Disentangling the Multi-Scale Effects of Sea-Surface Temperatures on Global Precipitation: a Coupled Networks Approach

Total Page:16

File Type:pdf, Size:1020Kb

Disentangling the Multi-Scale Effects of Sea-Surface Temperatures on Global Precipitation: a Coupled Networks Approach Originally published as: Ekhtiari, N., Agarwal, A., Marwan, N., Donner, R. V. (2019): Disentangling the multi-scale effects of sea-surface temperatures on global precipitation: A coupled networks approach. - Chaos, 29. DOI: http://doi.org/10.1063/1.5095565 Disentangling the multi-scale effects of sea- surface temperatures on global precipitation: A coupled networks approach Cite as: Chaos 29, 063116 (2019); https://doi.org/10.1063/1.5095565 Submitted: 11 March 2019 . Accepted: 31 May 2019 . Published Online: 20 June 2019 Nikoo Ekhtiari, Ankit Agarwal , Norbert Marwan , and Reik V. Donner COLLECTIONS This paper was selected as Featured ARTICLES YOU MAY BE INTERESTED IN Synchronization behavior in a ternary phase model Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 063115 (2019); https:// doi.org/10.1063/1.5097237 Locating the source node of diffusion process in cyber-physical networks via minimum observers Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 063117 (2019); https:// doi.org/10.1063/1.5092772 Temnothorax albipennis migration inspired semi-flocking control for mobile sensor networks Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 063113 (2019); https:// doi.org/10.1063/1.5093073 Chaos 29, 063116 (2019); https://doi.org/10.1063/1.5095565 29, 063116 © 2019 Author(s). Chaos ARTICLE scitation.org/journal/cha Disentangling the multi-scale effects of sea-surface temperatures on global precipitation: A coupled networks approach Cite as: Chaos 29, 063116 (2019); doi: 10.1063/1.5095565 Submitted: 11 March 2019 · Accepted: 31 May 2019 · Published Online: 20 June 2019 View Online Export Citation CrossMark Nikoo Ekhtiari,1,2,a) Ankit Agarwal,1,3,4 Norbert Marwan,1 and Reik V. Donner1,5,b) AFFILIATIONS 1Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany 2Department of Physics, Humboldt University, Newtonstr. 15, 12489 Berlin, Germany 3Institute of Earth and Environmental Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany 4GFZ German Research Centre for Geosciences, Section 5.4: Hydrology, Telegrafenberg, 14473 Potsdam, Germany 5Department of Water, Environment, Construction and Safety, Magdeburg–Stendal University of Applied Sciences, Breitscheidstr. 2, 39114 Magdeburg, Germany a)Electronic addresses: [email protected] and [email protected] b)Electronic mail: [email protected] ABSTRACT The oceans and atmosphere interact via a multiplicity of feedback mechanisms, shaping to a large extent the global climate and its variability. To deepen our knowledge of the global climate system, characterizing and investigating this interdependence is an important task of contemporary research. However, our present understanding of the underlying large-scale processes is greatly limited due to the manifold interactions between essential climatic variables at dierent temporal scales. To address this problem, we here propose to extend the application of complex network techniques to capture the interdependence between global elds of sea-surface temperature (SST) and precipitation (P) at multiple temporal scales. For this purpose, we combine time-scale decomposition by means of a discrete wavelet transform with the concept of coupled climate network analysis. Our results demonstrate the potential of the proposed approach to unravel the scale-specic interdependences between atmosphere and ocean and, thus, shed light on the emerging multiscale processes inherent to the climate system, which traditionally remain undiscovered when investigating the system only at the native resolution of existing climate data sets. Moreover, we show how the relevant spatial interdependence structures between SST and P evolve across time-scales. Most notably, the strongest mutual correlations between SST and P at annual scale (8–16 months) concentrate mainly over the Pacic Ocean, while the corresponding spatial patterns progressively disappear when moving toward longer time-scales. Published under license by AIP Publishing. https://doi.org/10.1063/1.5095565 The study of the climate system using complex networks pro- climate variables and their temporal evolution, which might be vides new insights into spatiotemporal climate dynamics. Most overlooked when focusing only at the native resolution of existing previous studies have focused on a single climate variable only. climate data sets. Accounting for the multivariate and multiscale nature of climate variability introduces a new challenging perspective that could help improve our understanding of the underlying physical mech- anisms. In this study, we focus on the aforementioned two aspects I. INTRODUCTION of multiple variables and time-scales contributing to the variabil- The mutual interdependence between ocean and atmospheric ity of the climate system and show that cross-variable statistical variability, which is mediated via various dierent processes, is a relations evolve dierently at dierent time-scales. Considera- key ingredient in global climate dynamics across a vast range of tion of this previously widely disregarded factor provides a