Native Wild Flower Mixtures

Total Page:16

File Type:pdf, Size:1020Kb

Native Wild Flower Mixtures UK NATIVE WILD FLORA MIXTURES To preserve our precious national wild flora heritage, it’s essential to sow seeds and plants that are UK native in origin. Wild flora mixtures and native grasses from British Seed Houses have native UK provenance and include selected grasses to complement UK natural habitats. British Seed Houses offers two UK native wild flower seed ranges Regional Environmental (RE) and General Landscaping Wild Flora (WF). REGIONAL ENVIRONMENTAL (RE) MIXTURES To help you select the right native plants for any given project, mixtures are categorised in regional groups, using grid references based on the National Vegetation Classification Survey. This helps preserve the heritage of our UK natural grass and flora habitats and recognises specific communities. All (RE) mixtures are formulated by seed number and not by weight giving a balanced content of all species. GENERAL LANDSCAPING WILD FLORA (WF) MIXTURES The General Landscaping Wild Flora (WF) range is based on seed mixtures for different soil types, with 100% wild flower and ready-to-sow wild flower/grass blends, suitable for any areas in the UK. WF is ideal for producing attractive meadows in either urban areas or the countryside. Also we offer specific mixtures for known soil types in Ireland, Wales and Scotland. SPECIFIC MIXTURES PRACTICAL ADVICE CHOOSING THE RIGHT A wide range of special mixtures to suit specific If you’d like help with a wild flower project, WILD FLORA SEED MIXTURE site needs can also be formulated - talk to our British Seed Houses’ technical advisers are If you know the type of soil, situation and what advisers for more details. only a phone call away. For large projects, the wild flora area will be used for, pinpoint we offer a free site visit and written report a suitable mixture using our quick reference SINGLE UK SPECIES with regional specification recommendations, product selector table, which lists the full range 200 Single UK native species are also confirming availability of native seed and practical of British Seed Houses’ UK Native Wild Flora available - in multiples of 10g, 50g and 100g. management advice. and Grass Mixtures. Minimum order value applies - for more information, talk to our advisers. It’s a popular myth that wild flower mixtures For advice on the most suitable mixture for your do not require maintenance. If left to its own needs or for advice about a special formulation, QUALITY SEED devices a wild flora meadow degenerates into please talk to our advisers. UK native seed stocks are multiplied and grown rough grassland within a few years, so a cutting on a field production system in the UK. All seeds schedule that maintains sward diversity is are produced on an annual basis to provide fresh essential. Ask your regional adviser for a copy seed. All seeds are tested for purity and presence of our wild flower manual to help you keep of noxious weeds. your flora thriving. BEWARE SUBSTITUTION! Deal with the experts at British Seed Houses. Some suppliers may simply not understand the implications of introducing foreign seed to the UK. Always specify UK native seed and always check with your supplier that you have been supplied exactly as stated in the specification. WILD FLORA MEADOW MANAGEMENT MIXTURES CONTAINING PERENNIAL SPECIES ONLY AUTUMN SOWN (First Year) March Cut to 4-7cm if there is sufficient material. May Cut to 4-7cm in early May. September Cut to 4cm after flowering. In all cases, remove the clippings. Maintenance thereafter: March/April Cut to 4-7cm to remove excess grass. September/October Cut to 4cm after flowering. In all cases, remove the clippings. SPRING SOWN (First Year) 6 Weeks after sowing Cut to 4-7cm if there is sufficient material. May Cut to 4-7cm if