CUG Program-3Press.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New CSC Computing Resources
New CSC computing resources Atte Sillanpää, Nino Runeberg CSC – IT Center for Science Ltd. Outline CSC at a glance New Kajaani Data Centre Finland’s new supercomputers – Sisu (Cray XC30) – Taito (HP cluster) CSC resources available for researchers CSC presentation 2 CSC’s Services Funet Services Computing Services Universities Application Services Polytechnics Ministries Data Services for Science and Culture Public sector Information Research centers Management Services Companies FUNET FUNET and Data services – Connections to all higher education institutions in Finland and for 37 state research institutes and other organizations – Network Services and Light paths – Network Security – Funet CERT – eduroam – wireless network roaming – Haka-identity Management – Campus Support – The NORDUnet network Data services – Digital Preservation and Data for Research Data for Research (TTA), National Digital Library (KDK) International collaboration via EU projects (EUDAT, APARSEN, ODE, SIM4RDM) – Database and information services Paituli: GIS service Nic.funet.fi – freely distributable files with FTP since 1990 CSC Stream Database administration services – Memory organizations (Finnish university and polytechnics libraries, Finnish National Audiovisual Archive, Finnish National Archives, Finnish National Gallery) 4 Current HPC System Environment Name Louhi Vuori Type Cray XT4/5 HP Cluster DOB 2007 2010 Nodes 1864 304 CPU Cores 10864 3648 Performance ~110 TFlop/s 34 TF Total memory ~11 TB 5 TB Interconnect Cray QDR IB SeaStar Fat tree 3D Torus CSC -
Petaflops for the People
PETAFLOPS SPOTLIGHT: NERSC housands of researchers have used facilities of the Advanced T Scientific Computing Research (ASCR) program and its EXTREME-WEATHER Department of Energy (DOE) computing predecessors over the past four decades. Their studies of hurricanes, earthquakes, NUMBER-CRUNCHING green-energy technologies and many other basic and applied Certain problems lend themselves to solution by science problems have, in turn, benefited millions of people. computers. Take hurricanes, for instance: They’re They owe it mainly to the capacity provided by the National too big, too dangerous and perhaps too expensive Energy Research Scientific Computing Center (NERSC), the Oak to understand fully without a supercomputer. Ridge Leadership Computing Facility (OLCF) and the Argonne Leadership Computing Facility (ALCF). Using decades of global climate data in a grid comprised of 25-kilometer squares, researchers in These ASCR installations have helped train the advanced Berkeley Lab’s Computational Research Division scientific workforce of the future. Postdoctoral scientists, captured the formation of hurricanes and typhoons graduate students and early-career researchers have worked and the extreme waves that they generate. Those there, learning to configure the world’s most sophisticated same models, when run at resolutions of about supercomputers for their own various and wide-ranging projects. 100 kilometers, missed the tropical cyclones and Cutting-edge supercomputing, once the purview of a small resulting waves, up to 30 meters high. group of experts, has trickled down to the benefit of thousands of investigators in the broader scientific community. Their findings, published inGeophysical Research Letters, demonstrated the importance of running Today, NERSC, at Lawrence Berkeley National Laboratory; climate models at higher resolution. -
Workload Management and Application Placement for the Cray Linux Environment™
TMTM Workload Management and Application Placement for the Cray Linux Environment™ S–2496–4101 © 2010–2012 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of Cray Inc. U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014. All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable. Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable. Cray and Sonexion are federally registered trademarks and Active Manager, Cascade, Cray Apprentice2, Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray CX, Cray CX1, Cray CX1-iWS, Cray CX1-LC, Cray CX1000, Cray CX1000-C, Cray CX1000-G, Cray CX1000-S, Cray CX1000-SC, Cray CX1000-SM, Cray CX1000-HN, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray X1, Cray X1E, Cray X2, Cray XD1, Cray XE, Cray XEm, Cray XE5, Cray XE5m, Cray XE6, Cray XE6m, Cray XK6, Cray XK6m, Cray XMT, Cray XR1, Cray XT, Cray XTm, Cray XT3, Cray XT4, Cray XT5, Cray XT5h, Cray XT5m, Cray XT6, Cray XT6m, CrayDoc, CrayPort, CRInform, ECOphlex, LibSci, NodeKARE, RapidArray, The Way to Better Science, Threadstorm, uRiKA, UNICOS/lc, and YarcData are trademarks of Cray Inc. -
Seminar HPC Trends Winter Term 2017/2018 New Operating System Concepts for High Performance Computing
