Graduate Training in Cellular Biophysics

Total Page:16

File Type:pdf, Size:1020Kb

Graduate Training in Cellular Biophysics Graduate training in cellular biophysics Thomas D. Pollard Department of Cell Biology and Anatomy, Johns Hopkins Medical School, Baltimore, Maryland 21205 USA INTRODUCTION In this article I will outline some of the knowledge and Good problems focus on important biological pro- skills that investigators in cellular biophysics find valu- cesses, offer growth potential, and are tractable experi- able in their work. Everyone has their own definition of mentally. Some newcomers imagine that previous gener- cellular biophysics. For me it is hard to separate cellular ations have already grabbed all ofthe good problems, but biophysics from molecular biophysics, so let us accept it is not true. The landscape is so vast in biological re- the inevitable overlap and differentiate the areas on the search that new knowledge creates new opportunities. As basis of emphasis. Both include quantitative studies of the frontiers broaden, so will the opportunities, at least the chemical and physical basis of cellular function. for the foreseeable future. Not only are there essentially Both involve characterization of proteins, nucleic acids, limitless details awaiting discovery; even more impor- and lipids and their interactions. But a molecular bio- tant, many ofthe general principles still need to be iden- physicist is more likely to be interested in electrons, tified. while a cellular biophysicist is more interested in macro- "Important biological processes" are those that cells molecular events that can be studied with a light micro- depend on for their basic function. Some of the best scope. Cellular biophysics emphasizes the molecular problems deal with universal processes used by all cells aspects that directly illuminate functions at the cellular such as the assembly oforganelles, motility, signal trans- level, while molecular biophysics emphasizes the proper- duction, and regulation of the cell cycle, but the parsi- ties ofthe molecules themselves. They really represent a mony ofmechanisms at the molecular level has the con- continuum with a common goal. sequence that investigation of specialized processes I write from the perspective of almost 25 years of re- usually reveals some basic principles with wide applica- search on the molecular basis ofcellular motility, an en- bility. For example, the wealth ofinformation on muscle deavor that started out as a purely biological fascination contraction has greatly enriched our understanding ofall and has taken on a strongly biophysical tone as our un- sorts of cellular motility. derstanding has broadened. I have a very practical view There are so many genuinely fundamental questions of training in cellular biophysics, since as an MD I had in biology that no one should waste their time repeating essentially no formal training in the subject. Instead, my established work in new organisms or with new methods students, postdocs, and I have learned on the job from unless they have an attractive hypothesis about why such the literature, books, and many generous colleagues. I repetitive work is likely to reveal new principles of gen- have also had the opportunity to learn what challenges eral interest. The scientific community responds more students while teaching a laboratory course during the enthusiastically to something novel. Discovery not only summer at Woods Hole. Consequently, I will propose provides the most gratification in research, but discovery what one needs to know to do creative research rather is the only way to gain the confidence ofthe community than what constitutes a formal course ofstudy. Although that is required to obtain the resources to continue our knowledge ofthis material will not replace a good idea, it research. One must not waste good training and re- does free one's thoughts from the constraints of igno- sources on boring problems. rance and can lower one's natural inhibitions to try new There is another side to this argument espoused by my things. Good ideas can come from many places, so I put friend Evan Eisenberg of the NIH. When we were post- a very high priority on developing broad interests in biol- docs together, he claimed that the best way to become ogy and a lifetime of reading widely about the natural famous is to identify the most important experiment in sciences. Ostrich-like individuals with their heads stuck one's field and to repeat it. Of course, he did not mean in the sand oftheir own subspecialty risk becoming fossil- that one should literally repeat earlier work; rather one ized. should try a creative variation of the important experi- ment in the hopes of expanding knowledge at the heart ofa field. This approach does not have the novelty that I WHAT IS A GOOD BIOLOGICAL PROBLEM? have advocated above, but it does focus one's attention Formal curricula almost always neglect the first and on the important issues in a field. Since experiments are most important prerequisite for successful research, a rarely replicated exactly, Evan is right that one has a good biological problem. Lest we not forget it here, I will good chance of finding something new that will com- start by considering some ofthe features ofa good biolog- mand attention simply because of the focus on an issue ical problem from my perspective as a cell biologist. of acknowledged importance. 