sufficient material (sward at 10cm or above). September/October Cut to 4cm. In all cases, remove the clippings. Maintenance thereafter: March/April Cut to 4-7cm to remove excess grass. September/October Cut to 4cm after flowering. In all cases, remove the clippings. MIXTURES INCLUDING CORNFIELD ANNUALS (EG. WFG2, WFG11, WFG15) 100% Cornfield Annual mixtures such as WF10 do not require maintenance. The following maintenance schedule is for combined Annual and Perennial mixtures. AUTUMN SOWN March/April Cut to 7cm if required no later than the end of April. September/October Cut to 4-7cm to prevent grasses and annuals outcompeting Perennial Species. Maintenance thereafter: March/April Cut to 4-7cm to remove excess grass. September/October Cut to 4cm after flowering. In all cases, remove the clippings. SPRING SOWN August/September/October Cut to 4-7cm after flowering. (NB: a late spring sowing will result in later flowering) Maintenance thereafter: March/April Cut to 4-7cm to remove excess grass. September/October Cut to 4cm after flowering. In all cases, remove the clippings. A 100% Cornfield Annual sowing will not last for more than one year. Reseeding must be done to give an annual display. After several years of reseeding, a seedbank will have built up in the soil and simple soil disturbance in early spring will be sufficient to regenerate the flowers every year. REGIONAL ENVIRONMENTAL (RE MIXTURES) RE TRADITIONAL RE RE RIVERFLOOD PLAIN/ HAY MEADOW LOWLAND MEADOW WATER MEADOW 1 (MG5 GRASSLAND) 2 (MG9 GRASSLAND) 3 (MG5 GRASSLAND) MIXTURE (% BY SEED NUMBER) MIXTURE (% BY SEED NUMBER) MIXTURE (% BY SEED NUMBER) 1.5% Achillea millefolium (Yarrow) 1% Achillea millefolium (Yarrow) 0.5% Caltha palustris (Marsh Marigold) 2% Anthoxanthum odoratum 1% Centaurea nigra (Common Knapweed) 3% Centaurea nigra (Common Knapweed) (Sweet Vernal Grass) 1% Conopodium majus (Pignut) 2% Filipendula ulmaria (Meadow Sweet) 1.5% Centaurea nigra (Common Knapweed) 2% Filipendula ulmaria (Meadow Sweet) 2% Leontodon autumnale (Autumn Hawkbit) 1.5% Galium verum (Lady’s Bedstraw) 1% Galium verum (Lady’s Bedstraw) 1% Leontodon hispidus (Rough Hawkbit) 1% Leontodon hispidus (Rough Hawkbit) 1% Hordeum sacalinum (Meadow Barley) 0.5% Leucanthemum vulgare (Ox-eye Daisy) 1.5% Leucanthemum vulgare (Ox-eye Daisy) 1% Hypochoeris radicata (Cat’s Ear) 0.5% Lotus corniculatus (Birdsfoot Trefoil) 0.5% Lotus corniculatus (Birdsfoot Trefoil) 1% Leontodon autumnale 0.5% Lychnis flos cuculi (Ragged Robin) 2% Plantago lanceolata (Ribwort Plantain) (Autumn Hawkbit) 2% Plantago lanceolata (Ribwort Plantain) 1% Agrimona eupatorium (Agrimony) 1% Leucanthemum vulgare (Ox-eye Daisy) 1% Prunella vulgaris (Self-Heal) 1.5% Prunella vulgaris (Self-Heal) 2% Plantago lanceolata (Ribwort Plantain) 3% Ranunculus acris (Meadow Buttercup) 1.5% Ranunculus acris (Meadow Buttercup) 1% Lathyris pratensis (Meadow Vetchling) 1% Rhinanthus minor (Yellow Rattle) 1.5% Ranunculus bulbosus 1.4% Prunella vulgaris (Self-Heal) 3% Sanguisorba officinalis (Greater Burnett) (Bulbous Buttercup) 1.4% Pulicaria dysenteria 2% Agrostis stolonifera (Creeping Bent) 1% Rhinanthus minor (Yellow Rattle) (Common Fleabone) 26% Cynosurus cristatus (Crested Dogstail) 1.5% Filipendula ulmaria (Meadow Sweet) 2% Ranunculus acris (Meadow Buttercup) 32% Festuca rubra ssp litoralis 0.5% Sanguisorba minor (Salad Burnet) 2% Agrimona eupatorium (Agrimony) (Slender Creeping Red Fescue) 14% Agrostis capillaris (Common Bent) 0.2% Vicia cracca (Tufted Vetch) 20% Poa trivialis 18% Cynosurus cristatus (Crested Dogstail) 10% Agrostis stolonifera (Creeping Bent) (Rough-Stalked Meadow Grass) 14% Dactylis glomerata (Cocksfoot) 6% Alopecurus pratensis (Meadow Foxtail) 22% Festuca rubra ssp litoralis 3.5% Arrenatherum elatius (Tall Oat-Grass) (Slender Creeping Red Fescue) 6% Cynosurus cristatus (Crested