Appendix A: Activation of Oil Exploration and Development in the Ethiopia–Kenya–South Sudan Transboundary Region1

Total Page:16

File Type:pdf, Size:1020Kb

Appendix A: Activation of Oil Exploration and Development in the Ethiopia–Kenya–South Sudan Transboundary Region1 Appendix A: Activation of Oil Exploration and Development in the Ethiopia–Kenya–South Sudan Transboundary Region1 Joshua S. Dimon2 with Claudia Carr While the Gibe III component of the Omo River basin development constitutes the most urgent, intensive and extensive threat to livelihoods along the lower Omo River and Lake Turkana, the peoples in this region are also under threat from other large-scale development programs. These too promise further restrictions of access to livelihood resources, including land grabs for large agri-business plantations along the lower Omo and, on an even larger scale, oil development. There has been a major expansion of oil exploration and development activities along Lake Turkana and the lower Omo basin in the last five years. The impacts of these developments will only compound Gibe III’s negative impacts on livelihoods in the region by further restricting pastoral territories, further abstracting water from the Omo and Lake Turkana for drilling, further reducing the water quality of the remaining water in the Omo River and Lake Turkana, and increasing the militarization of the region and potential for armed conflict. Current concessions for oil exploration in the region cover the entirety of Lake Turkana and the south Omo River, extending along the so-called tertiary rift valley zone of Ethiopia and the eastern branch of the East African Rift Valley. Exploration and, more recently, development of oil has been accelerating for the last five years in the region, although it is part of a much longer history of oil exploration. Contrary to news of brand-new interest/discoveries, exploration in this region has been going on for many years, without the prior knowledge of those living in the zones of exploration. The first exploration in the region was in the 1950s, with the first hints of oil resulting from shallow boring for water in Northwest Kenya in 1952 (Hedburg 1953). Exploration picked up again in the 1980s with help from the World Bank in both Kenya and Ethiopia (Rachwal and Destefano 1980; McGrew 1982; Hartman and Walker 1988). This zone is part of a larger regional exploration history starting in the 1940s. The Africa Resources Working Group (ARWG) has been investigating this history across thirteen countries covering seventy years and over three hundred companies, and has documented this in several forthcoming papers. With decades of exploration history in the zones, oil companies currently investing in this region generally already know what exists in the area, and where, and accelerate quickly to exploration drilling, which is a far more damaging phase than seismic exploration, and requires a greater amount of auxiliary support infrastructure, including security, where the company deems the area a potential risk to their property or employees. Given the growing tensions due to the Gibe III impacts, and the increasing conflict in South Sudan, private security forces are likely in use here, further heightening the potential for violent conflict in this region. 1This Appendix was written in July of 2014. Since that time, major expansions of Tullow Oil, Africa Oil and other petroleum and associated interests have been underway in the region. This discussion offers an outline and perspective regarding the genesis and basic character of the fast-moving development now underway. 2Joshua S. Dimon is completing a doctoral degree in Environmental Science, Policy and Management at the University of California, Berkeley— specializing in extractive industry development within Africa. © The Editor(s) (if applicable) and The Author(s) 2017 217 C.J. Carr, River Basin Development and Human Rights in Eastern Africa — A Policy Crossroads, DOI 10.1007/978-3-319-50469-8 218 Appendix A: Activation of Oil Exploration Currently, Africa Oil and Tullow are the two dominant companies involved in the region, although over 15 companies are involved in the tertiary rift valley all together. Tullow has been very active in the broader region, with oil discoveries in the Ugandan portion of the Western branch of the rift valley. Africa Oil is a more recent addition to the region, but includes individuals with many years of geologic experience in the region. Perhaps more problematic, Africa Oil gained its con- cessions along the Omo River in Ethiopia through an intermediary that initially gained the concessions as agricultural plantation project land. The inter-changing roles of the investors engaged both across industries, and across countries in the region demonstrates both the unified front facing the pastoral peoples of the Southern Omo, northern Lake Turkana region, and the strategic advantage these companies have in negotiations with regional governments. Given the evidence from the past seven decades of exploration, and current upsurges in interest in the broader northern Rift Valley Area and Horn of Africa, the oil companies are arguing this region