14501 450 0006-3495/92/11/1450/05 $2.00 Biophys. J. © Biophysical Society Volume 63 November 1992 1450-1454 By "growth potential" I mean that one's hard work are not essential for most work in cellular biophysics. should be rewarded by expanding opportunities, not Some expertise with computers is essential, but I hesitate dead ends. Most research requires a substantial invest- to recommend a formal course, since most individuals ment of thought, time, effort and financial resources. learn their computing skills informally on the job. Ideally, each of our investments in research should open up new opportunities. Common examples include the Biology discovery of a new process or molecule, the determina- The aspiring cellular biophysicist needs to have a broad tion of a new structure, the identification and cloning of knowledge of biology to help identify a good research a new gene, the purification ofa new cellular constituent, problem and the most advantageous experimental sys- or the development of a new method. These contribu- tem to get the answers. Courses in general biology are tions can elevate a field to a higher level that allows work necessary for exposure to the diversity oforganisms and to expand in more sophisticated ways. In many cases for orientation, but are not adequate for appreciating the students or postdoctoral fellows have based their inde- merits of a research project. One needs to understand in pendent careers on the hard work they did to elevate some depth how cells work at the molecular level. The their field. Obviously, one should not leave loose ends best way is probably a semester or year long course in cell behind, but the scientific community places such a high biology. Either in this course or others, one must learn value on novelty, that we all should strive to find some- about classical genetics and molecular biology. Many thing new. biophysicists deal with topics like membrane channels By "tractable" I mean experimentally approachable. that are covered in physiology courses, another impor- Many important problems with growth potential are not tant option to consider. Each student will need to be easy or someone would have taken them on already. selective in choosing biology courses since the topics cov- What is usually missing is a good idea about what to do ered in cell biology, for example, differ widely from or how to get started, rather than the absence ofthe tech- school to school. nology to do the work. Many fields are idea limited What about an aspiring cellular biophysicist who rather than technology limited. How many times have comes from the physical sciences with little or no oppor- you said, "I wish that I had thought ofthat"? Since con- tunity for formal training in biology? I would strongly siderable physical labor is usually required to do novel recommend that they read and think about the material research with growth potential, be sure that you have in one ofthe big, comprehensive cell biology books such done some good thinking ahead oftime. Make sure that as the "Molecular Biology of the Cell" by Alberts et al., your strategy is sound and that the outcome will meet 2nd ed. (1989, Garland Press, New York) or "Molecular your goals of contributing something novel and giving Cell Biology" by Darnell, Lodish, and Baltimore, 2nd you the desired foothold for your future work. ed. (1990, Freeman Publications, San Francisco). Both Who should pick the experimental problem and the of these books cover cellular biology at the molecular research strategy? It must be the person with the best level in enough depth to provide an excellent basis for idea. Since no one has a monopoly on good ideas, these thinking about cellular biophysics. One shortcoming is decisions turn out to be team efforts. Ideally everyone in that neither book consistently highlights the limits ofour a lab is continuously hunting for good ideas. The group knowledge, so a naive reader is likely to get the impres- leader may have the best perspective, but everyone sion that there are more answers than we actually have in should contribute. In our laboratory the technical staff, hand. students, and postdocs have all contributed to the overall direction of the research in addition to providing solu- Biochemistry tions to the everyday experimental problems. The only Every cellular biophysicist needs a good working knowl- way for this synergism to develop is to have everyone edge ofbiochemistry, since virtually all experimental bi- informed about the details of their colleague's experi- ologists are biochemists, at least in part.
