The Maximum Displacement for Linear Probing Hashing

Total Page:16

File Type:pdf, Size:1020Kb

The Maximum Displacement for Linear Probing Hashing UPPSALA DISSERTATIONS IN MATHEMATICS 63 The Maximum Displacement for Linear Probing Hashing Niclas Petersson Department of Mathematics Uppsala University UPPSALA 2009 Dissertation presented at Uppsala University to be publicly examined in Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Friday, February 27, 2009 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Abstract Petersson, N. (2009). The Maximum Displacement for Linear Probing Hashing. Uppsala Dissertations in Mathematics 63. viii+20 pp. Uppsala. ISBN 978-91-506- 2050-4. In this thesis we study the standard probabilistic model for hashing with linear prob- ing. The main purpose is to determine the asymptotic distribution for the maximum displacement. Depending on the ratio between the number of items and the number of cells, there are several cases to consider. Paper I solves the problem for the special case of almost full hash tables. That is, hash tables where every cell but one is occu- pied. Paper II completes the analysis by solving the problem for all remaining cases. That is, for every case where the number of items divided by the number of cells lies in the interval [0, 1]. The last two papers treat quite different topics. Paper III studies the area covered by the supremum process of Brownian motion. One of the main theorems in Paper I is expressed in terms of the Laplace transform of this area. Paper IV provides a new sufficient condition for a collection of independent random variables to be negatively associated when conditioned on their total sum. The condition applies to a collection of independent Borel-distributed random variables, which made it possible to prove a Poisson approximation that where essential for the completion of Paper II. Keywords: Probabilistic analysis of algorithms, hashing, linear probing, negative dependence, Brownian motion. Niclas Petersson, Department of Mathematics, Box 480, Uppsala University, SE-751 06 Uppsala, Sweden Copyright © Niclas Petersson, 2009 ISSN 1401-2049 ISBN 978-91-506-2050-4 urn:nbn:se:uu:diva-9545 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9545) Finally, we need a great deal of faith in probability theory when we use hashing methods, since they are efficient only on the average, while the worst case is terrible! Donald Knuth, The Art of Computer Programming List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Petersson, N. (2008). The maximum displacement for linear probing hashing I. II Petersson, N. (2009). The maximum displacement for linear probing hashing II. III Janson, S. and Petersson, N. (2007). The integral of the supremum process of Brownian motion. IV Petersson, N. (2008). Negative dependence of independent random variables conditional on their total sum. v Contents 1 Introduction ....................................... 1 1.1 Linear Probing Hashing . ........................... 1 1.2 Displacements................................... 2 1.3 Modelvs.Reality................................ 3 1.4 VariationsoftheAlgorithm......................... 5 2 Summary of Results . .............................. 7 2.1 PaperI ........................................ 7 2.2 PaperII........................................ 9 2.3 PaperIII....................................... 11 2.4 PaperIV....................................... 12 Summary in Swedish ................................... 15 Acknowledgements ..................................... 17 Bibliography . ........................................ 19 vii 1. Introduction As research subject, hashing is shared by mathematicians and computer scientists with a common interest in probabilistic analysis of algorithms. Hashing can in the present context be described as a special class of search methods used for storage of information in a computer memory or database.1 Such methods are also called scatter storage techniques, since the principal idea is to spread the information randomly in the memory. Although the subject of hashing originates from computer science, it is actually quite advantageous to introduce the algorithm in a strictly mathematical way. Especially in this thesis, which is devoted to the more mathematical aspects of hashing. 1.1 Linear Probing Hashing The standard version of hashing with linear probing can be described as follows, where n and m are integers such that 0 ≤ n ≤ m.(Forthe classic, computer science orientated definition, see Knuth [14, Sec. 6.4, Algorithm 6.4.L].) n items x1,...,xn are placed sequentially into a table with m n cells 1,...,m according to some hash sequence {hi}1 where hi ∈{1,...,m}. That is, item xi is inserted into cell hi if it is empty. If not, then xi (linearly) probes cell hi +1, hi +2, etc until an empty cell is found and the item can be inserted. All positions in the table can be interpreted modulo m as any item that is rejected from the last cell m, continues to probe cell 1, 2, etc until it is inserted in an empty cell. Throughout this thesis, all hash sequences also follow the standard 2 probabilistic model. That is, the hash addresses hi are independent random numbers, uniformly distributed on {1,...,m}. Hence all mn n possible hash sequences {hi}1 are equally likely when choosing a sequence at random. A hash table with m cells and n items generated by the above algorithm will from now on be denoted Tm,n. 1The first known documentation of the main ideas behind hashing is an internal IBM memorandum by H. P. Luhn from 1953, see Knuth [14, Sec. 6.4]. The word hashing did not become standard terminology (in print at least) until the late 1960s. 2The validity of this model is briefly discussed in Section 1.3. 