Trolley-Bus Overhead Contact Line Systems Vetra System Data Sent by the Vehicle Are Detected by the Control Unit

Total Page:16

File Type:pdf, Size:1020Kb

Trolley-Bus Overhead Contact Line Systems Vetra System Data Sent by the Vehicle Are Detected by the Control Unit trolley-bus overhead contact line systems vetra system Data sent by the vehicle are detected by the control unit. Whole process of switch setti ng runs fully automati cally. Driver just sets the desti nati on code on the Transceiver receives data keyboard unit. from the passing vehicles below. 2 Switches are Light signalling automati cally informs driver set by VETRA of actual status system. Driver of switches is only informed - directi on, about actual blocking and status of the possible incorrect switch. throw over. Using this code 2.4 GHz VETRA system the vehicle pass is a reliable data automati cally transmiti on system through all developed for high switches unti l its vehicle’s operati on fi nal desti nati on. speed. 3 cantilevers & cross-Wire susPensions We usually supply GRP (glass-fi ber reinforced plasti c) canti levers, but our producti on includes aluminium canti levers as well. For longer lengths or higher load of canti lever we off er double canti lever with all needed armatures. We use special 3kV loop insu- lators to reach second level of Cross-wire suspensions are insulati on within fi xed to the poles by the the cross-wire various hinge types. suspensions. 4 Curve clamps fi xed on GRP canti lever Three-way connecti on of supporti ng over- head net made from stainless steel rope. The curve Our soluti on clamps are of GRP canti le- designed vers is safe for for high- maintenance, speed longlife and operati on have aestheti c of vehicles. appearance. 5 trolley-bus crossinGs & curve clamPs Trolley-bus crossings and switches allow a transit speed of up to 50 km/ hour. Curve clamps guarantee smooth passage and higher vehicle speed as well as its easy installati on. 6 You can choose diff erent geometrical soluti on (20°-90°) of TBUS x TBUS crossings. Left and right opti on is available. Correct type (length) of used curve clamps has large infl uence on the operati on speed. 7 electrical & mechanical sWitches For trolley-buses The latest design The passage of our over the Elek- electrical troline mechan- switches is ical switches is light and airy quick, perfectly and it makes smooth and the switches silent. less visible overhead. For roundabout soluti on is suitable use of double switch point controlled by VETRA system with fully automati c operati on. 8 We off er all types of switches in 10° or 20° narrow- angle design and in left / right opti on. Our 20 years experience in switches producti on makes them highly reliable and in top quality. Signal lamp informs the driver about actual status of the switch positi on. 9 tram X tbus crossinGs & Kevlar roPes New type of TBUSxTRAM (15°-65°) crossings without interrupti on of electrical supply is perfectly silent and ensure vehicle’s sustained passage with current. Vehicle of any directi on can stop wherever within passage of this crossing type and easily start driving again. 10 Supporti ng net made from KEVLAR syntheti c ropes decline undesirable noise which is characteristi c for vehicle‘s moving. Except noiselessness of syntheti c rope during operati on further important advantage is its insulati on. We produce wide assort- ment of KEVLAR clamps and fi tti ng mate- rial adjusted for insulated syn- theti c ropes. 11 FeedinG & disconnectors Special assembly of insulati ng rods together with disconnector and motor drive allows simultaneous control of both (plus - minus) polariti es. We off er complex soluti on of depot control including remote control and no-voltage status alerti ng. 12 Motor drives are suitable for control of disconnectors which are in everyday operati on. The control of motor drive can be local or remote. Secti on insulators for dividing of fed secti ons of OCL. Green color of lamp informs operators about no-voltage status and about the possibility of maintenance close to OCL. 13 chosen reFerence ProJects italy milan, Piazza botti ni, 2010 Delivery and assembly of TBUSx- TRAM crossings and OCL and OCL material and of TBUS elec- trical and mechanical switches - Piazza Botti ni cZech rePublic Plzeň, 2009-2010 • delivery and assembly of com- plete electrical TBUS switches including automati c control system - VETRA • delivery and assembly of complete mechanical TBUS switches • delivery and installati on of 3 sets of TBUS x TBUS crossings • other OCL material 14 usa dayton, 2008-2009 Centralized transfer stati on where trolleybuses can overtake each other at stops, with electri- cal controlling of switches and signalizati on of current directi on of the switch. Total amount: • complete sets of electrical switches • complete sets of mechanical switches • TBUS crossings • material supply plus supervi- sion during assembly Poland Gdynia depot, 2007 Delivery: • delivery of disconnectors in- cluding motor drives • remote control of disconnec- tors • no-voltage status signalisati on including security of mainte- nance workplaces for no-volt- age status works 15 elektroline inc. K ládví 20 184 00 Prague 8 czech republic phone: +420 284 021 111 fax: +420 284 021 119 e-mail: [email protected] www.elektroline.cz.