Recommended publications
  • Glossary - Cellbiology
    1 Glossary - Cellbiology Blotting: (Blot Analysis) Widely used biochemical technique for detecting the presence of specific macromolecules (proteins, mRNAs, or DNA sequences) in a mixture. A sample first is separated on an agarose or polyacrylamide gel usually under denaturing conditions; the separated components are transferred (blotting) to a nitrocellulose sheet, which is exposed to a radiolabeled molecule that specifically binds to the macromolecule of interest, and then subjected to autoradiography. Northern B.: mRNAs are detected with a complementary DNA; Southern B.: DNA restriction fragments are detected with complementary nucleotide sequences; Western B.: Proteins are detected by specific antibodies. Cell: The fundamental unit of living organisms. Cells are bounded by a lipid-containing plasma membrane, containing the central nucleus, and the cytoplasm. Cells are generally capable of independent reproduction. More complex cells like Eukaryotes have various compartments (organelles) where special tasks essential for the survival of the cell take place. Cytoplasm: Viscous contents of a cell that are contained within the plasma membrane but, in eukaryotic cells, outside the nucleus. The part of the cytoplasm not contained in any organelle is called the Cytosol. Cytoskeleton: (Gk. ) Three dimensional network of fibrous elements, allowing precisely regulated movements of cell parts, transport organelles, and help to maintain a cell’s shape. • Actin filament: (Microfilaments) Ubiquitous eukaryotic cytoskeletal proteins (one end is attached to the cell-cortex) of two “twisted“ actin monomers; are important in the structural support and movement of cells. Each actin filament (F-actin) consists of two strands of globular subunits (G-Actin) wrapped around each other to form a polarized unit (high ionic cytoplasm lead to the formation of AF, whereas low ion-concentration disassembles AF).
    [Show full text]
  • Chemistry with Biophysical Chemistry Chemistry & Chemical Sciences (CCS)
    Chemistry with Biophysical Chemistry Chemistry & Chemical Sciences (CCS) Sample pathway for a degree in Chemistry with Biophysical Chemistry* YEAR 1 ENGAGE WITH THE PRINCIPLES CHEMISTRY MATHEMATICS BIOLOGY Modules include: Modules include: Modules include: 4One Elective 4 4 4 The Basis of Organic and Mathematics for the Cell Biology & Genetics module Biological Chemistry Biological & Chemical 4One 4 The Basis of Physical Sciences Small- Chemistry Group 4 The Molecular World Project YEAR 2 CHOOSE YOUR SUBJECTS A nanoparticle with encapsulated active ingredient is penetrating a cell The subject combinations listed below are illustrative of what a student who graduates in Chemistry with Biophysical Chemistry could choose in Year 2. Further subject combinations are possible depending on the choices in Year 1. Further information is available on page 23. membrane. Image and copyright of Nanobotmodels Company CHEMISTRY WITH BIOPHYSICAL CHEMISTRY ([email protected]). CHEMISTRY Modules include: Modules include: 4Biophysical Chemistry 4Students who choose Chemistry with 4Two n Develop theoretical and 4Physical Chemistry Biophysical Chemistry as their main subject Elective 4Inorganic Chemistry for second year also cover the requirements modules practical skills in exploiting 4 Organic Chemistry for Chemistry. the physical and chemical YEAR principles of the FOCUS ON YOUR CHOSEN SUBJECT 3 biomolecular world in CHEMISTRY WITH BIOPHYSICAL CHEMISTRY – Modules include: modern industrial and 4Instrumental Analysis 4Organometallic & Solid State Chemistry
    [Show full text]
  • Quantum Biology: an Update and Perspective
    quantum reports Review Quantum Biology: An Update and Perspective Youngchan Kim 1,2,3 , Federico Bertagna 1,4, Edeline M. D’Souza 1,2, Derren J. Heyes 5 , Linus O. Johannissen 5 , Eveliny T. Nery 1,2 , Antonio Pantelias 1,2 , Alejandro Sanchez-Pedreño Jimenez 1,2 , Louie Slocombe 1,6 , Michael G. Spencer 1,3 , Jim Al-Khalili 1,6 , Gregory S. Engel 7 , Sam Hay 5 , Suzanne M. Hingley-Wilson 2, Kamalan Jeevaratnam 4, Alex R. Jones 8 , Daniel R. Kattnig 9 , Rebecca Lewis 4 , Marco Sacchi 10 , Nigel S. Scrutton 5 , S. Ravi P. Silva 3 and Johnjoe McFadden 1,2,* 1 Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford GU2 7XH, UK; [email protected] (Y.K.); [email protected] (F.B.); e.d’[email protected] (E.M.D.); [email protected] (E.T.N.); [email protected] (A.P.); [email protected] (A.S.-P.J.); [email protected] (L.S.); [email protected] (M.G.S.); [email protected] (J.A.-K.) 2 Department of Microbial and Cellular Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; [email protected] 3 Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK; [email protected] 4 School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; [email protected] (K.J.); [email protected] (R.L.) 5 Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester,