1 A hash table Tm,n is called full if n = m and almost full if n = m − 1. A non-full hash table is said to be confined if the last cell in the table is empty. Confined hash tables are from now on distinguished with a prime Tm,n. Due to the circular symmetry of the construction procedure, all cells are equally likely to be empty in the final table. Thus, a confined hash table is nothing but a standard table conditioned on the last cell being empty. So any non-full hash table can be given the confined property by choosing an empty cell with uniform probability (among all the empty cells) and then relabeling the table so that the chosen cell becomes the last. It can therefore be assumed that the hash table is confined whenever it is suitable for the analysis. A block in a hash table Tm,n is defined as a sequence of consecutive cells {i +1,...,j} (modulo m) such that cell i and j are empty and all cells in between are occupied. Thus, every block contains exactly one empty cell (the last one) and the table has as many blocks as it has empty cells. The total number of blocks (usually denoted by N) is therefore given by N = m − n. The smallest block size is 1, since an empty cell following the empty cell of the previous block constitutes a block of its own. Note that the internal structure of different blocks are independent of each other. Thus, any block of a given length k may be regarded as a confined almost full hash table Tk,k−1 in itself. An almost full hash table Tm,m−1 is in this sense the most primitive type of table, since it only consists of one block. 1.2 Displacements If item xi is inserted into cell qi,thenitsdisplacement or individual displacement is di := (qi − hi)modm. Thus, the displacement equals the number of unsuccessful probes item xi makes before being inserted into an empty cell. The displacement is a measure of time (or cost) it takes to insert an item into the table. Once the hash table has been made, xi may be allocated with the same type of linear probing as when the item was inserted. That is, by probing cell hi, hi +1, etc until the item is found. The search time needed to allocate xi in the final table is therefore proportional to di +1. Some displacements has already been thoroughly analyzed. The total displacement, i.e. n D := di , i=1 has for instance been studied by Knuth [14], Flajolet, Poblete and Viola [8] and Janson [9]. The (individual) displacement of an item chosen at random has also been studied in detail by Janson [10] and Viola [20]. 2 The maximum displacement (or worst case) is defined as D := max di . 1≤i≤n The primary purpose of this thesis is to determine the asymptotic distri- bution of the maximum displacement for all 0 ≤ λ ≤ 1 when n, m →∞ in such a way that n/m → λ. Since the maximum displacement also is the record among the maximum displacements within each block, it is important to know how the block sizes are distributed. Block behavior has been studied by Chassaing et al.3 in [3], [4] and [5] and Janson [9]. A secondary purpose is to study the number of items with displace- ments very close to the maximum. Such items are from now on said to have a critical displacement. The exact definition of a critical displace- ment must be adjusted to the ratio λ, but the principle is to define “item xi has a critical displacement” ⇔ di ≥ ζ, for some appropriate function ζ = ζ(m, n). Here, the word appropriate means that the total number of critical displacements should be a non- degenerate random variable asymptotically. 1.3 Model vs. Reality The goal of this section is to connect the mathematical model for hashing to its origin in computer science. This will be done with the aid of a small example in form of the creation of an address book. Assume that one wants to store some sort of basic contact informa- tion to n different persons in a hash table with m cells.
Recommended publications
  • Linear Probing with Constant Independence
    Linear Probing with Constant Independence Anna Pagh∗ Rasmus Pagh∗ Milan Ruˇzic´ ∗ ABSTRACT 1. INTRODUCTION Hashing with linear probing dates back to the 1950s, and Hashing with linear probing is perhaps the simplest algo- is among the most studied algorithms. In recent years it rithm for storing and accessing a set of keys that obtains has become one of the most important hash table organiza- nontrivial performance. Given a hash function h, a key x is tions since it uses the cache of modern computers very well. inserted in an array by searching for the first vacant array Unfortunately, previous analyses rely either on complicated position in the sequence h(x), h(x) + 1, h(x) + 2,... (Here, and space consuming hash functions, or on the unrealistic addition is modulo r, the size of the array.) Retrieval of a assumption of free access to a truly random hash function. key proceeds similarly, until either the key is found, or a Already Carter and Wegman, in their seminal paper on uni- vacant position is encountered, in which case the key is not versal hashing, raised the question of extending their anal- present in the data structure. Deletions can be performed ysis to linear probing. However, we show in this paper that by moving elements back in the probe sequence in a greedy linear probing using a pairwise independent family may have fashion (ensuring that no key x is moved beyond h(x)), until expected logarithmic cost per operation. On the positive a vacant array position is encountered. side, we show that 5-wise independence is enough to ensure Linear probing dates back to 1954, but was first analyzed constant expected time per operation.
