expression Profile of AdEHCD40L and AdEHNull treated cells vs Untreated Cells Fold change Regulation Fold change Regulation ([AdEHCD40L] vs ([AdEHCD40L] ([AdEHNull] vs ([AdEHNull] vs Probe Set ID [Untreated]) vs [Untreated]) [Untreated]) [Untreated]) Gene Symbol Gene Title RefSeq Transcript ID NM_001039468 /// NM_001039469 /// NM_004954 /// 203942_s_at 2.02 down 1.00 down MARK2 MAP/microtubule affinity-regulating kinase 2 NM_017490 217985_s_at 2.09 down 1.00 down BAZ1A fibroblastbromodomain growth adjacent factor receptorto zinc finger 2 (bacteria-expressed domain, 1A kinase, keratinocyte NM_013448 /// NM_182648 growth factor receptor, craniofacial dysostosis 1, Crouzon syndrome, Pfeiffer 203638_s_at 2.10 down 1.01 down FGFR2 syndrome, Jackson-Weiss syndrome) NM_000141 /// NM_022970 1570445_a_at 2.07 down 1.01 down LOC643201 hypothetical protein LOC643201 XM_001716444 /// XM_001717933 /// XM_932161 231763_at 3.05 down 1.02 down POLR3A polymerase (RNA) III (DNA directed) polypeptide A, 155kDa NM_007055 1555368_x_at 2.08 down 1.04 down ZNF479 zinc finger protein 479 NM_033273 /// XM_001714591 /// XM_001719979 241627_x_at 2.15 down 1.05 down FLJ10357 hypothetical protein FLJ10357 NM_018071 223208_at 2.17 down 1.06 down KCTD10 potassium channel tetramerisation domain containing 10 NM_031954 219923_at 2.09 down 1.07 down TRIM45 tripartite motif-containing 45 NM_025188 242772_x_at 2.03 down 1.07 down Transcribed locus 233019_at 2.19 down 1.08 down CNOT7 CCR4-NOT transcription complex, subunit 7 NM_013354
    [Show full text]