    [Show full text]
  • Chemistry Courses 2005-2006
    Chemistry Courses 2005-2006 Autumn 2005 Chem 11101 General Chemistry I, Variant A Lee Chem 11102 General Chemistry I, Variant B Norris Chem 12200 Honors General Chemistry I Levy Chem 22000 Organic Chemistry I Yu Chem 22300 Intermediate Organic Chemistry Mrksich Chem 26100 Quantum Mechanics Mazziotti Chem 30100 Advanced Inorganic Chemistry Hopkins Chem 30900 Bioinorganic Chemistry He Chem 32100 Physical Organic Chemistry I Ismagilov Chem 32200 Organic Synthesis and Structure Rawal Chem 32600 Protein Fundamentals Piccirilli Chem 36100 Wave Mechanics & Spectroscopy Butler Chem 36400 Chemical Thermodynamics Dinner Winter 2006 Chem 11201 General Chemistry II, Variant A Scherer Chem 11202 General Chemistry II, Variant B Butler Chem 12300 Honors General Chemistry II Dinner Chem 20100 Inorganic Chemistry I Hillhouse Chem 22100 Organic Chemistry II Rawal Chem 23100 Honors Organic Chemistry II Kozmin Chem 26200 Thermodynamics Norris Chem 26700 Experimental Physical Chemistry Levy Chem 30200 Synthesis & Physical Methods in Inorganic Chemistry Jordan Chem 30400 Organometallic Chemistry Bosnich Chem 32300 Tactics of Organic Synthesis Yamamoto Chem 32400 Physical Organic Chemistry II Mrksich Chem 36200 Quantum Mechanics Freed Chem 36300 Statistical Mechanics Mazziotti Chem 38700 Biophysical Chemistry Lee Spring 2006 Chem 11301 General Chemistry III, Variant A Kozmin Chem 11302 General Chemistry III, Variant B Guyot-Sionnest Chem 20200 Inorganic Chemistry II Jordan Chem 22200 Organic Chemistry III Kent Chem 23200 Honors Organic Chemistry III Yamamoto Chem 22700 Advanced Organic / Inorganic Laboratory (8 students) He Chem 26300 Chemical Kinetics and Dynamics Sibner Chem 26800 Computational Chemistry & Biology Freed Chem 30600 Chemistry of the Elements Hillhouse Chem 31100 Supramolecular Chemistry Bosnich Chem 32500 Bioorganic Chemistry Piccirilli Chem 32900 Polymer Chemistry Yu Chem 33000 Complex Systems Ismagilov Chem 36500 Chemical Dynamics Scherer Chem 36800 Advanced Computational Chemistry & Biology Freed .
    [Show full text]
  • Quantum Mechanics and Biology
    QUANTUM MECHANICS AND BIOLOGY H. C. LONGUET-HIGGINS From the University of Cambridge, England I should like to begin by saying that I feel very diffident about speaking on the subject which the organizers of this Conference invited me to discuss with you. What I have to say will inevitably be limited by the extreme superficiality of my acquaintance with modem biochemistry and biophysics. The only apology which I can offer for being here at all is that I feel, in common with most scientists, that it is a good thing for workers in quite different fields to meet occasionally and compare notes so as to discover whether the methods of one discipline can usefully be applied to the problems of another. It will soon become apparent to you that my opinions on the usefulness of quantum mechanics to biologists are decidedly con- servative; but if these opinions are not generally shared, perhaps at least they will provoke discussion. The thesis which I want to develop in the next few minutes will seem to many of you to be rather pedestrian. Briefly I want to suggest that for many years to come the student of living matter will have much more need for an understanding of physical chemistry than for a knowledge of quantum mechanics. However much one may marvel at the variety and versatility of living things, it cannot be denied that all organisms are in one sense physico-chemical machines. Ingenious and baffling as their structure and function may seem to be, it is therefore proper, in attempting to understand them, to compare their component parts with those in- animate systems which the physical chemist now understands more or less thor- oughly.