    [Show full text]
  • CSC 344 – Algorithms and Complexity Why Search?
    CSC 344 – Algorithms and Complexity Lecture #5 – Searching Why Search? • Everyday life -We are always looking for something – in the yellow pages, universities, hairdressers • Computers can search for us • World wide web provides different searching mechanisms such as yahoo.com, bing.com, google.com • Spreadsheet – list of names – searching mechanism to find a name • Databases – use to search for a record • Searching thousands of records takes time the large number of comparisons slows the system Sequential Search • Best case? • Worst case? • Average case? Sequential Search int linearsearch(int x[], int n, int key) { int i; for (i = 0; i < n; i++) if (x[i] == key) return(i); return(-1); } Improved Sequential Search int linearsearch(int x[], int n, int key) { int i; //This assumes an ordered array for (i = 0; i < n && x[i] <= key; i++) if (x[i] == key) return(i); return(-1); } Binary Search (A Decrease and Conquer Algorithm) • Very efficient algorithm for searching in sorted array: – K vs A[0] . A[m] . A[n-1] • If K = A[m], stop (successful search); otherwise, continue searching by the same method in: – A[0..m-1] if K < A[m] – A[m+1..n-1] if K > A[m] Binary Search (A Decrease and Conquer Algorithm) l ← 0; r ← n-1 while l ≤ r do m ← (l+r)/2 if K = A[m] return m else if K < A[m] r ← m-1 else l ← m+1 return -1 Analysis of Binary Search • Time efficiency • Worst-case recurrence: – Cw (n) = 1 + Cw( n/2 ), Cw (1) = 1 solution: Cw(n) = log 2(n+1) 6 – This is VERY fast: e.g., Cw(10 ) = 20 • Optimal for searching a sorted array • Limitations: must be a sorted array (not linked list) binarySearch int binarySearch(int x[], int n, int key) { int low, high, mid; low = 0; high = n -1; while (low <= high) { mid = (low + high) / 2; if (x[mid] == key) return(mid); if (x[mid] > key) high = mid - 1; else low = mid + 1; } return(-1); } Searching Problem Problem: Given a (multi)set S of keys and a search key K, find an occurrence of K in S, if any.
    [Show full text]
  • Implementing the Map ADT Outline
    Implementing the Map ADT Outline ´ The Map ADT ´ Implementation with Java Generics ´ A Hash Function ´ translation of a string key into an integer ´ Consider a few strategies for implementing a hash table ´ linear probing ´ quadratic probing ´ separate chaining hashing ´ OrderedMap using a binary search tree The Map ADT ´A Map models a searchable collection of key-value mappings ´A key is said to be “mapped” to a value ´Also known as: dictionary, associative array ´Main operations: insert, find, and delete Applications ´ Store large collections with fast operations ´ For a long time, Java only had Vector (think ArrayList), Stack, and Hashmap (now there are about 67) ´ Support certain algorithms ´ for example, probabilistic text generation in 127B ´ Store certain associations in meaningful ways ´ For example, to store connected rooms in Hunt the Wumpus in 335 The Map ADT ´A value is "mapped" to a unique key ´Need a key and a value to insert new mappings ´Only need the key to find mappings ´Only need the key to remove mappings 5 Key and Value ´With Java generics, you need to specify ´ the type of key ´ the type of value ´Here the key type is String and the value type is BankAccount Map<String, BankAccount> accounts = new HashMap<String, BankAccount>(); 6 put(key, value) get(key) ´Add new mappings (a key mapped to a value): Map<String, BankAccount> accounts = new TreeMap<String, BankAccount>(); accounts.put("M",); accounts.put("G", new BankAcnew BankAccount("Michel", 111.11)count("Georgie", 222.22)); accounts.put("R", new BankAccount("Daniel",
    [Show full text]
  • Hash Tables & Searching Algorithms
    Search Algorithms and Tables Chapter 11 Tables • A table, or dictionary, is an abstract data type whose data items are stored and retrieved according to a key value. • The items are called records. • Each record can have a number of data fields. • The data is ordered based on one of the fields, named the key field. • The record we are searching for has a key value that is called the target. • The table may be implemented using a variety of data structures: array, tree, heap, etc. Sequential Search public static int search(int[] a, int target) { int i = 0; boolean found = false; while ((i < a.length) && ! found) { if (a[i] == target) found = true; else i++; } if (found) return i; else return –1; } Sequential Search on Tables public static int search(someClass[] a, int target) { int i = 0; boolean found = false; while ((i < a.length) && !found){ if (a[i].getKey() == target) found = true; else i++; } if (found) return i; else return –1; } Sequential Search on N elements • Best Case Number of comparisons: 1 = O(1) • Average Case Number of comparisons: (1 + 2 + ... + N)/N = (N+1)/2 = O(N) • Worst Case Number of comparisons: N = O(N) Binary Search • Can be applied to any random-access data structure where the data elements are sorted. • Additional parameters: first – index of the first element to examine size – number of elements to search starting from the first element above Binary Search • Precondition: If size > 0, then the data structure must have size elements starting with the element denoted as the first element. In addition, these elements are sorted.