Dogstail) WHERE TO USE THIS MIXTURE 6% Festuca pratensis (Meadow Fescue) 6% Dactylis glomerata (Cocksfoot) - Water meadows 6% Trisetum flavescens (Yellow Oat-Grass) 13.5% Deschampsia caespitosa - River and lake banks (Tufted Hair-Grass) - Seasonally flooded lowlands 6% Festuca pratensis (Meadow Fescue) - To encourage insects and birds WHERE TO USE THIS MIXTURE 11% Festuca rubra ssp litoralis - Heavy clay soils (Slender Creeping Red Fescue) - Road verges 3% Phleum pratense (Timothy) OPTIONAL SPECIES - Embankments 12% Poa trivialis - Angelica sylvestris (Wild Angelica) - Quarry areas (Rough-Stalked Meadow Grass) - Anthoxanthum odoratum (Sweet Vernal Grass) - Lowland areas 3% Trisetum flavescens (Yellow Oat-Grass) - Briza media (Quaking Grass) - To encourage insects and birds - Geum rivale (Water Avens) - Lotus ulignosus (Marsh Trefoil) WHERE TO USE THIS MIXTURE - Ranunculus repens (Creeping Buttercup) OPTIONAL SPECIES - Moist soils - Rumex acetosa (Common Sorrel) - Primula veris (Cowslip) - Open woodland - Succisa pratensis (Devil’s Bit Scabious) - Briza media (Quaking Grass) - River and lake banks - Conopodium majus (Pignut) - Industrial land - Filipendula ulmaria (Meadow Sweet) - To encourage insects and birds FURTHER INFORMATION - Hypochoeris radicata (Cat’s Ear) Sowing rate: - Knautia arvensis (Field Scabious) Between 3&5g/m2 - Lathyris pratensis (Meadow Vetchling) OPTIONAL SPECIES - Leontodon autumnale (Autumn Hawkbit) - Achillea ptarmica (Sneezewort) - Plantago media (Hoary Plantain) - Rumex acetosa (Common Sorrel) - Succisa pratensis (Devil’s Bit Scabious) - Angelica sylvestris (Wild Angelica) - Vicia cracca (Tufted Vetch) - Anthoxanthum odoratum (Sweet Vernal Grass) - Primula veris (Cowslip) FURTHER INFORMATION - Lotus corniculatus (Birdsfoot Trefoil) Sowing rate: - Lotus ulignosus (Marsh Trefoil) Between 3&5g/m2 - Succisa pratensis (Devil’s Bit Scabious) FURTHER INFORMATION Sowing rate: Between 3&5g/m2 Yellow Rattle (Rhinanthus Minor) Lady's Bedstraw
Recommended publications
  • APPENDIX a FRPA Regulation Species Recommended for FSP
    APPENDIX A FRPA Regulation Species Recommended for FSP Inclusion by Former Coastal Forest District & BEC Zone FRPA Species of Concern / Applicable BEC Zone Former Forest District (and specific areas of concern within BEC zone) B Campbell River 1. Dalmatian toadflax Linaria dalmatica / CDF B 2. Diffuse knapweed Centaurea diffusa / CDF 3. Giant knotweed Polygonum sachalinense / CDF, CWH, MH 4. Gorse Ulex europaeus / CDF 5. Hoary alyssum Berteroa incana / CDF 6. Japanese knotweed Polygonum cuspidatum / CDF, CWH, MH 7. Leafy spurgeB Euphorbia esula / CDF 8. Meadow hawkweed Hieracium pilosella / CDF 9. Meadow knapweedB Centaurea pratensis / CDF & CWH (near Comox) 10. Orange hawkweed Hieracium aurantiacum / CWH 11. Purple loosestrifeB Lythrum salicaria / CDF & CWH (near Comox & Campbell River) 12. Scotch broom Cytisus scoparius / CDF, CWH & MH 13. Spotted knapweedB Centaurea maculosa / CDF 14. Sulphur cinquefoil Potentilla recta / CDF 15. Tansy ragwortBSenecio jacobaea / CDF & CWH (near Sayward) 16.Yellow Iris Iris pseudacorus / CDF & CWH (near Comox and Campbell River) Chilliwack 1. Baby's breath Gypsophila paniculata / IDF (between Lillooet & Boston Bar) 2. Blueweed Echium vulgare / IDF & CWH 3. Dalmatian toadflaxBLinaria dalmatica / IDF 4. Diffuse knapweedB Centaurea diffusa / IDF 5. Giant knotweed Polygonum sachalinense / CWH, MH 6. Hoary alyssum Berteroa incana / IDF 7. Hound's-tongueB Cynoglossum officinale / IDF (between Lytton & Boston Bar) 8. Japanese knotweed Polygonum cuspidatum / CWH, MH 9. Leafy spurgeB Euphorbia esula / IDF 10. Meadow hawkweed Hieracium pilosella / IDF & CWH 11. Orange hawkweed Hieracium aurantiacum / IDF & CWH 12. Purple loosestrifeB Lythrum salicaria / CDF & CWH (near Fraser Valley) 13. Scotch broom Cytisus scoparius / CWH & MH 14. Spotted knapweedB Centaurea maculosa / IDF 15. Sulphur cinquefoil Potentilla recta / IDF 16.