Recommended publications
  • 1 Republic of Kazakhstan Almaty Trolleybus Project
    OFFICIAL USE REPUBLIC OF KAZAKHSTAN ALMATY TROLLEYBUS PROJECT FEASIBILITY AND DUE DILIGENCE STUDY TERMS OF REFERENCE 1. BACKGROUND The City of Almaty (the “City”) with population of 1.8 million is the country’s largest and most important business and financial centre, contributing around 25 per cent of the national GDP. As most of rapidly growing conglomerates, the city is experiencing deficit of convenient “green” public transportation aggravated by an increasing number of private cars. Almaty is the only city in Kazakhstan with trolleybus system. Current trolleybus fleet was purchased 10 years ago, and it is close to its full depreciation. Subsequently, the City approached the European Bank for Reconstruction and Development (the “EBRD” or the “Bank”) to finance renewal of the trolleybus fleet through the purchase of 200 new hybrid trolleybuses and associated depot equipment (the “Project”). EBRD loan would be provided for the benefit of Almatyelectrotrans LLP (the “Company” or “AET”). The City sees the Project as an important measure to improve the environmental situation via expanding electric transport. The Project will allow the Company to improve passenger services by replacing the existing deteriorating fleet and providing vehicles for new lines, should the City decide to expand the trolleybus network. Better public transport services will prevent further modal shift from public transport to personal cars. The City’s public transport carries over 450 million passengers annually. The bulk of passenger traffic (86 per cent) is carried by buses operated by private and municipal companies. Trolleybuses account for 11 per cent of traffic, and the metro for 3 per cent.
    [Show full text]
  • Circulator Bus Transit Cost
    Transit CIRCULATOR BUS TRANSIT COST DowntownDC, www.downtowndc.org TI SORT STATE ON REGI AL IPACT LOCAL RID OR OR C SPOT WO URDLS CITPRIAT FUNDIN TRANSIT ANCY More Information: tti.tamu.edu/policy/how-to-fix-congestion SUCCESS STORIES Description How Will This Help? Washington, D.C. Circulator bus transit is a short-distance, • Improves mobility and The DC Circulator is a circular, fixed-route transit mode that circulation in target areas. cooperative effort of the District takes riders around a specific area with • Fosters the redevelopment of Columbia Department of major destinations. It may include street- of urban spaces into walk- Transportation, the Washington cars, rubber-tire trolleys, electric buses, able, mixed-use, high-density Metropolitan Area Transit or compressed natural gas buses. environments. Authority, DC Surface Transit, and First Transit. The DC Two common types of circulator bus • Improves parking availability in transit are downtown circulators and areas with shortages. Circulator began service in neighborhood circulators. A circulator • Reduces environmental 2005 and has bus system targeted at tourists/visitors impacts from private/individual experienced is more likely to use vehicle colors to be transportation. increasing clearly identifiable. ridership each Implementation Issues year. Target Market There are many barriers, constraints, and Most downtown circulators are orient- obstacles to successfully implement, ed toward employee and tourist/visi- Philadelphia, Pennsylvania operate, and maintain a circulator bus. tor markets. Neighborhood circulators The Independence Visitor However, funding is the major constraint meet the mobility needs of transit-reliant Center Corporation manages in most programs. Inadequate funding populations, such as low-income and the downtown circulator, and costs were the most common mobility-challenged people.
    [Show full text]
  • Bus Schedules and Routes
    City of Simi Valley Transit City of Simi Valley Transit provides a convenient We’ve Got Connections! and inexpensive way to travel in and around City of Simi Valley Transit is pleased to provide the City. Modern air-conditioned buses transport connections with other major transit systems: you in comfort to most major points of interest: ADA/Dial-A-Ride. 805-583-6464 shopping, schools, parks, public buildings and more! Amtrak Info: . 800-872-7245 LA Metro Information: ......323-466-3876 To fully enjoy the benefits of using the Metrolink: . 800-371-5465 buses, please remember: Moorpark City Transit: . .805-517-6315 • Food an beverages are not allowed on the TDD Information ...........800-735-2929 buses. Thousand Oaks Transit ......805-375-5467 • Please extinguish all smoking materials before VCTC:. 800-438-1112 boarding a bus. Free transfers are available upon request to L A • Radios, tape recorders, and electronic devices Metro and VCTC. must be turned off when boarding a bus. Headphones are allowed. All buses are wheelchair accessible. It is recommended that passengers call prior to • Drivers cannot make change. Please be starting a trip to confirm the closest bus stop prepared to pay the EXACT FARE. location. All buses are equipped with bike racks. • For Lost & Found items, call City of Simi Valley Transit at (805) 583-6456. Items may Fares be retrieved from the Simi Valley Police Full Fare Department Monday through Friday, 8:00 a.m. Single Trip. $1.50 to 4:00 p.m. Unlimited Day Pass . $5.00 • Bus Stops are located approximately ¼ to ½ 21-Ride Pass .....................$25.00 mile apart along routes within Simi Valley.