    [Show full text]
  • Pseudorandom Data and Universal Hashing∗
    CS369N: Beyond Worst-Case Analysis Lecture #6: Pseudorandom Data and Universal Hashing∗ Tim Roughgardeny April 14, 2014 1 Motivation: Linear Probing and Universal Hashing This lecture discusses a very neat paper of Mitzenmacher and Vadhan [8], which proposes a robust measure of “sufficiently random data" and notes interesting consequences for hashing and some related applications. We consider hash functions from N = f0; 1gn to M = f0; 1gm. Canonically, m is much smaller than n. We abuse notation and use N; M to denote both the sets and the cardinalities of the sets. Since a hash function h : N ! M is effectively compressing a larger set into a smaller one, collisions (distinct elements x; y 2 N with h(x) = h(y)) are inevitable. There are many way of resolving collisions. One that is common in practice is linear probing, where given a data element x, one starts at the slot h(x), and then proceeds to h(x) + 1, h(x) + 2, etc. until a suitable slot is found. (Either an empty slot if the goal is to insert x; or a slot that contains x if the goal is to search for x.) The linear search wraps around the table (from slot M − 1 back to 0), if needed. Linear probing interacts well with caches and prefetching, which can be a big win in some application. Recall that every fixed hash function performs badly on some data set, since by the Pigeonhole Principle there is a large data set of elements with equal hash values. Thus the analysis of hashing always involves some kind of randomization, either in the input or in the hash function.
    [Show full text]
  • Collisions There Is Still a Problem with Our Current Hash Table
    18.1 Hashing 1061 Since our mapping from element value to preferred index now has a bit of com- plexity to it, we might turn it into a method that accepts the element value as a parameter and returns the right index for that value. Such a method is referred to as a hash function , and an array that uses such a function to govern insertion and deletion of its elements is called a hash table . The individual indexes in the hash table are also sometimes informally called buckets . Our hash function so far is the following: private int hashFunction(int value) { return Math.abs(value) % elementData.length; } Hash Function A method for rapidly mapping between element values and preferred array indexes at which to store those values. Hash Table An array that stores its elements in indexes produced by a hash function. Collisions There is still a problem with our current hash table. Because our hash function wraps values to fit in the array bounds, it is now possible that two values could have the same preferred index. For example, if we try to insert 45 into the hash table, it maps to index 5, conflicting with the existing value 5. This is called a collision . Our imple- mentation is incomplete until we have a way of dealing with collisions. If the client tells the set to insert 45 , the value 45 must be added to the set somewhere; it’s up to us to decide where to put it. Collision When two or more element values in a hash table produce the same result from its hash function, indicating that they both prefer to be stored in the same index of the table.