    [Show full text]
  • Mycorrhizae Transfer Carbon from a Native Grass to an Invasive Weed: Evidence from Stable Isotopes and Physiology
    Plant Ecology 172: 133–141,2004. 133 © 2004 Kluwer Academic Publishers. Printed in the Netherlands. Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology Eileen V. Carey1,2,*, Marilyn J. Marler1 and Ragan M. Callaway1 1Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; 2Current address: Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Avenue N., St. Paul, MN 55108, USA; *Author for correspondence (e-mail: [email protected]; fax: 612-625-5212) Received 3 April 2002; accepted in revised form 12 February 2003 Key words: Arbuscular mycorrhizae, Bouteloua gracilis, Carbon transfer, Centaurea maculosa, Festuca idahoe- nsis, Invasive weeds Abstract Invasive exotic weeds pose one of the earth’s most pressing environmental problems. Although many invaders completely eliminate native plant species from some communities, ecologists know little about the mechanisms by which these exotics competitively exclude other species. Mycorrhizal fungi radically alter competitive inter- actions between plants within natural communities, and a recent study has shown that arbuscular mycorrhizal (AM) fungi provide a substantial competitive advantage to spotted knapweed, Centaurea maculosa, a noxious perennial plant that has spread throughout much of the native prairie in the northwestern U.S. Here we present evidence that this advantage is potentially due to mycorrhizally mediated transfer of carbon from a native bunch- grass, Festuca idahoensis,toCentaurea. Centaurea maculosa, Festuca idahoensis (Idaho fescue, C3), and Boute- loua gracilis (blue gramma, C4) were grown in the greenhouse either alone or with Centaurea in an incomplete factorial design with and without AM fungi.
    [Show full text]
  • Notes on Identification Works and Difficult and Under-Recorded Taxa
    Notes on identification works and difficult and under-recorded taxa P.A. Stroh, D.A. Pearman, F.J. Rumsey & K.J. Walker Contents Introduction 2 Identification works 3 Recording species, subspecies and hybrids for Atlas 2020 6 Notes on individual taxa 7 List of taxa 7 Widespread but under-recorded hybrids 31 Summary of recent name changes 33 Definition of Aggregates 39 1 Introduction The first edition of this guide (Preston, 1997) was based around the then newly published second edition of Stace (1997). Since then, a third edition (Stace, 2010) has been issued containing numerous taxonomic and nomenclatural changes as well as additions and exclusions to taxa listed in the second edition. Consequently, although the objective of this revised guide hast altered and much of the original text has been retained with only minor amendments, many new taxa have been included and there have been substantial alterations to the references listed. We are grateful to A.O. Chater and C.D. Preston for their comments on an earlier draft of these notes, and to the Biological Records Centre at the Centre for Ecology and Hydrology for organising and funding the printing of this booklet. PAS, DAP, FJR, KJW June 2015 Suggested citation: Stroh, P.A., Pearman, D.P., Rumsey, F.J & Walker, K.J. 2015. Notes on identification works and some difficult and under-recorded taxa. Botanical Society of Britain and Ireland, Bristol. Front cover: Euphrasia pseudokerneri © F.J. Rumsey. 2 Identification works The standard flora for the Atlas 2020 project is edition 3 of C.A. Stace's New Flora of the British Isles (Cambridge University Press, 2010), from now on simply referred to in this guide as Stae; all recorders are urged to obtain a copy of this, although we suspect that many will already have a well-thumbed volume.
