DOI: 10.1093/brain/awh235 Brain (2004), 127, 2090–2098 Assessing function and pathology in familial dysautonomia: assessment of temperature perception, sweating and cutaneous innervation Max J. Hilz,1,3 Felicia B. Axelrod,1 Andreas Bickel,3 Brigitte Stemper,3 Miroslaw Brys,1 Gwen Wendelschafer-Crabb2 and William R. Kennedy2 Downloaded from https://academic.oup.com/brain/article/127/9/2090/313144 by guest on 29 September 2021 1Department of Neurology, New York University Medical Correspondence to: Max J. Hilz, MD, PhD, Department of Center, New York, and 2University of Minnesota, Neurology, New York University Medical Center, 550 First Minneapolis, USA, and 3University of Erlangen-Nuremberg, Avenue, Suite NB 7W11, New York, NY, 10016, USA Erlangen, Germany E-mail:
[email protected] Summary This study was performed to assess cutaneous nerve fibre subepidermal neural plexus (SNP) and deep dermis. The loss in conjunction with temperature and sweating dys- few sweat glands present within the biopsies had had function in familial dysautonomia (FD). In ten FD patients, reduced innervation density. Substance P immunoreactive we determined warm and cold thresholds at the calf and (-ir) and calcitonin gene related peptide-ir (CGRP-ir) shoulder, and sweating in response to acetylcholine ionto- were virtually absent, but vasoactive intestinal peptide-ir phoresis over the calf and forearm. Punch skin biopsies (VIP-ir) nerves were present in the SNP. Empty Schwann from calf and back were immunostained and imaged cell sheaths were observed. Temperature perception was to assess nerve fibre density and neuropeptide content. more impaired than sweating. Epidermal nerve fibre Mean temperature thresholds and baseline sweat rate density was found to be profoundly reduced in FD.