is likely to become next West Africa. The convergence of this massive expansion of the oil industry in the same impact zone as that of the Gibe III dam will decimate livelihoods in this region. The impacts from all of these developments together far exceed the sum of the individual impacts, as livelihoods will already be stressed beyond their coping points by the Gibe III dam. Seismic exploration, while progressing for decades, has rapidly expanded in recent years. Additionally, two wells have already been drilled by Tullow Oil in the lower Omo area near the Ethiopia–Kenya border by Tullow Oil, and many more South of the Lake in Kenya where development drilling is already in progress. These developments will directly and severely impact pastoral livelihoods in the region. Seismic exploration requires the clearing of vast swaths of land from flora, fauna and people including for the placement of explosives or large “thumper trucks” every 100 m. This is carried out for distances of hundreds of kilometers in order to generate seismic waves. These operations involve security measures to prevent people from approaching the seismic lines during clearing, placing of trucks and explosives, and seismic testing itself which can extend for months. For pastoral peoples, these actions mean major disruption of settlements, livestock movements and access to grazing and water sources. Drilling involves the same securitization of the location of the drilling rigs. It also involves the production of a very large amount of drilling waste, including toxic drilling muds, drill cuttings (rock) contaminated with drilling muds and possibly hydrocarbons, and produced water (from injection during drilling) also contaminated with drilling muds and hydrocarbons. If the drilling is on land, in areas such as this region, the wastes will be left near the drill site in waste ponds, likely unlined, risking contamination of any groundwater that may be accessed in the region, as well as nearby land. If the drilling is on water, the wastes are generally dumped directly into the water system next to the drilling platform. This would be concern enough without the impacts on Lake Turkana water levels from the dam, as it can seriously impact benthic organisms, chemical oxygen demand, and fish life (Patin 1999; Satterly 2003). However, with any reduction in Lake level from the Dam itself, this would be far worse. Each of these phases of oil and gas development involve security, generally from either private security forces, or the military forces of the hosting country. In a region already experiencing the livelihood tensions noted in throughout this book, as well as the impending tensions from the impacts of the Dam itself, this increased militarization of the region will only augment armed conflict and humanitarian concerns. The exploration programs that have been progressing in the South Omo, North Turkana regions have already sparked conflict when residents of the region first encountered oil company trucks that said they had authorization from the government to commence work in the region, despite community members knowing nothing about it. Literature Cited Hartman, J.B., and T.L. Walker. 1988. Petroleum developments in Central and Southern Africa in 1987 (Part b). Bulletin of the American Association of Petroleum Geographers 72(10b):196–227. Hedberg, H. 1953. Petroleum developments in Africa in 1952. McGrew, H.J. 1982. Petroleum developments in central and Southern Africa in 1981. Bulletin of the American Association of Petroleum Geographers 66(11):2251–2320. Appendix A: Activation of Oil Exploration 219 Fig. A.1 Concessions for oil and gas exploration in the Ethiopia–Kenya–South Sudan transboundary region—2014. Source Map by Africa Resources Working Group (ARWG), compiled from relevant oil industry documents/websites 220 Appendix A: Activation of Oil Exploration Fig. A.2 Cumulative concessions for oil and gas exploration in Eastern Africa. Source Mapping by J. Dimon, A. Gray and C. Carr of Africa Resources Working Group (ARWG) with data from relevant petroleum literature and oil industry websites Appendix A: Activation of Oil Exploration 221 Patin, S.A. 1999. Environmental impact of the offshore oil and gas industry. New York: Eco Monitor Publishing. Rachwal, C.A., and E.R. Destefano. 1980. Petroleum developments in central and Southern Africa in 1979. Bulletin of the American Association of Petroleum Geographers 64(11):1785–1835. Satterly, N. 2003. PCR inhibition and toxic effects by sediment samples exposed to drilling muds. Masters Thesis, submitted to Louisiana State University and Agricultural and Mechanical College. Appendix B: Species Collected in the Lower Omo River Basin and Transborder Region Collection by C. Carr (Taxonomic Update by F.H. Brown) Acanthaceae Barleria acanthoides Vahl Barleria eranthemoides R. Br. Barleria linearifolia Rendle Blepharis persica (Burm. f.) Kuntze (syn of B. ciliaris L.) B.L. Burtt Crossandra nilotica Oliv. Ecbolium anisacanthus (Schweinf.) C.B.Cl. Ecbolium revolutum (L.) C.B.Cl. Hypoestes verticillaris R. Br. Justicia anselliana T. Anders. Justicia caerulea Forssk. Justicia flava Forssk. Justicia odora (Forssk.) Vahl (syn.