    [Show full text]
  • Oxeye Daisy(Chrysanthemum Leucanthemum Syn.Leucanthemum
    Oxeye Daisy (Chrysanthemum leucanthemum syn. Leucanthemum vulgare) Provincial Designation: Noxious Overview: Identification: Introduced from Europe in the early 1800’s Stems: Multiple, un-branched stems grow up primarily as a grass seed contaminant, and to 1 m tall and are smooth, frequently grooved subsequently spread as an ornamental, and generally hairless. Oxeye daisy has become a serious invader Leaves: Basal and lower leaves are lance- of pastures and natural areas throughout shaped with “toothed” margins and petioles North America. It is a perennial herb that that may be as long as the leaves. The upper reproduces both by seed and shallow leaves are alternately arranged, narrow, and rhizomes. Single plants quickly become stalkless with wavy margins. Leaves progres- patches that continually increase in size. sively decrease in size upward on the stem. Control: Plants flower June-August and its seed Flowers: Flowers are borne singly at the end germinates throughout the growing season. of stems and can be up to 5 cm in diameter, Grazing: Not grazed. Livestock may physically Oxeye Daisy and the very similarly flowered with yellow centers, and 20 to 30 white petals damage oxeye plants by trampling under high Scentless Chamomile can be considered radiating from the center. The petals are slightly stocking rates, but the subsequent overgrazing conspicuous, as there are no native white notched at the tip. of desirable vegetation and soil disturbance will flowered daisies in Alberta. worsen the infestation. Plants consumed by Seed: Individual plants can produce over 500 dairy cattle can give the milk an off-flavour. flat, black seeds that are viable in the soil for Habitat: 2-3 years or more.
    [Show full text]
  • Agri-Environment Nectar Chemistry Suppresses Parasite Social Epidemiology in an 2 Important Pollinator
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.30.428928; this version posted February 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Agri-environment nectar chemistry suppresses parasite social epidemiology in an 2 important pollinator (1,#) (2) (2) (2,3) (1) 3 Arran J. Folly* , Hauke Koch , Iain W. Farrell , Philip C. Stevenson , Mark J.F. Brown 4 (1) Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal 5 Holloway University of London, Egham, UK (2) Royal Botanic Gardens, Kew, UK (3) Natural Resources Institute, University of Greenwich, 6 Kent, UK 7 8 *Corresponding author: Arran J. Folly: [email protected] 9 #Current address: Virology Department, Animal and Plant Health Agency, Surrey, UK 10 11 Emergent infectious diseases are a principal driver of biodiversity loss globally. The population 12 and range declines of a suite of North American bumblebees, a group of important pollinators, 13 have been linked to emergent infection with the microsporidian Nosema bombi. Previous work 14 has shown that phytochemicals in pollen and nectar can negatively impact parasites in individual 15 bumblebees, but how this relates to social epidemiology and by extension whether plants can be 16 effectively used as disease management strategies remains unexplored. Here we show that 17 caffeine, identified in the nectar of Sainfoin, a constituent of agri-environment schemes, 18 significantly reduced N.
