Topological Floquet States, Artificial Gauge Fields in Strongly Correlated Quantum Fluids Kirill Plekhanov
Total Page:16
File Type:pdf, Size:1020Kb
Topological Floquet states, artificial gauge fields in strongly correlated quantum fluids Kirill Plekhanov To cite this version: Kirill Plekhanov. Topological Floquet states, artificial gauge fields in strongly correlated quantum fluids. Condensed Matter [cond-mat]. Université Paris-Saclay, 2018. English. NNT : 2018SACLS264. tel-01874629 HAL Id: tel-01874629 https://tel.archives-ouvertes.fr/tel-01874629 Submitted on 14 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Topological Floquet states, artificial gauge fields in strongly correlated quantum fluids NNT: 2018SACLS264 Thèse de doctorat de l’Université Paris-Saclay préparée à l’Université Paris-Sud, Laboratoire de Physique Théorique et Modèles Statistiques et l’Ecole Polytechnique, Centre de Physique Théorique École doctorale n◦ 564 Physique en Île-de-France Spécialité de doctorat: Physique Thèse présentée et soutenue à Orsay, le 7 septembre 2018, par M. Kirill Plekhanov Composition du Jury: M. Nicolas Regnault Président du Jury Professeur — École Normale Supérieure, Laboratoire Pierre Aigrain M. Nathan Goldman Rapporteur Professeur — Université libre de Bruxelles, Physics of Complex Systems (CENOLI) M. Titus Neupert Rapporteur Professeur Associé — Universität Zürich, Institut für Theoretische Physik M. Mark Oliver Goerbig Examinateur Directeur de Recherche — Université Paris-Sud, Laboratoire de Physique des Solides M. Walter Hofstetter Examinateur Professeur — Goethe-Universität Frankfurt, Institut für Theoretische Physik M. Guido Pupillo Examinateur Professeur — Université de Strasbourg, Institut de Science et d’Ingénierie Supramoléculaires Mme Karyn Le Hur Directrice de thèse Directrice de Recherche — Ecole Polytechnique, Centre de Physique Théorique M. Guillaume Roux Directeur de thèse Maître de Conférences — Université Paris-Sud, Laboratoire de Physique Théorique et Modèles Statistiques Thèse de doctorat ii – What’re quantum mechanics? – I don’t know. People who repair quantums, I suppose. Terry Pratchett iii Acknowledgements First and foremost, I would like to thank my thesis supervisors: Guillaume Roux and Karyn Le Hur. During these three years I had a great opportunity to learn from them and work on extremely interesting projects. Our numerous discussions were crucial for forming my current worldview, and I am proud to be their student. I am also very grateful to the reviewers of my thesis Nathan Goldman and Titus Neupert, as well as the Jury members Mark Oliver Goerbig, Walter Hofstetter, Guido Pupillo, and Nicolas Regnault. I am thankful that they had time to attend my PhD defense, read very carefully the manuscript to evaluate my work and participate in our mini-workshop. I appreciated very much the question session that followed the defense, the discussions, and the talks of the mini-workshop. During my PhD I had an opportunity to visit several other laboratories and dis- cuss about the physics with brilliant scientists. Such discussions were enlightening to me and allowed to see what other people are interested in, learn new techniques and explore different approaches of doing science. In this context, I would like to particularly thank Ivana Vasic and Walter Hofstetter for taking part in a challenging yet enjoyable collaborative project we worked on together. I also appreciated very much the discussions with Hans Peter Buchler, Piers Coleman, Antoine Georges, Steven Girvin, Leonid Glazman, Jelena Klinovaja, Daniel Loss and Lode Pollet, as well as during my visit of the Stewart Blusson Quantum Matter Institute, on the CI- FAR conferences, and FOR 2414 DFG meetings. Finally, I am very grateful to Eugene Bogomolny and Gregoire Misguich for playing a crucial role in my PhD and follow- ing my progress as a parrain and a tutor. My PhD time was shared between two laboratories: the LPTMS and the CPHT. I would like to thank very much their directors: Emanuel Trizac, Jean-René Chazottes and Bernard Pire, and the administrative teams. Without their help this thesis would simply be impossible. I am also very proud to be a part of the student/postdoc equipes at LPTMS and CPHT. It was a pleasure to meet such wonderful people, share the same offices (yes, there are two of them), go for a lunch and enjoy the tea/coffee time (and not only) together. I am happy that I could spend a significant part of these three years with Aurelien, Ariane, Ines, Loïc Z. and Tal. Unfortunately, there was lesser time I could spend with you, Alex, Aleksey, Bertrand, Fan, Ivan, Loïc H., Luca, Matthieu, Nina, Samuel, Thibault B. and Thibault G., and with my friends outside of the labs: Camille, Félix, Marc, Marie, Paul, Shuwei and Thibault L.. But still I am glad that you were there. Finally, my greatest thanks go to my parents for encouraging and supporting me. v Contents Acknowledgements iii Introduction1 1 Condensed matter in the age of topological phase transitions5 1.1 New look at the phase transitions......................6 1.1.1 Ginzburg-Landau paradigm of phase transitions.........6 1.1.2 Beyond Ginzburg-Landau theory..................7 1.2 Conventional band theory.......................... 