    [Show full text]
  • The Influence of Passenger Load, Driving Cycle, Fuel Price and Different
    Transportation https://doi.org/10.1007/s11116-018-9925-0 The infuence of passenger load, driving cycle, fuel price and diferent types of buses on the cost of transport service in the BRT system in Curitiba, Brazil Dennis Dreier1 · Semida Silveira1 · Dilip Khatiwada1 · Keiko V. O. Fonseca2 · Rafael Nieweglowski3 · Renan Schepanski3 © The Author(s) 2018 Abstract This study analyses the infuence of passenger load, driving cycle, fuel price and four diferent types of buses on the cost of transport service for one bus rapid transit (BRT) route in Curitiba, Brazil. First, the energy use is estimated for diferent passenger loads and driving cycles for a conventional bi-articulated bus (ConvBi), a hybrid-electric two- axle bus (HybTw), a hybrid-electric articulated bus (HybAr) and a plug-in hybrid-electric two-axle bus (PlugTw). Then, the fuel cost and uncertainty are estimated considering the fuel price trends in the past. Based on this and additional cost data, replacement scenarios for the currently operated ConvBi feet are determined using a techno-economic optimisa- tion model. The lowest fuel cost ranges for the passenger load are estimated for PlugTw amounting to (0.198–0.289) USD/km, followed by (0.255–0.315) USD/km for HybTw, (0.298–0.375) USD/km for HybAr and (0.552–0.809) USD/km for ConvBi. In contrast, C the coefcient of variation ( v ) of the combined standard uncertainty is the highest for C PlugTw ( v : 15–17%) due to stronger sensitivity to varying bus driver behaviour, whereas C it is the least for ConvBi ( v : 8%).
    [Show full text]
  • Skopje Tram-Bus Project
    Skopje Tram-Bus Project Non-Technical Summary July 2020 1 Table of Contents 1. Background ................................................................................................................. 1 Introduction ........................................................................................................................... 1 Overview of the Project ......................................................................................................... 1 Project Timeline and Stages ................................................................................................. 4 2. Key Environmental, Health & Safety and Social Findings ........................................ 4 Overview ............................................................................................................................... 4 Project Benefits and Impacts ................................................................................................. 5 Project Benefits ..................................................................................................................... 5 Project Impacts and Risks ..................................................................................................... 5 3. How will Stakeholders be Engaged in the Project? .................................................. 7 What is the Stakeholder Engagement Plan? ......................................................................... 7 Who are the Key Stakeholders? ...........................................................................................
    [Show full text]
  • Bi-Articulated Bi-Articulated
    Bi-articulated Bus AGG 300 Handbuch_121x175_Doppel-Gelenkbus_en.indd 1 22.11.16 12:14 OMSI 2 Bi-articulated bus AGG 300 Developed by: Darius Bode Manual: Darius Bode, Aerosoft OMSI 2 Bi-articulated bus AGG 300 Manual Copyright: © 2016 / Aerosoft GmbH Airport Paderborn/Lippstadt D-33142 Bueren, Germany Tel: +49 (0) 29 55 / 76 03-10 Fax: +49 (0) 29 55 / 76 03-33 E-Mail: [email protected] Internet: www.aerosoft.de Add-on for www.aerosoft.com All trademarks and brand names are trademarks or registered of their respective owners. All rights reserved. OMSI 2 - The Omnibus simulator 2 3 Aerosoft GmbH 2016 OMSI 2 Bi-articulated bus AGG 300 Inhalt Introduction ...............................................................6 Bi-articulated AGG 300 and city bus A 330 ................. 6 Vehicle operation ......................................................8 Dashboard .................................................................. 8 Window console ....................................................... 10 Control lights ............................................................ 11 Main information display ........................................... 12 Ticket printer ............................................................. 13 Door controls ............................................................ 16 Stop display .............................................................. 16 Level control .............................................................. 16 Lights, energy-save and schoolbus function ............... 17 Air conditioning
    [Show full text]
  • Getting to Royal Papworth Hospital Information for Patients Welcome Royal Papworth Hospital – a Brand New Heart and Lung Hospital on the Cambridge Biomedical Campus