    [Show full text]
  • Biophysics 1
    Biophysics 1 on interactions between proteins involved in Notch signaling using BIOPHYSICS modern biophysical methods. Thermodynamics of association and allosteric effects are determined by spectroscopic, ultracentrifugation, http://biophysics.jhu.edu/ and calorimetric methods. Atomic structure information is being obtained by NMR spectroscopy. The ultimate goal is to determine the The Department of Biophysics offers programs leading to the B.A., M.A., thermodynamic partition function for a signal transduction system and and Ph.D. degrees. Biophysics is appropriate for students who wish interpret it in terms of atomic structure. to develop and integrate their interests in the physical and biological sciences. NMR Spectroscopy (Dr. Lecomte) Research interests in the Department cover experimental and Many proteins require stable association with an organic compound computational, molecular and cellular structure, function, and biology, for proper functioning. One example of such “cofactor” is the heme membrane biology, and biomolecular energetics. The teaching and group, a versatile iron-containing molecule capable of catalyzing a research activities of the faculty bring its students in contact with broad range of chemical reactions. The reactivity of the heme group biophysical scientists throughout the university. Regardless of their choice is precisely controlled by interactions with contacting amino acids. of research area, students are exposed to a wide range of problems of Structural fluctuations within the protein are also essential to the fine- biological interest. For more information, and for the most up-to-date list tuning of the chemistry. We are studying how the primary structure of of course offerings and requirements, consult the department web page at cytochromes and hemoglobins codes for heme binding and the motions biophysics.jhu.edu (http://biophysics.jhu.edu/).
    [Show full text]
  • Change the Description of CHEM 323, Foundations of Biochemistry; Change Title and Description of CHEM 437, Modern Biochemistry
    APC Document RRR (CHEM): Change the description of CHEM 323, Foundations of Biochemistry; Change title and description of CHEM 437, Modern Biochemistry 1. Delete: On page 99, the description for CHEM 323, Foundations of Biochemistry: Designed to approach the fundamentals of biochemistry from a chemical perspective, this course examines the structure and function of biological systems such as proteins, carbohydrates, and lipids; develops an understanding of the kinetics of biological reactions including metabolism and enzyme catalysis. It expands the study of biological equilibria and thermodynamics through the discussion of the properties of aqueous solutions, thermodynamics of enzyme binding and recognition, and oxidation and reduction processes. Prerequisites: CHEM 232, 233. Fall. Add: On page 99, in place of deleted entry: Designed to approach the fundamentals of biochemistry from a chemical perspective, this course examines the structure and function of biological molecules such as nucleic acids, proteins, carbohydrates, and lipids. It introduces the principles of molecular recognition, enzyme catalysis, enzyme kinetics, and metabolism and develops an understanding of biological equilibria, redox, and energy transduction through the discussion of core metabolic pathways and oxidative phosphorylation. Prerequisites: CHEM 232, 233. Fall. Impact: None anticipated. Rationale: The changes are editorial to better reflect the course content. 2. Delete: On page 101, the entry for CHEM 437, Modern Biochemistry: 437 Modern Biochemistry (3) An in depth exploration of reaction kinetics and catalytic mechanisms of enzymes; metabolism; the expression and transmission of genetic information; and biological structural analysis with an emphasis on current research in the field. Prerequisites: CHEM 323, 331. Spring. Add: On page 101, in place of deleted entry: 437 Biophysical Chemistry (3) Takes a deeper look into the dynamic structures and myriad functions of proteins, nucleic acids, and lipids from a quantitative, physical perspective.