10 1.2.1 Block-diagonalization in the momentum space.......... 10 1.2.2 Bogoliubov transformations..................... 12 A. Fermions.............................. 12 B. Bosons................................ 12 1.2.3 Interactions and approximations. BCS theory example..... 13 1.3 Few words about topology.......................... 14 1.3.1 A coffee cup or a doughnut?.................... 14 1.3.2 Relevant definitions......................... 15 A. Basics of topological spaces and manifolds.......... 15 B. Covectors, tensors and differential forms............ 17 C. Parallel transport: connection and curvature......... 18 D. Topological invariants...................... 20 1.3.3 Homotopy and cohomology.................... 21 A. Homotopy groups......................... 21 B. De Rham cohomology groups.................. 22 1.3.4 Basics of fibre bundles........................ 23 A. Fibre bundles in geometry and in physics........... 23 B. Connection and curvature in fibre bundles........... 25 C. Topology of fibre bundles.................... 27 1.4 Topological band theory........................... 29 1.4.1 Berry’s connection and Berry’s phase............... 29 A. Adiabatic evolution argument.................. 29 B. Zak phase.............................. 32 1.4.2 Berry’s curvature and the first Chern number.......... 33 A. Definitions............................. 33 B. Many sides of the first Chern number through the examples 34 1.4.3 Topological phase transitions.................... 36 1.4.4 Symmetry protected topological states............... 38 1.4.5 Bulk-boundary correspondence................... 40 1.5 Role of topology in strongly correlated quantum systems........ 41 1.5.1 Fractional quantum Hall states................... 42 A. Laughlin states.......................... 42 B. Generalizations.......................... 43 1.5.2 Interacting SPT states and intrinsic topological order...... 45 vi 1.5.3 Frustrated quantum magnetism and spin liquids........ 46 2 Chiral phases of the Haldane Chern insulator 49 2.1 Dirac materials and Chern insulators.................... 50 2.1.1 Graphene as a Dirac material.................... 51 2.1.2 Haldane model as a Chern insulator................ 53 A. Opening a gap at Dirac points.................. 53 B. Topological phase transition................... 54 2.1.3 Anisotropy and generalizations of the Haldane model..... 57 2.2 Anisotropic Haldane model for bosons with interactions........ 57 2.2.1 Overview of the problem...................... 59 2.2.2 Superfluid phases........................... 60 A. Zero-momentum phase...................... 60 B. Critical value of NNN hopping amplitude........... 62 C. Finite-momentum phase..................... 64 D. Interaction effects......................... 67 2.2.3 Excitation properties......................... 69 2.2.4 Mott insulator phase......................... 70 2.3 Interacting bosons on brickwall ladder geometry............. 72 2.3.1 Band structure in free case...................... 73 2.3.2 Interactions and bosonization.................... 74 A. Strong t1 phase.......................... 76 B. Strong t2 phase........................... 77 2.3.3 Perspectives.............................. 78 3 Phases of the bosonic Kane-Mele Hubbard model 81 3.1 Kane-Mele model and topological insulators............... 82 3.1.1 Introduction to the model and symmetries............ 83 3.1.2 Z2 topological invariant....................... 85 3.1.3 Interactions in the Kane-Mele model................ 87 3.2 Bosonic Kane-Mele-Hubbard model.................... 88 3.2.1 Overview of the problem...................... 89 3.2.2 Mott – superfluid phase transitions................ 90 3.2.3 Mott phase and emergent magnetism............... 91 3.3 Effective frustrated spin-1/2 XY model.................. 93 3.3.1 Classical phase diagram....................... 94 3.3.2 Magnetically ordered states..................... 95 A. Fidelity metric........................... 96 B.