Seminar HPC Trends Winter Term 2017/2018 New Operating System Concepts for High Performance Computing Fabian Dreer Ludwig-Maximilians Universit¨atM¨unchen [email protected] January 2018 Abstract 1 The Impact of System Noise When using a traditional operating system kernel When running large-scale applications on clusters, in high performance computing applications, the the noise generated by the operating system can cache and interrupt system are under heavy load by greatly impact the overall performance. In order to e.g. system services for housekeeping tasks which is minimize overhead, new concepts for HPC OSs are also referred to as noise. The performance of the needed as a response to increasing complexity while application is notably reduced by this noise. still considering existing API compatibility. Even small delays from cache misses or interrupts can affect the overall performance of a large scale In this paper we study the design concepts of het- application. So called jitter even influences collec- erogeneous kernels using the example of mOS and tive communication regarding the synchronization, the approach of library operating systems by ex- which can either absorb or propagate the noise. ploring the architecture of Exokernel. We sum- Even though asynchronous communication has a marize architectural decisions, present a similar much higher probability to absorb the noise, it is project in each case, Interface for Heterogeneous not completely unaffected. Collective operations Kernels and Unikernels respectively, and show suffer the most from propagation of jitter especially benchmark results where possible. when implemented linearly. But it is hard to anal- yse noise and its propagation for collective oper- ations even for simple algorithms. -
The Linux Device File-System
The Linux Device File-System Richard Gooch EMC Corporation [email protected] Abstract 1 Introduction All Unix systems provide access to hardware via de- vice drivers. These drivers need to provide entry points for user-space applications and system tools to access the hardware. Following the \everything is a file” philosophy of Unix, these entry points are ex- posed in the file name-space, and are called \device The Device File-System (devfs) provides a power- special files” or \device nodes". ful new device management mechanism for Linux. Unlike other existing and proposed device manage- This paper discusses how these device nodes are cre- ment schemes, it is powerful, flexible, scalable and ated and managed in conventional Unix systems and efficient. the limitations this scheme imposes. An alternative mechanism is then presented. It is an alternative to conventional disc-based char- acter and block special devices. Kernel device drivers can register devices by name rather than de- vice numbers, and these device entries will appear in the file-system automatically. 1.1 Device numbers Devfs provides an immediate benefit to system ad- ministrators, as it implements a device naming scheme which is more convenient for large systems Conventional Unix systems have the concept of a (providing a topology-based name-space) and small \device number". Each instance of a driver and systems (via a device-class based name-space) alike. hardware component is assigned a unique device number. Within the kernel, this device number is Device driver authors can benefit from devfs by used to refer to the hardware and driver instance. -
Cray XT and Cray XE Y Y System Overview
Crayyy XT and Cray XE System Overview Customer Documentation and Training Overview Topics • System Overview – Cabinets, Chassis, and Blades – Compute and Service Nodes – Components of a Node Opteron Processor SeaStar ASIC • Portals API Design Gemini ASIC • System Networks • Interconnection Topologies 10/18/2010 Cray Private 2 Cray XT System 10/18/2010 Cray Private 3 System Overview Y Z GigE X 10 GigE GigE SMW Fibre Channels RAID Subsystem Compute node Login node Network node Boot /Syslog/Database nodes 10/18/2010 Cray Private I/O and Metadata nodes 4 Cabinet – The cabinet contains three chassis, a blower for cooling, a power distribution unit (PDU), a control system (CRMS), and the compute and service blades (modules) – All components of the system are air cooled A blower in the bottom of the cabinet cools the blades within the cabinet • Other rack-mounted devices within the cabinet have their own internal fans for cooling – The PDU is located behind the blower in the back of the cabinet 10/18/2010 Cray Private 5 Liquid Cooled Cabinets Heat exchanger Heat exchanger (XT5-HE LC only) (LC cabinets only) 48Vdc flexible Cage 2 buses Cage 2 Cage 1 Cage 1 Cage VRMs Cage 0 Cage 0 backplane assembly Cage ID controller Interconnect 01234567 Heat exchanger network cable Cage inlet (LC cabinets only) connection air temp sensor Airflow Heat exchanger (slot 3 rail) conditioner 48Vdc shelf 3 (XT5-HE LC only) 48Vdc shelf 2 L1 controller 48Vdc shelf 1 Blower speed controller (VFD) Blooewer PDU line filter XDP temperature XDP interface & humidity sensor -