    [Show full text]
  • Graduate Group in Biochemistry and Molecular Biophysics General Information for Incoming Students
    Graduate Group in Biochemistry and Molecular Biophysics General Information for Incoming Students Student mailboxes are located on the left as you enter the Mail Room (257 Anatomy-Chemistry Building) of the Dept. of Biochemistry and Biophysics. Use the following address to have mail sent to you at this location: Department of Biochemistry and Biophysics, 257 Anatomy-Chemistry Bldg., Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104- 6059. The Student Room is located in 250 Anatomy-Chemistry Building. Keys to this room have been placed in your mailbox. The room has two computers (1 MAC, 1 PC) and a printer. Please make sure the door is locked and securely closed when you leave the room. Lockers: Please contact Kelli McKenna if you would like a locker. They are located in the hallway outside of Rm 234 Anatomy- Chemistry. Advising: You will be meeting individually with the Advising Committee to select your fall courses and for guidance on your rotations. Course registration forms should be returned to Kelli McKenna as soon as possible after your meeting. Any changes in your fall schedule should be made within two weeks of the start of the semester and need to be approved by one of the members of the Advising Committee. Lab Rotation Approval forms are to be completed by Friday, September 13, 2021. You can find the forms for course registration and lab rotation on the BMB webpage: www.med.upenn.edu/bmbgrad under the resources page. Seminars which you are expected to attend: · Raiziss Rounds: Thursdays at noon (Austrian Auditorium, Clinical Research Building).
    [Show full text]
  • BIOPHYSICAL CHEMISTRY an International Journal Devoted to the Physics and Chemistry of Biological Phenomena
    BIOPHYSICAL CHEMISTRY An International Journal devoted to the Physics and Chemistry of Biological Phenomena AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.1 • Impact Factor p.2 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.5 ISSN: 0301-4622 DESCRIPTION . Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal. The journal publishes Regular Articles, Reviews, Short Communications (maximum of 4 printed pages) and Feature Articles. Feature Articles are normally by Editor's invitation only, but interested authors can contact the Editors before submission. Author(s) will be asked to focus on her/his recent research contributions, thereby adding a personal perspective to their field of research. These short reviews will include the authors' photo and a brief bio/CV and will have a page limit of 5 printed pages in print. Manuscripts that fall outside the scopes and interests of the journal are returned to the Authors without in-depth review. Relevant manuscripts are reviewed expeditiously with decisions generally made within 3 weeks from receipt. Short Communications are 6 printed pages maximum, reporting results of unusual timeliness and significance.
    [Show full text]
  • BS in Biophysics (285720) MAP Sheet Life Sciences, Cell Biology and Physiology for Students Entering the Degree Program During the 2021-2022 Curricular Year
    BS in Biophysics (285720) MAP Sheet Life Sciences, Cell Biology and Physiology For students entering the degree program during the 2021-2022 curricular year. University Core and Graduation Requirements Suggested Sequence of Courses University Core Requirements: FRESHMAN YEAR JUNIOR YEAR Requirements #Classes Hours Classes 1st Semester 5th Semester First-Year Writing or American Heritage 3.0 CELL 360 3.0 Religion Cornerstones CELL 120 (Biological Science) 3.0 CHEM 481 3.0 Teachings and Doctrine of The Book of 1 2.0 REL A 275 CHEM 105 4.0 PHSCS 220 3.0 Mormon MATH 112 (Languages of Learning & Quantitative Reasoning) 4.0 PHSCS 225 2.0 Religion Cornerstone Course 2.0 Religion Elective 2.0 Jesus Christ and the Everlasting Gospel 1 2.0 REL A 250 Total Hours 16.0 Mentored Lab Experience (CELL 495R) 1-2.0 Foundations of the Restoration 