Recommended publications
  • Effect of Cooking Methods on Available and Unavailable Carbohydrates of Some Tropical Grain Legumes
    African Journal of Biotechnology Vol. 7 (16), pp. 2940-2945, 18 August, 2008 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB08.317 ISSN 1684–5315 © 2008 Academic Journals Full Length Research Paper Effect of cooking methods on available and unavailable carbohydrates of some tropical grain legumes David F. Apata Unit of Nutritional Biochemistry, Department of Animal Production, University of Ilorin, Ilorin, Nigeria. E-mail: [email protected]. Accepted 16 May, 2008 The available and unavailable carbohydrate contents of eleven tropical legumes from different seed lines were investigated in raw, cooked and autoclaved forms. Raw legumes contained small amounts of glucose and fructose which ranged from 0.05 to 0.22 g/100 g and 0.24 to 0.90 g/100 g, respectively, sucrose varied between 1.49 g/100 g and 3.76 g/100 g. Reducing sugars were higher in bambara groundnut than other legumes. Starch was the principal carbohydrate, ranging from 35.4 to 50.0 g/100 g. African yam beans, lima beans and kidney beans had fairly high levels of oligosaccharides (raffinose + stachyose) than bambara groundnuts. Non-cellulosic polysaccharides and cellulose contents were highest in jack bean followed by pigeon pea TUc5537-1 and least in bambara groundnut KAB-3. Lignin was low and fairly uniform in all the legumes. The available carbohydrates were reduced to various extents by cooking, whereas the unavailable carbohydrates were not affected appreciably by heat treatment. Key words: Legume grains, available and unavailable carbohydrates, cooking, autoclaving. INTRODUCTION Grain legumes are foodstuffs of great nutritional signifi- where they are metabolized by the micro flora, producing cance to people in tropical developing countries.
    [Show full text]
  • Origin of Hawaiian Endemic Species of Canavalia (Fabaceae) from Sea-Dispersed Species Revealed by Chloroplast and Nuclear DNA Sequences
    J. Jpn. Bot. 86: 15–25 (2011) Origin of Hawaiian Endemic Species of Canavalia (Fabaceae) from Sea-Dispersed Species Revealed by Chloroplast and Nuclear DNA Sequences a a,† b Mohammad VATANPARAST , Koji TAKAYAMA , Mario S. SOUSA , Yoichi c a, TATEISHI and Tadashi KAJITA * aDepartment of Biology, Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522 JAPAN; bDepartamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, 04510 México, D. F., MÉXICO; cFaculty of Education, University of the Ryukyus, 1, Senbaru, Nishihara, Okinawa, 903-0129 JAPAN; †Present address: Department of Plant Systematics and Evolution, Institute of Botany, University of Vienna. Rennweg 14, A-1030 Wien, AUSTRIA *Corresponding author: [email protected] (Accepted on July 22, 2010) To reveal the origin of the Hawaiian endemic Canavalia species, phylogenetic analyses of chloroplast DNA (cpDNA) and internal transcribed spacers (ITS) of nuclear ribosomal DNA (nrDNA) sequences were performed. Phylogenetic analyses of 6 cpDNA regions (6386 bp) and of nrDNA ITS (708 bp) for all 6 species of the Hawaiian endemic subgenus Maunaloa together with samples from the other 3 subgenera of Canavalia suggested that subgenus Maunaloa is monophyletic and more closely related to subgenus Canavalia than to other subgenera. Phylogenetic analyses of multiple haplotypes of the nrDNA ITS suggested that the Hawaiian endemic species of Canavalia originated from a sea-dispersed species of subgenus Canavalia, possibly Canavalia rosea (Sw.) DC., which is a pantropical species whose seeds are spread by sea drift. A single origin for subgenus Maunaloa might be also suggested. Key words: Canavalia, chloroplast DNA, Hawaiian Islands, nrDNA ITS, phylogeny, seed dispersal.