    [Show full text]
  • Metapopulation Dynamics of a Perennial Plant, Succisa Pratensis, in an Agricultural Landscape
    ecological modelling 199 (2006) 464–475 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/ecolmodel Metapopulation dynamics of a perennial plant, Succisa pratensis, in an agricultural landscape Mikael Milden´ a,∗, Zuzana Munzbergov¨ a´ b,c,Toma´ sˇ Herben b,c, Johan Ehrlen´ a a Department of Botany, Stockholm University, SE-106 91 Stockholm, Sweden b Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Pruhonice,˚ Czech Republic c Department of Botany, Faculty of Sciences, Charles University, Benatsk´ a,´ CZ-128 01 Praha, Czech Republic article info abstract Article history: Most metapopulation models neglect the local dynamics, and systems characterized by Published on line 1 August 2006 slow population turnover, time lags and non-equilibrium, are only rarely examined within a metapopulation context. In this study we used a realistic, spatially explicit, dynamic Keywords: metapopulation model of a long-lived grassland plant, Succisa pratensis, to examine the rel- Demography ative importance of local population dynamics, and short and long-distance dispersal of Dynamic metapopulation models seeds. Habitat suitability assessment Using both vegetation composition and sowing experiments we identified 94 occupied Long-distance dispersal and 43 unoccupied, but suitable, habitat patches in a 7-km2 landscape. Local population Non-equilibrium metapopulations dynamics were studied in permanent plots in five populations. Simulation results showed Sensitivity analysis that the colonization and extinction dynamics of S. pratensis were slow with about one col- Time lags onization or extinction per year and the time frame for the population system to attain equilibrium in a constant landscape was several thousands of years.
    [Show full text]
  • Flowering Phenology As a Functional Trait in a Tallgrass Prairie
    Research Flowering phenology as a functional trait in a tallgrass prairie Joseph M. Craine1, Elizabeth M. Wolkovich2, E. Gene Towne1 and Steven W. Kembel3 1Division of Biology, Kansas State University, Manhattan, KS 66502, USA; 2Ecology, Behavior & Evolution Section, University of California, San Diego, 9500 Gilman Drive #0116, La Jolla, CA 92093,USA; 3Center for Ecology & Evolutionary Biology, University of Oregon, Eugene, OR 97403, USA Summary Author for correspondence: • The timing of flowering is a critical component of the ecology of plants and has the poten- Joseph M. Craine tial to structure plant communities. Yet, we know little about how the timing of flowering Tel: +1 785 532 3062 relates to other functional traits, species abundance, and average environmental conditions. Email: [email protected] • Here, we assessed first flowering dates (FFDs) in a North American tallgrass prairie (Konza Received: 18 August 2011 Prairie) for 431 herbaceous species and compared them with a series of other functional traits, Accepted: 29 September 2011 environmental metrics, and species abundance across ecological contrasts. • The pattern of FFDs among the species of the Konza grassland was shaped by local climate, New Phytologist (2011) can be linked to resource use by species, and patterns of species abundance across the land- doi: 10.1111/j.1469-8137.2011.03953.x scape. Peak FFD for the community occurred when soils were typically both warm and wet, while relatively few species began flowering when soils tended to be the driest. Compared with late-flowering species, species that flowered early had lower leaf tissue density and were Key words: climate, community assembly, drought, grass, Konza Prairie.
    [Show full text]
  • David Clements Ecology Ltd Carlton House, 5 Herbert Terrace, Penarth, Glamorgan, CF64 2AH Tel/Fax: 029 20 350120 [email protected] DAVID CLEMENTS ECOLOGY LTD
    DDAAVVIIDD CCLLEEMMEENNTTSS EECCOOLLOOGGYY LLTTDD MERTHYR TYDFIL COUNTY BOROUGH SITES OF IMPORTANCE FOR NATURE CONSERVATION SO 00SW/2: RHYDYCAR WEST SURVEY & ASSESSMENT FOR SINC DESIGNATION May 2006 David Clements Ecology Ltd Carlton House, 5 Herbert Terrace, Penarth, Glamorgan, CF64 2AH Tel/Fax: 029 20 350120 [email protected] DAVID CLEMENTS ECOLOGY LTD Site Name: RHYDYCAR WEST Grid Ref(s): SO 045047 Site No.: SO 00SW/2 SO 033050 (W); 038053 (N); 053036 (E); 034031 (S) Status: Candidate Date: July 2002 July 2002: Provisional site; boundary identified from available Proposed Date: desk-top sources only; requires confirmation by survey. Confirmed Date: Dec 2005: Site surveyed and assessed for designation; designation boundary identified. Summary - Reasons for Selection/Interest of Site: Very extensive mosaic of ‘ffridd’ habitats and former mine spoil supporting complex of semi- upland and lowland habitats, partly contained within conifer plantation. Main components are ancient semi-natural woodland fragments, other semi-natural woodlands (mainly upland oak, Quercus sp) together with wet woodlands of alder (Alnus glutinosa), wet heathland, dry heathland, marshy grassland and semi-improved neutral grasslands. Also there are some bracken slopes, scrub, small ponds, streams and sections of dismantled railway. There are areas of semi- improved acid grasslands to the south especially. The habitats intergrade to form a complex mosaic, and may therefore also include some small areas of improved or low diversity semi- improved grassland, but any such areas are a very minor component. Great crested newt occurs in small pools within the SINC, and noctule and pipistrelle bats have both been recorded. Water vole may occur and a small badger sett is present.