more spatial and temporal scales.1–3 In particular, in the tropics and sub- explicit picture of scale-dependent covariability patterns among tropics coupling between both systems via wind stress, dierential Chaos 29, 063116 (2019); doi: 10.1063/1.5095565 29, 063116-1 Published under license by AIP Publishing. Chaos ARTICLE scitation.org/journal/cha heating and evaporation gives rise to important phenomena such as has been motivated by numerous examples of successful applications monsoons or the El Niño–Southern Oscillation (ENSO).4 Thereby, of complex network approaches across scientic disciplines and to understanding the interactions between ocean and atmosphere in problems of great societal relevance.22 Here, each grid point of a given space and time across scales is of fundamental socioeconomic rel- climate data set corresponds to a node of a spatially embedded net- evance, including elds like agriculture or risk assessment in the work, and links represent strong statistical associations between the context of the insurance sector. The latter relates mainly to the tim- variability observed at the respective grid points. ing and magnitude of climate extremes like heatwaves, oodings, Previous applications of functional network analysis to climate or droughts, which play a vital role for daily life and prosperity of science have mainly focused on individual climatological elds rep- the society yet are hard to assess due to their strong spatiotemporal resenting the dynamics of a single variable or atmospheric layer. heterogeneity. Recently, a multivariate extension of this framework has been intro- In this work, we focus on the interdependence between sea- duced in terms of interdependent or coupled climate networks, which surface temperature (SST) and precipitation (P) as two key variables allows studying the spatiotemporal interdependence patterns among associated with ocean and atmosphere, respectively. There is a large two or more variables from a complex network perspective.23–25 How- body of existing studies on the interrelation between these two vari- ever, a detailed analysis of the multiscale spatial characteristics of two ables and the possible causes and associated impacts of correspond- interdependent climate variables has not yet been performed. In turn, ing extremes. In this context, one key physical mechanism is the given the multiplicity of known (almost periodic to broad-banded exchange of surface uxes.5,6 Recent studies suggest that P tends to irregular) oscillatory variability modes in dierent atmospheric and increase in some approximately linear fashion with increasing SST ocean variables from intraseasonal [e.g., the Madden-Julian Oscilla- over the tropical monsoon basins, suggesting a noticeable impact tion (MJO)] over interannual [e.g., North Atlantic Oscillation (NAO) of SST on tropical precipitation.7 By contrast, in the western North and ENSO] to multidecadal scales [e.g., Pacic Decadal Oscillation Pacic region, the correlation between local rainfall and SST in the (PDO) or Atlantic Multidecadal Oscillation (AMO)], it is pivotal boreal summer is negative, indicating that atmospheric dynamics to explicitly account for the associated distinct scales in order to dominates over oceanic preconditioning in determining the rainfall attribute the resulting spatial interdependence patterns to specic cli- variability of this region.8,9 This observation may be explained by the mate mechanisms. This is precisely what we attempt in the present monsoon activity during this season. The summer monsoon brings study. rainfall, but also leads to SST cooling and, hence, the negative corre- The remainder of this paper is organized as follows: Sec. II lation between local rainfall and SST. Trenberth and Shea8 studied the describes the utilized datasets and methods. The results are pre- covariability between surface temperature and P globally and found sented and discussed in Sec. III. Specically, we will focus on two key negative correlations over land but positive correlations over high local characteristics of spatially embedded coupled networks—the latitudes. They also concluded that ocean conditions drive the atmo- cross-degree and average cross-link distance—between sea-surface sphere. In vast parts of the tropics, higher surface air temperatures temperatures and precipitation. Both measures are presented as maps are associated
Recommended publications
  • Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle Of
    3878 JOURNAL OF CLIMATE VOLUME 24 Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon ,1 #,@ & E. MOHINO,* B. RODRI´GUEZ-FONSECA, C. R. MECHOSO, S. GERVOIS,* 11 P. RUTI,** AND F. CHAUVIN, * LOCEAN/IPSL, Universite´ Pierre et Marie Curie, Paris, France 1 Universidad de Sevilla, Seville, Spain # Universidad Complutense de Madrid, Madrid, Spain @ Instituto de Geosciencias, Consejo Superior de Investigaciones Cientificas and Universidad Complutense de Madrid, Madrid, Spain & Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California ** Progetto Speciale Clima Globale, Ente Nazionale per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy 11 GAME/CNRM, Me´te´o-France/CNRS, Toulouse, France (Manuscript received 9 August 2010, in final form 19 January 2011) ABSTRACT The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances.