    [Show full text]
  • Are Cattle Surrogate Wildlife? Savanna Plant Community Composition Explained by Total Herbivory More Than Herbivore Type
    Ecological Applications, 26(6), 2016, pp. 1610–1623 © 2016 by the Ecological Society of America Are cattle surrogate wildlife? Savanna plant community composition explained by total herbivory more than herbivore type KARI E. VEBLEN,1,2,6 LAUREN M. PORENSKY,2,3 CORINNA RIGINOS,2,4 AND TRUMAN P. YOUNG2,5 1Department of Wildland Resources and Ecology Center, Utah State University, Logan, Utah 84322 USA 2Mpala Research Centre, P.O. Box 555, Nanyuki, Kenya 3USDA-ARS Rangeland Resources Research Unit, Fort Collins, Colorado 80526 USA 4Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071 USA 5Department of Plant Sciences, University of California, Davis, California 95616 USA Abstract. The widespread replacement of wild ungulate herbivores by domestic livestock in African savannas is composed of two interrelated phenomena: (1) loss or reduction in numbers of individual wildlife species or guilds and (2) addition of livestock to the system. Each can have important implications for plant community dynamics. Yet very few studies have experimentally addressed the individual, combined, and potentially interactive effects of wild vs. domestic herbivore species on herbaceous plant communities within a single system. Additionally, there is little information about whether, and in which contexts, livestock might functionally replace native herbivore wildlife or, alternatively, have fundamentally different effects on plant species composition. The Kenya Long-term Exclosure Experiment, which has been running since 1995, is composed of six treatment combinations of mega- herbivores, meso- herbivore ungulate wildlife, and cattle. We sampled herbaceous vegetation 25 times between 1999 and 2013. We used partial redundancy analysis and linear mixed models to assess effects of herbivore treatments on overall plant community composition and key plant species.
    [Show full text]
  • Phylogeography of a Pantropical Plant with Sea-Drifted Seeds; Canavalia Rosea (Sw.) DC., (Fabaceae) 汎熱帯海流散布植
    (千葉大学学位申請論文) Phylogeography of a pantropical plant with sea‐drifted seeds; Canavalia rosea (Sw.) DC., (Fabaceae) 汎熱帯海流散布植物ナガミハマナタマメ (マメ科)の系統地理 2010 年7月 千葉大学大学院理学研究科 地球生命圏科学専攻 生物学コース Mohammad Vatanparast Phylogeography of a pantropical plant with sea‐drifted seeds; Canavalia rosea (Sw.) DC., (Fabaceae) July 2010 MOHAMMAD VATANPARAST Graduate School of Science CHIBA UNIVERSITY TABLE OF CONTENTS PAGES ABSTRACT 1 GENERAL INTRODUCTION 3 Pantropical plants with sea-drifted seeds species (PPSS) 5 A project on the phylogeography of the PPSS 6 A case study of PPSS: Hibiscus tiliaceus L. 7 Canavalia rosea: a genuine pantropical plant with sea-drifted seeds 8 Overview of this study 10 CHAPTER 1 12 PHYLOGENETIC RELATIONSHIPS AMONG CANAVALIA ROSEA AND ITS ALLIED SPECIES 12 1-1 Introduction 12 1-2 Materials and Methods 15 Taxon sampling 15 DNA extraction, PCR, and sequencing 16 Phylogenetic analyses based on cpDNA sequence data 18 Phylogenetic analyses based on ITS sequence data 19 1-3 Results 21 Phylogenetic analyses based on cpDNA sequence data 21 Phylogenetic analyses based on ITS sequence data 22 1-4 Discussion 24 Phylogenetic relationships among C. rosea and its related species 24 The phylogeographic break in the Atlantic Ocean 25 Origin of the Hawaiian endemic species 26 Future prospects for the evolutionary studies among C. rosea and its allied species 27 Tables and figures 29 i TABLE OF CONTENTS (CONTINUED) PAGES CHAPTER 2 40 GLOBAL GENETIC STRUCTURE OF CANAVALIA ROSEA; EVIDENCE FROM CHLOROPLAST DNA SEQUENCES 40 2-1 Introduction 40 2-2 Materials and Methods 44 Sampling 44 DNA extraction, PCR, and sequencing 44 Haplotype Composition and Network of C.