    [Show full text]
  • Cuckoo Hashing
    Cuckoo Hashing Outline for Today ● Towards Perfect Hashing ● Reducing worst-case bounds ● Cuckoo Hashing ● Hashing with worst-case O(1) lookups. ● The Cuckoo Graph ● A framework for analyzing cuckoo hashing. ● Analysis of Cuckoo Hashing ● Just how fast is cuckoo hashing? Perfect Hashing Collision Resolution ● Last time, we mentioned three general strategies for resolving hash collisions: ● Closed addressing: Store all colliding elements in an auxiliary data structure like a linked list or BST. ● Open addressing: Allow elements to overflow out of their target bucket and into other spaces. ● Perfect hashing: Choose a hash function with no collisions. ● We have not spoken on this last topic yet. Why Perfect Hashing is Hard ● The expected cost of a lookup in a chained hash table is O(1 + α) for any load factor α. ● For any fixed load factor α, the expected cost of a lookup in linear probing is O(1), where the constant depends on α. ● However, the expected cost of a lookup in these tables is not the same as the expected worst-case cost of a lookup in these tables. Expected Worst-Case Bounds ● Theorem: Assuming truly random hash functions, the expected worst-case cost of a lookup in a linear probing hash table is Ω(log n). ● Theorem: Assuming truly random hash functions, the expected worst-case cost of a lookup in a chained hash table is Θ(log n / log log n). ● Proofs: Exercise 11-1 and 11-2 from CLRS. ☺ Perfect Hashing ● A perfect hash table is one where lookups take worst-case time O(1). ● There's a pretty sizable gap between the expected worst-case bounds from chaining and linear probing – and that's on expected worst-case, not worst-case.
    [Show full text]
  • Linear Probing with 5-Independent Hashing
    Lecture Notes on Linear Probing with 5-Independent Hashing Mikkel Thorup May 12, 2017 Abstract These lecture notes show that linear probing takes expected constant time if the hash function is 5-independent. This result was first proved by Pagh et al. [STOC’07,SICOMP’09]. The simple proof here is essentially taken from [Pˇatra¸scu and Thorup ICALP’10]. We will also consider a smaller space version of linear probing that may have false positives like Bloom filters. These lecture notes illustrate the use of higher moments in data structures, and could be used in a course on randomized algorithms. 1 k-independence The concept of k-independence was introduced by Wegman and Carter [21] in FOCS’79 and has been the cornerstone of our understanding of hash functions ever since. A hash function is a random function h : [u] [t] mapping keys to hash values. Here [s]= 0,...,s 1 . We can also → { − } think of a h as a random variable distributed over [t][u]. We say that h is k-independent if for any distinct keys x ,...,x [u] and (possibly non-distinct) hash values y ,...,y [t], we have 0 k−1 ∈ 0 k−1 ∈ Pr[h(x )= y h(x )= y ] = 1/tk. Equivalently, we can define k-independence via two 0 0 ∧···∧ k−1 k−1 separate conditions; namely, (a) for any distinct keys x ,...,x [u], the hash values h(x ),...,h(x ) are independent 0 k−1 ∈ 0 k−1 random variables, that is, for any (possibly non-distinct) hash values y ,...,y [t] and 0 k−1 ∈ i [k], Pr[h(x )= y ]=Pr h(x )= y h(x )= y , and ∈ i i i i | j∈[k]\{i} j j arXiv:1509.04549v3 [cs.DS] 11 May 2017 h i (b) for any x [u], h(x) is uniformly distributedV in [t].
    [Show full text]
  • Cuckoo Hashing
    Cuckoo Hashing Rasmus Pagh* BRICSy, Department of Computer Science, Aarhus University Ny Munkegade Bldg. 540, DK{8000 A˚rhus C, Denmark. E-mail: [email protected] and Flemming Friche Rodlerz ON-AIR A/S, Digtervejen 9, 9200 Aalborg SV, Denmark. E-mail: ff[email protected] We present a simple dictionary with worst case constant lookup time, equal- ing the theoretical performance of the classic dynamic perfect hashing scheme of Dietzfelbinger et al. (Dynamic perfect hashing: Upper and lower bounds. SIAM J. Comput., 23(4):738{761, 1994). The space usage is similar to that of binary search trees, i.e., three words per key on average. Besides being conceptually much simpler than previous dynamic dictionaries with worst case constant lookup time, our data structure is interesting in that it does not use perfect hashing, but rather a variant of open addressing where keys can be moved back in their probe sequences. An implementation inspired by our algorithm, but using weaker hash func- tions, is found to be quite practical. It is competitive with the best known dictionaries having an average case (but no nontrivial worst case) guarantee. Key Words: data structures, dictionaries, information retrieval, searching, hash- ing, experiments * Partially supported by the Future and Emerging Technologies programme of the EU under contract number IST-1999-14186 (ALCOM-FT). This work was initiated while visiting Stanford University. y Basic Research in Computer Science (www.brics.dk), funded by the Danish National Research Foundation. z This work was done while at Aarhus University. 1 2 PAGH AND RODLER 1. INTRODUCTION The dictionary data structure is ubiquitous in computer science.