Pubtex Output 2006.05.15:1001
Cray XD1™ Release Description Private S–2453–14 © 2006 Cray Inc. All Rights Reserved. Unpublished Private Information. This unpublished work is protected to trade secret, copyright and other laws. Except as permitted by contract or express written permission of Cray Inc., no part of this work or its content may be used, reproduced or disclosed in any form. U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014. All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable. Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable. Autotasking, Cray, Cray Channels, Cray Y-MP, GigaRing, LibSci, UNICOS and UNICOS/mk are federally registered trademarks and Active Manager, CCI, CCMT, CF77, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Ada, Cray Animation Theater, Cray APP, Cray Apprentice2, Cray C++ Compiling System, Cray C90, Cray C90D, Cray CF90, Cray EL, Cray Fortran Compiler, Cray J90, Cray J90se, Cray J916, Cray J932, Cray MTA, Cray MTA-2, Cray MTX, Cray NQS, Cray Research, Cray SeaStar, Cray S-MP, -
Cielo Computational Environment Usage Model
Cielo Computational Environment Usage Model With Mappings to ACE Requirements for the General Availability User Environment Capabilities Release Version 1.1 Version 1.0: Bob Tomlinson, John Cerutti, Robert A. Ballance (Eds.) Version 1.1: Manuel Vigil, Jeffrey Johnson, Karen Haskell, Robert A. Ballance (Eds.) Prepared by the Alliance for Computing at Extreme Scale (ACES), a partnership of Los Alamos National Laboratory and Sandia National Laboratories. Approved for public release, unlimited dissemination LA-UR-12-24015 July 2012 Los Alamos National Laboratory Sandia National Laboratories Disclaimer Unless otherwise indicated, this information has been authored by an employee or employees of the Los Alamos National Security, LLC. (LANS), operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy. The U.S. Government has rights to use, reproduce, and distribute this information. The public may copy and use this information without charge, provided that this Notice and any statement of authorship are reproduced on all copies. Neither the Government nor LANS makes any warranty, express or implied, or assumes any liability or responsibility for the use of this information. Bob Tomlinson – Los Alamos National Laboratory John H. Cerutti – Los Alamos National Laboratory Robert A. Ballance – Sandia National Laboratories Karen H. Haskell – Sandia National Laboratories (Editors) Cray, LibSci, and PathScale are federally registered trademarks. Cray Apprentice2, Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray XE, Cray XE6, Cray XT, Cray XTm, Cray XT3, Cray XT4, Cray XT5, Cray XT5h, Cray XT5m, Cray XT6, Cray XT6m, CrayDoc, CrayPort, CRInform, Gemini, Libsci and UNICOS/lc are trademarks of Cray Inc. -
Jaguar and Kraken -The World's Most Powerful Computer Systems
Jaguar and Kraken -The World's Most Powerful Computer Systems Arthur Bland Cray Users’ Group 2010 Meeting Edinburgh, UK May 25, 2010 Abstract & Outline At the SC'09 conference in November 2009, Jaguar and Kraken, both located at ORNL, were crowned as the world's fastest computers (#1 & #3) by the web site www.Top500.org. In this paper, we will describe the systems, present results from a number of benchmarks and applications, and talk about future computing in the Oak Ridge Leadership Computing Facility. • Cray computer systems at ORNL • System Architecture • Awards and Results • Science Results • Exascale Roadmap 2 CUG2010 – Arthur Bland Jaguar PF: World’s most powerful computer— Designed for science from the ground up Peak performance 2.332 PF System memory 300 TB Disk space 10 PB Disk bandwidth 240+ GB/s Based on the Sandia & Cray Compute Nodes 18,688 designed Red Storm System AMD “Istanbul” Sockets 37,376 Size 4,600 feet2 Cabinets 200 3 CUG2010 – Arthur Bland (8 rows of 25 cabinets) Peak performance 1.03 petaflops Kraken System memory 129 TB World’s most powerful Disk space 3.3 PB academic computer Disk bandwidth 30 GB/s Compute Nodes 8,256 AMD “Istanbul” Sockets 16,512 Size 2,100 feet2 Cabinets 88 (4 rows of 22) 4 CUG2010 – Arthur Bland Climate Modeling Research System Part of a research collaboration in climate science between ORNL and NOAA (National Oceanographic and Atmospheric Administration) • Phased System Delivery • Total System Memory – CMRS.1 (June 2010) 260 TF – 248 TB DDR3-1333 – CMRS.2 (June 2011) 720 TF • File Systems -
Cray XT3/XT4 Software