    [Show full text]
  • The North American Species of Smilacina
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1945-05-01 The North American species of Smilacina Desma H. Galway Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd BYU ScholarsArchive Citation Galway, Desma H., "The North American species of Smilacina" (1945). Theses and Dissertations. 8057. https://scholarsarchive.byu.edu/etd/8057 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. The North American Species of Smilacina DESMA H. GALWAY Reprinted from "THE AMERICANMIDLAND NATURALIST' Vol. 33, No. 3, pp. 644-666, May, 1945 n..unt~Pr.a Notre Dame. In d. The North AmericanSpecies of Smilacina Desma H. Galway Introduction This paper is the result of a taxonomic study of the species of the genus S milacinaoccurring naturally in North America north of Mexico. In the past it has been difficult to make satisfactory determinations of members of this genus from existing manuals, especially among western forms. West of the great plains the great diversity in environmental conditions has given rise to a diversity in form of the species that are widely distributed. Many of these forms have been given specific or varietal names recently, and as no compre- hensive work on the genus has been done since most of these were published, it is hoped that this study will be generally helpful in identifying members of the group. During the preparation of this work over 2500 herbarium specimens have been examined and annotated and comparative measurements made of many of these.
    [Show full text]
  • A. Archaeological Reconnaissance Survey
    FINAL ENVIRONMENTAL ASSESSMENT ANAHOLA SOLAR PROJECT APPENDIX A A. ARCHAEOLOGICAL RECONNAISSANCE SURVEY PAGE A-1 T. S. Dye & Colleagues, Archaeologists, Inc. 735 Bishop St., Suite 315, Honolulu, Hawai‘i 96813 Archaeological Inventory Survey with Backhoe Trenching near Anahola∗ Kamalomalo‘o Ahupua‘a, Puna District, Kaua‘i Island TMK: (4) 4–7–004:002 Carl E. Sholin Thomas S. Dye February 14, 2013 Abstract At the request of Planning Solutions, Inc., T. S. Dye & Colleagues, Archaeologists conducted an archaeological inventory survey for a 60 ac. portion of TMK: (4) 4– 7–004:002, located near Anahola, in Kamalomalo‘o Ahupua‘a, Puna District, Kaua‘i Island. The Kaua‘i Island Utility Cooperative (KIUC) proposes to install a photovoltaic facility, substation, and service center at this location. The inventory survey was undertaken in support of KIUC’s request for financial assistance from the Rural Utilities Service (RUS), pursuant to Section 106 of the National Historic Preservation Act of 1966 (NHPA). The area of potential effect (APE) includes includes the area of the proposed photovoltaic facility, and a substation, service center, access roads, and storage yards. Background research indicated that the APE had been a sugarcane field for many years. The archaeological inventory survey consisted of the excavation and sampling of ten test trenches throughout the APE. Four stratigraphic layers were identified during the inventory survey: two were determined to be related to historic-era agriculture, and two were determined to be deposits of natural terrestrial sediments that developed in situ. No traditional Hawaiian cultural materials were identified during the inventory survey; however, features from use of the area as a sugarcane field, including two historic-era raised agricultural ditches, were identified within the APE.
    [Show full text]
  • Pest Management Strategic Plan for Coffee Production in Hawai'i
    Pest Management Strategic Plan for Coffee Production in Hawai‘i Summary of a workshop held on April 16–17, 2007 Honolulu, Hawai‘i Issued January 2010 Lead Authors: Mike Kawate, Cathy Tarutani, and H.C. Bittenbender Contact Person: Cathy Tarutani, Education Specialist (808) 956-2004 [email protected] This project was sponsored by the Hawai‘i Farm Bureau Federation, co-sponsored with the State of Hawai‘i Department of Agriculture, and the Western Integrated Pest Management Center, which is funded by the United States Department of Agriculture– National Institute of Food and Agriculture. Table of Contents Executive Summary ...........................................................................................................3 Work Group and Contributors ........................................................................................4 Top Pest Management Priorities in Hawai‘i Coffee Production ...................................6 General Production Information ......................................................................................8 Production Regions ................................................................................................9 Cultural Practices ................................................................................................12 Integrated Pest Management ..............................................................................15 Crop Stages ...........................................................................................................16 Pest Pressures
    [Show full text]
  • Genetic Diversity for Seed Mineral Composition in the Wild Legume Teramnus Labialis