    Getting to Royal Papworth Hospital Information for patients Welcome Royal Papworth Hospital – a brand new heart and lung hospital on the Cambridge Biomedical Campus. This leafl et gives you some important information about how to get to the hospital and the location of key departments inside the new hospital building. If you have any questions about the new hospital, please don’t hesitate to contact our Patient Advice and Liaison Service on 01223 638896. We look forward to welcoming you to the hospital soon. About our new hospital Royal Papworth Hospital has been designed by our clinicians with patients in mind. It includes: • Five operating theatres, five catheter laboratories (for non-surgical procedures) and two hybrid theatres • Six inpatient wards • 310 beds, including a 46-bed critical care unit and 24 day beds • Mostly en-suite, individual rooms for inpatients • A centrally-located Outpatients unit offering a wide range of diagnostic and treatment facilities • An atrium on the ground floor with a restaurant, coffee shop and convenience store Getting to the new hospital The new hospital is located on the Cambridge Biomedical Campus, near to Addenbrooke’s Hospital, to the south of the city of Cambridge. Travelling by car If you are travelling to the new hospital by car, it may be quicker (and cheaper) to park at Trumpington Park & Ride (postcode CB2 9FT) and take the Guided Bus A directly to the new hospital (a 5-minute journey). Alternatively, you could park at the Babraham Park & Ride site (postcode CB22 3AB) and take the bus to the Addenbrooke’s Hospital bus stop.
    [Show full text]
  • SUBJECT: On-Time Performance Improvement Action Plan FROM
    SUBJECT: On-Time Performance Improvement Action Plan FROM: Christy Wegener, Director of Planning and Communications DATE: September 28, 2015 Action Requested None – Information only Background This staff report is an update of efforts to improve On-Time Performance (OTP) Discussion In April 2015, staff presented an OTP Action Plan to the Board (Attachment 1), which included an outline of actions to immediately improve OTP. Since that time, several adjustments have been made to route schedules and alignments, as well as improvements to the software that monitors OTP. 1) Fine tuning of software: Over the past five months, staff has worked to adjust the Transit Master software so that it more accurately records OTP. This has included adjusting the stop interval distances, re-geocoding stops, and adjusting the arrival and departure zones for each stop. This process typically takes several attempts in order to achieve the desired results. This involves inputting the data into the system, exporting it to the database, pushing it out to the buses, and finally analyzing the data over several days. 2) Improve the OTP of the Route 10 and the Rapid by 3%: Adjustments have been made to the Route 10 afternoon schedule to better time with the bell at Amador High School. Additional schedule adjustments were made to early morning trips as part of the February 2015 signup. However, achieving a 3% improvement in OTP has not been attained at this point. Improvement in OTP for these routes has been negligible. 3) Identify the top two worst performing routes (Route 3 and Route 54) and make adjustments to schedules to improve respective OTP by 10%.
    [Show full text]
  • Feasibility Study on Introducing Trolleybus System in Hong Kong
    Agreement No. CE 72/99 Feasibility Study of Introducing a Trolleybus System in Hong Kong LIST OF CONTENTS Page 1. STUDY OBJECTIVES AND SCOPE 1 1.1 Study Objectives and scope 1 1.2 Case Studies 1 2. TECHNICAL AND OPERATIONAL FEASIBILITY 1 2.1 What is a Trolleybus? 1 2.2 Components of Trolleybus Systems for Hong Kong 1 2.3 Trolley Vehicles 2 2.4 The Power Distribution System 3 2.5 Infrastructure and Planning Requirements 4 2.6 Operating a Trolleybus System 5 2.7 Network Planning 6 2.8 Conclusions 6 3. FINANCIAL VIABILITY 6 3.1 Introduction 6 3.2 South East Kowloon Development 6 3.3 Central and Wan Chai 7 3.4 Aberdeen 7 3.5 Conclusions on Financial Viability 8 3.6 Possible Means to Achieve Viability 8 4. ENVIRONMENTAL ASSESSMENT AND ISSUES 8 4.1 Air Quality Assessment Methodology 8 4.2 South East Kowloon Air Quality Assessment 9 4.3 Central and Wan Chai and Aberdeen Air Quality Assessments 9 4.4 Other Air Quality Issues 9 4.5 Noise Levels 9 4.6 Landscape and Visual Assessment 10 5. REGULATORY AND LEGISLATIVE FRAMEWORKS AND THEIR IMPLICATIONS 11 5.1 The Granting of Franchises 11 5.2 Legislative Requirements 11 Transport Department Atkins China Ltd. 3089/OR33/00/E427, May 2001 page i Agreement No. CE 72/99 Feasibility Study of Introducing a Trolleybus System in Hong Kong LIST OF CONTENTS (Continued) Page 6. THE WAY FORWARD 11 6.1 Introduction 11 6.2 On-road and off-road trials 11 6.3 Requirements of a Pilot Scheme 12 6.4 Locational Options for a Pilot Scheme 12 6.5 The Implementation Process 12 6.6 Additional Investigations 12 Transport Department Atkins China Ltd.