Cray XT3/XT4 Software: Status and Plans David Wallace Cray Inc ABSTRACT: : This presentation will discuss the current status of software and development plans for the CRAY XT3 and XT4 systems. A review of major milestones and accomplishments over the past year will be presented. KEYWORDS: ‘Cray XT3’, ‘Cray XT4’, software, CNL, ‘compute node OS’, Catamount/Qk processors, support for larger system configurations (five 1. Introduction rows and larger), a new version of SuSE Linux and CFS Lustre as well as a host of other new features and fixes to The theme for CUG 2007 is "New Frontiers ," which software deficiencies. Much has been done in terms of reflects upon how the many improvements in High new software releases and adding support for new Performance Computing have significantly facilitated hardware. advances in Technology and Engineering. UNICOS/lc is 2.1 UNICOS/lc Releases moving to new frontiers as well. The first section of this paper will provide a perspective of the major software The last twelve months have been very busy with milestones and accomplishments over the past twelve respect to software releases. Two major releases months. The second section will discuss the current status (UNICOS/lc 1.4 and 1.5) and almost weekly updates have of the software with respect to development, releases and provided a steady stream of new features, enhancements support. The paper will conclude with a view of future and fixes to our customers. UNICOS/lc 1.4 was released software plans. for general availability in June 2006. A total of fourteen minor releases have been released since last June. -
The Gemini Network
The Gemini Network Rev 1.1 Cray Inc. © 2010 Cray Inc. All Rights Reserved. Unpublished Proprietary Information. This unpublished work is protected by trade secret, copyright and other laws. Except as permitted by contract or express written permission of Cray Inc., no part of this work or its content may be used, reproduced or disclosed in any form. Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable. Autotasking, Cray, Cray Channels, Cray Y-MP, UNICOS and UNICOS/mk are federally registered trademarks and Active Manager, CCI, CCMT, CF77, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Ada, Cray Animation Theater, Cray APP, Cray Apprentice2, Cray C90, Cray C90D, Cray C++ Compiling System, Cray CF90, Cray EL, Cray Fortran Compiler, Cray J90, Cray J90se, Cray J916, Cray J932, Cray MTA, Cray MTA-2, Cray MTX, Cray NQS, Cray Research, Cray SeaStar, Cray SeaStar2, Cray SeaStar2+, Cray SHMEM, Cray S-MP, Cray SSD-T90, Cray SuperCluster, Cray SV1, Cray SV1ex, Cray SX-5, Cray SX-6, Cray T90, Cray T916, Cray T932, Cray T3D, Cray T3D MC, Cray T3D MCA, Cray T3D SC, Cray T3E, Cray Threadstorm, Cray UNICOS, Cray X1, Cray X1E, Cray X2, Cray XD1, Cray X-MP, Cray XMS, Cray XMT, Cray XR1, Cray XT, Cray XT3, Cray XT4, Cray XT5, Cray XT5h, Cray Y-MP EL, Cray-1, Cray-2, Cray-3, CrayDoc, CrayLink, Cray-MP, CrayPacs, CrayPat, CrayPort, Cray/REELlibrarian, CraySoft, CrayTutor, CRInform, CRI/TurboKiva, CSIM, CVT, Delivering the power…, Dgauss, Docview, EMDS, GigaRing, HEXAR, HSX, IOS, ISP/Superlink, LibSci, MPP Apprentice, ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RapidArray, RQS, SEGLDR, SMARTE, SSD, SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, TurboKiva, UNICOS MAX, UNICOS/lc, and UNICOS/mp are trademarks of Cray Inc. -
Stepping Towards a Noiseless Linux Environment
ROSS 2012 | June 29 2012 | Venice, Italy STEPPING TOWARDS A NOISELESS LINUX ENVIRONMENT Hakan Akkan*, Michael Lang¶, Lorie Liebrock* Presented by: Abhishek Kulkarni¶ * New Mexico Tech ¶ Ultrascale Systems Research Center New Mexico Consortium Los Alamos National Laboratory 29 June 2012 Stepping Towards A Noiseless Linux Environment 2 Motivation • HPC applications are unnecessarily interrupted by the OS far too often • OS noise (or jitter) includes interruptions that increase an application’s time to solution • Asymmetric CPU roles (OS cores vs Application cores) • Spatio-temporal partitioning of resources (Tessellation) • LWK and HPC Oses improve performance at scale 29 June 2012 Stepping Towards A Noiseless Linux Environment 3 OS noise exacerbates at scale • OS noise can cause a significant slowdown of the app • Delays the superstep since synchronization must wait for the slowest process: max(wi) Image: The Case of the Missing Supercomputer Performance, Petrini et. Al, 2003 29 June 2012 Stepping Towards A Noiseless Linux Environment 4 Noise co-scheduling • Co-scheduling the noise across the machine so all processes pay the price at the same time Image: The Case of the Missing Supercomputer Performance, Petrini et. Al, 2003 29 June 2012 Stepping Towards A Noiseless Linux Environment 5 Noise Resonance • Low frequency, Long duration noise • System services, daemons • Can be moved to separate cores • High frequency, Short duration noise • OS clock ticks • Not as easy to synchronize - usually much more frequent and shorter than the computation granularity of the application • Previous research • Tsafrir, Brightwell, Ferreira, Beckman, Hoefler • Indirect overhead is generally not acknowledged • Cache and TLB pollution • Other scalability issues: locking during ticks 29 June 2012 Stepping Towards A Noiseless Linux Environment 6 Some applications are memory and network bandwidth limited! *Sancho, et.