    Plant Foods Hum Nutr (2008) 63:105–109 DOI 10.1007/s11130-008-0078-8 ORIGINAL PAPER Genetic Diversity for Seed Mineral Composition in the Wild Legume Teramnus labialis Michael A. Grusak Published online: 19 June 2008 # Springer Science + Business Media, LLC 2008 Abstract Teramnus labialis (L.) Spreng. is a wild, tropical protein, energy (in the form of carbohydrates or lipids), legume whose seeds are collected and used as a food source several vitamins, and many human essential minerals. by tribal populations. In order to assess the potential of this Various legume species have been harnessed for large-scale legume to provide dietary minerals for humans, fourteen cultivation in diverse climactic zones; however, several diverse accessions were grown under controlled, nutrient- wild legume species are also collected and consumed on a replete conditions and seeds were harvested for mineral smaller scale by rural or tribal populations [3–6]. The analysis. The germplasm originated from Indonesia, Africa, potential conversion of these wild legumes into cultivated the Caribbean, and South America. Seed concentrations of crops has received considerable attention in recent years, phosphorus (P), potassium (K), sodium (Na), iron (Fe), especially as efforts have expanded to increase the mineral copper (Cu), manganese (Mn), and zinc (Zn) were found to concentration of seed foods for humans [7]. Populations fall within the range of published values for several that are at-risk for micronutrient mineral deficiencies (e.g., cultivated grain legumes, while calcium (Ca) and magne- Fe, Zn, I) or macronutrient mineral deficiencies (e.g., Ca) sium (Mg) were higher in T. labialis seeds.
    [Show full text]
  • Hartebeests in Ethiopia
    99 Hartebeests in Ethiopia Melvin Bo/ton In this report on his field survey of Ethiopian hartebeests, two of which—Swayne's, now extinct outside Ethiopia, and the tora—are in the Red Data Book, Melvin Bolton describes the known populations and recommends the appropriate conservation measures. His most encouraging discovery was a population—unfortunately in a heavily cultivated area—of at least 500 Swayne's hartebeest, bringing the estimated total for this subspecies to 600—700. His study shows that it is not always easy to ascribe all hartebeests to the three main subspecies or races, and he describes two intergrades with distinctive features. The field work was helped with small grants from the FPS and the WWF. The hartebeest is still one of the more widespread of large African antelopes although no longer occurring in parts of its former range. If, as some authorities believe, all the forms of A Icelaphus are con- specific then A. buselaphus extends from Senegal in the west to Ethiopia in the east and south to the Cape. In Ethiopia three distinct subspecies or races are found: A. b. lelwel, A. b. tora and A. b. swaynei; the last two are in the IUCN Red Data Book. For convenience in presentation, all Ethiopian hartebeests will be considered under the headings of these three subspecies. Tora Hartebeest A reddish fawn animal with horns which diverge widely outwards from the pedicle then upwards, so that in front view they present a shape often likened to a curly bracket lying on its side, the tora hartebeest occurs in eastern Sudan and north-western Ethiopia.
    [Show full text]
  • Cytotoxic Effects of Methanol Extract of Raw, Cooked and Fermented Split Beans of Canavalia on Cancer Cell Lines Mcf-7
    ISSN: 0976-3104 REGULAR ISSUE Niveditha et al. _______________________________________________________________________________________________________ www.iioab.org RESEARCH OPEN ACCESS CYTOTOXIC EFFECTS OF METHANOL EXTRACT OF RAW, COOKED AND FERMENTED SPLIT BEANS OF CANAVALIA ON CANCER CELL LINES MCF-7 AND HT-29 Vedavyas Ramakunja Niveditha1, Divana Krishna Venkatramana2, Kandikere Ramaiah Sridhar1* 1Department of Biosciences, Mangalore University, Mangalagangotri 574 199, Mangalore, Karnataka, INDIA 2Bhat Biotech India (P) Ltd., Bangalore 560 100, Karnataka, INDIA ABSTRACT Received on: 11th-Apr-2013 In vitro cytotoxicity evaluation of methanol extract of raw, cooked and solid-substrate fermented Revised on: 8th -May -2013 (Rhizopus oligosporus) split beans of wild legumes (Canavalia cathartica and C. maritima) of coastal Accepted on: 19th -May-2013 sand dunes of the Southwest India was carried out. Cytotoxic activity (ED and cytotoxicity) of methanol 50 Published on: 9th -Sept-2013 extracts was tested by (3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Differential impacts on the cancer cell lines MCF–7 and HT–29 were seen even though both plant KEY WORDS species grow in the same habitat. Methanol extract of cooked (C. maritima) and fermented (C. cathartica) split beans showed better in vitro anticancer activities compared to the raw beans. It is concluded that active principles of methanol extract of cooked and fermented Canavalia beans have potential to inhibit Cytotoxicity; Canavalia; Wild cancer cell lines MCF-7 and HT-29. Besides, it is possible to use extracts of cooked/fermented beans to legumes; Solid-substrate control colon cancer by diet management. fermentation; Rhizopus oligosporus; Cancer cell lines *Corresponding author: Email: [email protected]; Tel: +91-824 2287 261; Fax: +91 824 2287 367 [I] INTRODUCTION Out of 7.6 million deaths worldwide, cancer is one of the prototype.