    [Show full text]
  • Newsletter No 250 July 2018
    Published by RUGBY NATURAL HISTORY SOCIETY www.rugbynaturalhistory.org.uk PRESIDENT – Dr P Reeve Newsletter No 250 July 2018 Contents this edition ~Minibus trip: Rutland Water (book now!) ~News of members ~Summer field visit reports ~ Winter indoor meetings: dates for your diary ~Data protection information ~Current committee members (with contact information) Appendices included: species lists for Grove Hill, Snitterfield Bushes, Dunchurch Meadows, Stockton Cutting and Tasker’s Meadow Photos © Paul Hodges: cowslip carpet; thimble morel; semi-free morel at Grove Hill reserve Minibus trip? Speak up now! Rutland Water. Would you like to travel by minibus to our Rutland Water field visit on Thursday 6 September? Several members requested that we arrange this and David Knapp is willing to do so as long as there is sufficient interest - at least sixteen people would be 1 needed. The cost of a minibus would be £20 per person. The departure/return point would, as usual, be St Mark’s Church car park in Bilton, with additional pick up/drop off points in Long Itchington and Marton. The proposed return visit to Oxford Natural History Museum was cancelled because there were not enough people to make it viable. This is therefore now the FINAL CALL (!) for Rutland Water. If you would be interested in travelling by minibus, please let David know by Wednesday 1 August 2018 and he will then get back to you with further details. Tel. 01788 817346 or e:mail [email protected] News of members Most members will already know that Frank Ollerenshaw died in May. Nine of us attended his funeral, where we learned that he had served in young people’s organisations, as well as being a member both of the society and of Warwickshire Wildlife Trust and having many other interests.
    [Show full text]
  • DICOTS Aceraceae Maple Family Anacardiaceae Sumac Family
    FLOWERINGPLANTS Lamiaceae Mint family (ANGIOSPERMS) Brassicaceae Mustard family Prunella vulgaris - Self Heal Cardamine nutallii - Spring Beauty Satureja douglasii – Yerba Buena Rubiaceae Madder family DICOTS Galium aparine- Cleavers Boraginaceae Borage family Malvaceae Mallow family Galium trifidum – Small Bedstraw Aceraceae Maple family Cynoglossum grande – Houndstongue Sidalcea virgata – Rose Checker Mallow Acer macrophyllum – Big leaf Maple Oleaceae Olive family MONOCOTS Anacardiaceae Sumac family Fraxinus latifolia - Oregon Ash Toxicodendron diversilobum – Poison Oak Cyperaceae Sedge family Plantaginaceae Plantain family Carex densa Apiaceae Carrot family Plantago lanceolata – Plantain Anthriscus caucalis- Bur Chervil Iridaceae Iris family Daucus carota – Wild Carrot Portulacaceae Purslane family Iris tenax – Oregon Iris Ligusticum apiifolium – Parsley-leaved Claytonia siberica – Candy Flower Lovage Claytonia perforliata – Miner’s Lettuce Juncaceae Rush family Osmorhiza berteroi–Sweet Cicely Juncus tenuis – Slender Rush Sanicula graveolens – Sierra Sanicle Cynoglossum Photo by C.Gautier Ranunculaceae Buttercup family Delphinium menziesii – Larkspur Liliaceae Lily family Asteraceae Sunflower family Caryophyllaceae Pink family Ranunculus occidentalis – Western Buttercup Allium acuminatum – Hooker’s Onion Achillea millefolium – Yarrow Stellaria media- Chickweed Ranunculus uncinatus – Small-flowered Calochortus tolmiei – Tolmie’s Mariposa Lily Adendocaulon bicolor – Pathfinder Buttercup Camassia quamash - Camas Bellis perennis – English
    [Show full text]
  • Land-Use Changes, Farm Management and the Decline of Butterflies Associated with Semi-Natural Grasslands in Southern Sweden