1 2.0 REL C 225 2nd Semester Total Hours 14-15.0 The Eternal Family 1 2.0 REL C 200 First-Year Writing or American Heritage 3.0 6th Semester The Individual and Society BIO 250 2.0 CELL 362 3.0 American Heritage 1-2 3-6.0 from approved list CHEM 106 3.0 CELL 363 1.0 CHEM 107 1.0 CHEM 468 3.0 Global and Cultural Awareness 1 3.0 from approved list MATH 113 4.0 Advanced Writing (WRTG 316 recommended) 3.0 Skills Religion Cornerstone Course 2.0 Global & Cultural Awareness Elective 3.0 First Year Writing 1 3.0 from approved list Total Hours 15.0 Religion Elective 2.0 Total Hours 15.0 Advanced Written and Oral Communications 1 3.0 WRTG 316 SOPHOMORE YEAR recommended 3rd Semester SENIOR YEAR MMBIO 240 3.0 7th Semester Quantitative
    [Show full text]
  • An Introductory Treatise on Biophysics - M.I.El Gohary
    FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS – Vol. III - An Introductory Treatise On Biophysics - M.I.El Gohary AN INTRODUCTORY TREATISE ON BIOPHYSICS M.I.El Gohary Faculty of Science, Al Azhar University, Cairo, Egypt Keywords: Biophysics, interdisciplinary, responsiveness, spermatozoon, budding, irritability, adaptation, mitosis, Auxin, regulator, protozoa, macromolecules, monomers, covalent bonds, aggregate, free energy, hydrocarbons, DNA and RNA, unfold, ribonuclease, catalyst, enzyme-substrate, thiamine, ribosomes, solar energy, adenosine triphosphate, transferase, phosphorylation, photosynthesis, chlorophyll, photophase, dark reaction, anaerobic, aerobic, respiratory pathway, diffusion, random motion, frictional force, macromolecules, random walk, average squared displacement, probability, Fick’s diffusion constant, Fick’s law, inhomogeneous equation, osmosis, semipermeable, osmotic pressure, hypertonic, isotonic, turgor pressure, hydrophobic, hydrophilic, lipid, trilaminar, Myelin, phospholipid, Mosaic, transport, simple diffusion, solute, solubility, electric charge, selective permeability, ion channels, electrochemical gradient, compartment, plasma, sodium pump, permeability, field theory, net flux, selectivity, reversal potential, diffraction, crystallography, Bragg equation, markers, structural organization, detector, magnetic moment, resonance, magnetic dipole, gyromagnetic ratio, the chemical shift, resolution, patch-clamp, food chain, producers, consumers, decomposers, heterotrophic, heterotrophs, biosphere,
    [Show full text]
  • Biophysics and Systems Biology of Cellular Responses to Perturbations
    Biophysics and systems biology of cellular responses to perturbations. [email protected] Castellani G.C., Remondini D., Giampieri E., de Oliveira L., Sala C., Menichetti G., Virelli A., Zironi I. Dipartimento di Fisica e Astronomia, Università di Bologna Dipartimento di Fisica Università di Bologna,and INFN Galvani Center for Biophysics, Bioinformatics and Biocomplexity via B.Pichat 6/2 ,Bologna, 40127, Italy IBNS & Physics Department Brown University Providence RI USA Trieste 27-09-2013 Centro Interdipartimentale “L. Galvani” (CIG) Università di Bologna Italy Bologna Center for Biocomplexity 2000: L. Galvani Center for integrated studies of Biophysics Bioinformatics and Biocomplexity ( http://www.centrogalvani.unibo.it ) including Systems Biology, Genomics of Longevity and Laser-Plasma Physics. Bio-immuno-pathological group: expertise in cell culture, sorting and omics measurements: is one of the leading laboratory in Europe and in the World for the study of Aging and senescence in humans, including the centenarians; Biophysics group: decennial activity in the field of complex cellular function modeling and advanced data analysis, and recently is developing biophysical measurements as patch clamp and fluorescence microscopy. An intriguing aspect of Radiation effect is the sharing of mechanisms with cellular senescence, organismic aging and LDR-induced carcinogenesis in humans as: e.g. the Free radical theory (FRT). Harman in the 1950s, . 1) the rate of living theory, which holds that lifespan is an inverse function of metabolic
    [Show full text]