    [Show full text]
  • Trolleybuses: Applicability of UN Regulation No
    Submitted by the expert from OICA Informal document GRSG-110-08-Rev.1 (110th GRSG, 26-29 April 2016, agenda item 2(a)) Trolleybuses: Applicability of UN Regulation No. 100 (Electric Power Train Vehicle) vs. UN Regulation No. 107 Annex 12 (Construction of M2/M3 Vehicles) for Electrical Safety 1. At 110th session of GRSG Belgium proposes to amend UN R107 annex 12 by deleting the requirements for trolleybuses (see GRSG/2016/05) and transfer the requirements into UN R100 (see GRSP/2016/07), which will be on the agenda of upcoming GRSP session in May 2016. 2. Due to the design of a trolleybus and stated in UN Regulation No. 107, trolleybuses are dual- mode vehicles. They can operate either: (a) in trolley mode, when connected to the overhead contact line (OCL), or (b) in bus mode when not connected to the OCL. When not connected to the OCL, they can also be (c) in charging mode, where they are stationary and plugged into the power grid for battery charging. 3. The basic principles of the design of the electric powertrain of the trolleybus and the connection to the OCL is based on international standards developed for trams and trains and is implemented and well accepted in the market worldwide. 4. Due to the fact that the trolleybus is used on public roads the trolleybus has to fulfil the regulations under the umbrella of the UNECE regulatory framework due to the existing national regulations (e.g. European frame work directive). 5. Therefore the annex 12 in UN R107 was amended to align the additional safety prescriptions for trolleybuses with the corresponding electrical standards.
    [Show full text]
  • Transit Capacity and Quality of Service Manual (Part B)
    7UDQVLW&DSDFLW\DQG4XDOLW\RI6HUYLFH0DQXDO PART 2 BUS TRANSIT CAPACITY CONTENTS 1. BUS CAPACITY BASICS ....................................................................................... 2-1 Overview..................................................................................................................... 2-1 Definitions............................................................................................................... 2-1 Types of Bus Facilities and Service ............................................................................ 2-3 Factors Influencing Bus Capacity ............................................................................... 2-5 Vehicle Capacity..................................................................................................... 2-5 Person Capacity..................................................................................................... 2-13 Fundamental Capacity Calculations .......................................................................... 2-15 Vehicle Capacity................................................................................................... 2-15 Person Capacity..................................................................................................... 2-22 Planning Applications ............................................................................................... 2-23 2. OPERATING ISSUES............................................................................................ 2-25 Introduction..............................................................................................................
    [Show full text]
  • Competitiveness of Trolleybus in Urban Transport
    Transactions on the Built Environment vol 52, © 2001 WIT Press, www.witpress.com, ISSN 1743-3509 Competitiveness of trolleybus in urban transport G. ~sten~o',R. ~ozzo~, M. ~alaverna~ & G. sciutto2 'Sciro S.r. l., Genova, Italy ZDepart?nentof Electrical Engineering, University of Genova, Italy Abstract In the search for alternative transportation modes in urban public transport, this paper suggests a comparison between the competitiveness of trolleybus and diesel bus transport modes. This evaluation is based on the relevant life-cycle costs, highlighting that trolleybus transport has a starting high charge of vehicles and wiring purchase as well as the disadvantage arising, in Italy, from the higher price of electric energy compared with diesel oil. Because of these factors, the trolleybus is less competitive than the diesel bus for the Italian urban centres although more friendly for the environment. In the last part of the paper, a case study shows that energy prices and car purchase have a negative influence on the present competitiveness of the trolleybus. 1 Introduction After the Second World War, advanced technology and oil low price encouraged the employment of the diesel bus instead of the trolleybus, which was penalised by its overhead contact line that could not meet the requirements of the quick traffic growth in urban centres. Most trolleybus networks were dismantled between the 60's and 70's. Today, the urgent need to reduce air and acoustic pollution in urban areas as well as a greater environmental awareness, also backed by governmental policies, bring about a renewed interest for the trolleybus. As to the drive development, trolleybus vehicles followed, during the years, the same evolution achieved in the field of light rail EMUS.
    [Show full text]