    A peer-reviewed open-access journal Nature Conservation Land-use6: 31–48 (2013) changes, farm management and the decline of butterflies.... 31 doi: 10.3897/natureconservation.6.5205 APPLIED ECOLOGY http://www.pensoft.net/natureconservation Launched to accelerate biodiversity conservation Land-use changes, farm management and the decline of butterflies associated with semi-natural grasslands in southern Sweden Sven G. Nilsson1, Markus Franzén1,2, Lars B. Pettersson1,3 1 Biodiversity Unit, Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden 2 UFZ Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser- Straße 4, D-06120 Halle, Germany 3 Swedish Butterfly Monitoring Scheme, Lund University, Ecology Buil- ding, SE-223 62 Lund, Sweden Corresponding author: Lars B. Pettersson ([email protected]) Academic editor: L. Penev | Received 26 March 2013 | Accepted 30 October 2013 | Published 18 November 2013 Citation: Nilsson SG, Franzén M, Pettersson LB (2013) Land-use changes, farm management and the decline of butterflies associated with semi-natural grasslands in southern Sweden. Nature Conservation 18: 31–48. doi: 10.3897/ natureconservation.6.5205 Abstract Currently, we are experiencing biodiversity loss on different spatial scales. One of the best studied taxo- nomic groups in decline is the butterflies. Here, we review evidence for such declines using five systematic studies from southern Sweden that compare old butterfly surveys with the current situation. Additionally, we provide data on butterfly and burnet moth extinctions in the region’s counties. In some local areas, half of the butterfly fauna has been lost during the last 60–100 years.
    [Show full text]
  • With Description of Immature Stages (Lepidoptera, Nymphalidae, Satyrinae) 187-196 ©Ges
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Atalanta Jahr/Year: 2001 Band/Volume: 32 Autor(en)/Author(s): Kuras Tomás, Benes Jiri, Konvicka Martin, Honc Lubomír Artikel/Article: Life histories of Erebia sudetica sudetica and E. epiphron silesiana with description of immature stages (Lepidoptera, Nymphalidae, Satyrinae) 187-196 ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (June 2001) 32(1/2): 187-196, Colour plate XII, Wurzburg, ISSN 0171-0079 Life histories of Erebia sudetica sudetica and E. epiphron silesiana with description of immature stages (Lepidoptera, Nymphalidae, Satyrinae) by To m á s Ku ras , J ir í Benes , M a r t in Ko n v ic k a & L u b o m ír H o n c received 19.111.2001 Summary: The life cycies, morphology and behaviour of the immature stages of the ringlets Erebia sudetica sudetica and E. epiphron silesiana inhabiting the Hruby Jesenik Mts. (= Alt- vatergebirge; Czech Republic) are presented. Immature stages of E. sudetica are described here for the first time. Both species have been reared to maturity from eggs laid by females caught in the wild. Out of accord with hitherto attainments, both species preferred Festuca supina as the main host plant (in choice experiments, E. epiphron preferred Avenella flexuosa). In rearing experiments, the species overwintered only once and finished their development within a one-year period. Highest mortality of individuals appeared during overwintering of L2- [E. sudetica) and L3-larvae (E epiphron). Introduction Five species of the species-rich holarctic genus Erebia Dalman, 1816, which is renown for high diversity in alpine and arctic habitats, frequent endemism and subspecific differentiation (Warren, 1936), occur in the HrubyJesenik Mts.
    [Show full text]