Distribution and Phylogenetic Significance of the 71-Kb Inversion
Annals of Botany 99: 747–753, 2007 doi:10.1093/aob/mcm010, available online at www.aob.oxfordjournals.org Distribution and Phylogenetic Significance of the 71-kb Inversion in the Plastid Genome in Funariidae (Bryophyta) BERNARD GOFFINET1,*, NORMAN J. WICKETT1 , OLAF WERNER2 , ROSA MARIA ROS2 , A. JONATHAN SHAW3 and CYMON J. COX3,† 1Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, University of Connecticut, Storrs, CT 06269-3043, USA, 2Universidad de Murcia, Facultad de Biologı´a, Departamento de Biologı´a Vegetal, Campus de Espinardo, 30100-Murcia, Spain and 3Department of Biology, Duke University, Durham, NC 27708, USA Received: 31 October 2006 Revision requested: 21 November 2006 Accepted: 21 December 2006 Published electronically: 2 March 2007 † Background and Aims The recent assembly of the complete sequence of the plastid genome of the model taxon Physcomitrella patens (Funariaceae, Bryophyta) revealed that a 71-kb fragment, encompassing much of the large single copy region, is inverted. This inversion of 57% of the genome is the largest rearrangement detected in the plastid genomes of plants to date. Although initially considered diagnostic of Physcomitrella patens, the inversion was recently shown to characterize the plastid genome of two species from related genera within Funariaceae, but was lacking in another member of Funariidae. The phylogenetic significance of the inversion has remained ambiguous. † Methods Exemplars of all families included in Funariidae were surveyed. DNA sequences spanning the inversion break ends were amplified, using primers that anneal to genes on either side of the putative end points of the inver- sion. Primer combinations were designed to yield a product for either the inverted or the non-inverted architecture.
[Show full text]