    [Show full text]
  • Canavalia Ensiformis) for Human Consumption in Tanzania
    International Journal of Agriculture and Food Security ISSN: 0812-3497 Vol. 3 (3), pp. 039-049, March 2017. Available online at www.advancedscholarsjournals.org © Advanced Scholars Journals Full length Research paper Utilization of jack beans (Canavalia ensiformis) for human consumption in Tanzania *Nakaaya Karoli, Jakaya O. Sumari and Hasheem Marealle Department of Food Technology, Nutrition and Consumer Sciences, Sokoine University of Agriculture, Morogoro, Tanzania. Accepted 18 February, 2017. Population increase is forcing mankind to look for alternative food sources from underutilized plants. Jack bean has been earmarked as one of these food sources. The only barrier for its utilization is the presence of inherent toxic compounds that should be removed, to make it edible to humans. A number of researchers have tried various ways in an effort to reach that goal. This study has also tried to perform a number of treatments on jack beans, which included soaking, treatment with trona (magadi soda) and germination. The samples of jack beans were brought from Mlingano Agricultural Research Institute and transported to the Sokoine University of Agriculture, Tanzania. Proximate analysis, mineral and phenolic compounds content were carried out on the treated samples. Acceptability tests were performed on products prepared from composite flour, made from 48 h. germinated jack beans. The products included porridges, breads and buns. Soaking results in lowering mineral concentrations. However, treatment with trona increased mineral profile. The levels of calcium, iron and zinc for the jack bean seeds analysed, gave 8.99, 3.83 and 1.76 mg/100 g, respectively. Proximate analysis revealed that moisture, protein, fibre, fat, ash and carbohydrate content were 4.6, 29.7, 5.2, 3.3, 3.4 and 53.9%, respectively.
    [Show full text]
  • DANGER! ¡PELIGRO! Two More Times
    67941 Velossa BL 4/22/13 9:36 AM Page 1 STORAGE AND DISPOSAL Do not contaminate water, food or feed by storage or disposal. PESTICIDE STORAGE: Store product in original container only. Store in a cool, dry place. PESTICIDE DISPOSAL: Waste resulting from the use of this product TM may be disposed of on site or at an approved waste disposal facility. CONTAINER HANDLING: NONREFILLABLE CONTAINER (EQUAL TO OR LESS THAN 5 GALLONS): Do not reuse or refill this container. Triple rinse container (or equivalent) promptly after emptying. Triple rinse as follows: Empty the remaining contents into application equipment or a mix tank and drain for 10 seconds after the flow begins to drip. Fill the container 1/4 full with water and recap. Shake for 10 seconds. Pour rin- sate into application equipment or a mix tank or store rinsate for later Contains 2.4 Lbs. Active Ingredient Per Gallon By Weight use or disposal. Drain for 10 seconds after the flow begins to drip. Repeat this procedure two more times. Offer for recycling, if available. ACTIVE INGREDIENT: NONREFILLABLE CONTAINER (GREATER THAN 5 GALLONS): Do not Hexazinone [3-cyclohexyl-6-(dimethylamino)-1-methyl- reuse or refill this container. Triple rinse container (or equivalent) 1,3,5-triazine-2,4(1H,3H)dione] . 25% promptly after emptying. Triple rinse as follows: Empty the remaining INERT INGREDIENTS. 75% contents into application equipment or a mix tank. Fill the container 1/4 TOTAL. 100% full with water. Replace and tighten closures. Tip container on its side and roll it back and forth, ensuring at least one complete revolution, for 30 seconds.
    [Show full text]