General-Relativistic Covariance April 25, 2019 Author information Neil Dewar (ORCID 0000-0001-6623-4529) Munich Center for Mathematical Philosophy LMU Munich Fakultät Für Philosophie, Wissenschaftstheorie und Religionswissenschaft Geschwister-Scholl-Platz 1 Munich 80539 Germany Contact information E:
[email protected] T: 00447799762727 Abstract This is an essay about general covariance, and what it says (or doesn’t say) about spacetime structure. After outlining a version of the dynamical approach to spacetime theories, and how it struggles to deal with generally covariant theories, I argue that we should think about the symmetry structure of spacetime rather differently in generally- covariant theories compared to non-generally-covariant theories: namely, as a form of internal rather than external symmetry structure. 1 General-Relativistic Covariance April 25, 2019 1. Introduction This essay is about the feature of general relativity from which the hole argument springs: namely, general covariance. Famously, Einstein took the general covariance of the theory to express its commitment to a notion of “general relativity”, i.e., of the equivalence of all states of motion (just as the special covariance of special relativity expressed the equivalence of all inertial motion). In general, philosophers have been unpersuaded by Einstein’s claim, pointing to two problems in particular: the fact that general-relativistic spacetimes have a covariant derivative operator, and hence the re- sources to distinguish between inertial and non-inertial motion; and the fact that other theories (e.g. special relativity) can also be given a generally covariant formulation, which suggests that general covariance per se cannot be a physically significant feature of a theory.