    [Show full text]
  • The Power of Simple Tabulation Hashing
    The Power of Simple Tabulation Hashing Mihai Pˇatra¸scu Mikkel Thorup AT&T Labs AT&T Labs May 10, 2011 Abstract Randomized algorithms are often enjoyed for their simplicity, but the hash functions used to yield the desired theoretical guarantees are often neither simple nor practical. Here we show that the simplest possible tabulation hashing provides unexpectedly strong guarantees. The scheme itself dates back to Carter and Wegman (STOC'77). Keys are viewed as consist- ing of c characters. We initialize c tables T1;:::;Tc mapping characters to random hash codes. A key x = (x1; : : : ; xc) is hashed to T1[x1] ⊕ · · · ⊕ Tc[xc], where ⊕ denotes xor. While this scheme is not even 4-independent, we show that it provides many of the guarantees that are normally obtained via higher independence, e.g., Chernoff-type concentration, min-wise hashing for estimating set intersection, and cuckoo hashing. Contents 1 Introduction 2 2 Concentration Bounds 7 3 Linear Probing and the Concentration in Arbitrary Intervals 13 4 Cuckoo Hashing 19 5 Minwise Independence 27 6 Fourth Moment Bounds 32 arXiv:1011.5200v2 [cs.DS] 7 May 2011 A Experimental Evaluation 39 B Chernoff Bounds with Fixed Means 46 1 1 Introduction An important target of the analysis of algorithms is to determine whether there exist practical schemes, which enjoy mathematical guarantees on performance. Hashing and hash tables are one of the most common inner loops in real-world computation, and are even built-in \unit cost" operations in high level programming languages that offer associative arrays. Often, these inner loops dominate the overall computation time.
    [Show full text]
  • Fundamental Data Structures Contents
    Fundamental Data Structures Contents 1 Introduction 1 1.1 Abstract data type ........................................... 1 1.1.1 Examples ........................................... 1 1.1.2 Introduction .......................................... 2 1.1.3 Defining an abstract data type ................................. 2 1.1.4 Advantages of abstract data typing .............................. 4 1.1.5 Typical operations ...................................... 4 1.1.6 Examples ........................................... 5 1.1.7 Implementation ........................................ 5 1.1.8 See also ............................................ 6 1.1.9 Notes ............................................. 6 1.1.10 References .......................................... 6 1.1.11 Further ............................................ 7 1.1.12 External links ......................................... 7 1.2 Data structure ............................................. 7 1.2.1 Overview ........................................... 7 1.2.2 Examples ........................................... 7 1.2.3 Language support ....................................... 8 1.2.4 See also ............................................ 8 1.2.5 References .......................................... 8 1.2.6 Further reading ........................................ 8 1.2.7 External links ......................................... 9 1.3 Analysis of algorithms ......................................... 9 1.3.1 Cost models ......................................... 9 1.3.2 Run-time analysis
    [Show full text]
  • Efficient Usage of One-Sided RDMA for Linear Probing
    Efficient Usage of One•Sided RDMA for Linear Probing Tinggang Wang*1 Shuo Yang*1 Hideaki Kimura2 Garret Swart2 Spyros Blanas1 1 The Ohio State University 2 Oracle Corp. {wang.5264, yang.5229, blanas.2}@osu.edu {hideaki.kimura, garret.swart}@oracle.com ABSTRACT Cuckoo hashing has been widely adopted by RDMA-aware RDMA has been an important building block for many high- key-value stores [3, 8, 20] due to the predictable and small performance distributed key-value stores in recent prior work. number of RDMA operations to access a remote hash table. To sustain millions of operations per second per node, many Prior work also proposed using one-sided RDMA verbs to of these works use hashing schemes, such as cuckoo hash- implement linear probing by doing fixed-size lookups [20], ing, that guarantee that an existing key can be found in a where the client fetches a fixed number of hash slots per small, constant number of RDMA operations. In this pa- RDMA READ request and repeats the procedure until find- per, we explore whether linear probing is a compelling de- ing the key or the first empty slot. However, fetching a fixed sign alternative to cuckoo-based hashing schemes. Instead number of slots per RDMA READ request may read too lit- of reading a fixed number of bytes per RDMA request, this tle or too much: in a lightly-loaded hash table, one should paper introduces a mathematical model that picks the opti- read very few slots to conserve network bandwidth; with mal read size by balancing the cost of performing an RDMA high load factors, the average length of the probe sequence operation with the probability of encountering a probe se- increases dramatically, hence one needs to read many more quence of a certain length.
    [Show full text]