    [Show full text]
  • Impact of the Equatorial Atlantic on the El Ni˜No Southern Oscillation
    Noname manuscript No. (will be inserted by the editor) Impact of the Equatorial Atlantic on the El Ni~no Southern Oscillation Hui Ding · Noel S. Keenlyside · Mojib Latif Received: date / Accepted: date Abstract Observations indicate that the Atlantic zonal mode influences El Ni~noSouthern Oscillation (ENSO) in the Pacific, as already suggested in pre- vious studies. Here we demonstrate for the first time using partial coupled ex- periments that the Atlantic zonal mode indeed influences ENSO. The partial coupling experiments are performed by forcing the coupled general circulation model (ECHAM5/MPI-OM) with observed sea surface temperature (SST) in the Tropical Atlantic, but with full air-sea coupling allowed in the Pacific and Indian Ocean. The ensemble mean of five members simulations reproduce the observational results well. Hui Ding IFM-GEOMAR, D¨usternbrooker Weg 20, Kiel 24105, Germany Tel.: +49-431-6004071 Fax: +49-431-6004052 E-mail: [email protected] 2 Hui Ding et al. Analysis of observations, reanalysis, and coupled model simulations all in- dicate the following mechanism: SST anomalies associated with the Atlantic zonal mode affect the Walker Circulation, driving westward wind anomalies over the equatorial Pacific during boreal summer. The wind stress anomalies increase the east-west thermocline slope and enhance the SST gradient across the Pacific; the Bjerknes positive feedback acts to amplify these anomalies favouring the development of a La Ni~na-like anomalies. The same mechanisms act for the cold phase of Atlantic zonal mode, but with opposite sign. In con- trast to previous studies, the model shows that the influence on ENSO exists before 1970.
    [Show full text]
  • Teleconnections of the Tropical Atlantic to the Tropical Indian and Pacific Oceans: a Review of Recent findings
    Meteorologische Zeitschrift, Vol. 18, No. 4, 445-454 (August 2009) Article c by Gebr¨uder Borntraeger 2009 Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings 1∗ 2 2 3 CHUNZAI WANG ,FRED KUCHARSKI ,RONDROTIANA BARIMALALA and ANNALISA BRACCO 1NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida U.S.A. 2The Abdus Salam International Centre for Theoretical Physics, Earth System Physics Section Trieste, Italy 3School of Earth and Atmospheric Sciences Georgia Institute of Technology, Atlanta, Georgia, U.S.A. (Manuscript received November 12, 2008; in revised form February 16, 2009; accepted March 18, 2009) Abstract Recent studies found that tropical Atlantic variability may affect the climate in both the tropical Pacific and Indian Ocean basins, possibly modulating the Indian summer monsoon and Pacific ENSO events. A warm tropical Atlantic Ocean forces a Gill-Matsuno-type quadrupole response with a low-level anticyclone located over India that weakens the Indian monsoon circulation, and vice versa for a cold tropical Atlantic Ocean. The tropical Atlantic Ocean can also induce changes in the Indian Ocean sea surface temperatures (SSTs), especially along the coast of Africa and in the western side of the Indian basin. Additionally, it can influence the tropical Pacific Ocean via an atmospheric teleconnection that is associated with the Atlantic Walker circulation. Although the Pacific El Ni˜no does not contemporaneously correlate with the Atlantic Ni˜no, anomalous warming or cooling of the two equatorial oceans can form an inter-basin SST gradient that induces surface zonal wind anomalies over equatorial South America and other regions in both ocean basins.
    [Show full text]
  • Downloaded 09/24/21 03:41 PM UTC
    1JANUARY 2007 KEENLYSIDE AND LATIF 131 Understanding Equatorial Atlantic Interannual Variability NOEL S. KEENLYSIDE AND MOJIB LATIF Leibniz-Institut für Meereswissenschaften, Kiel, Germany (Manuscript received 5 May 2005, in final form 19 May 2006) ABSTRACT An observational-based analysis of coupled variability in the equatorial Atlantic and its seasonality is presented. Regression analysis shows that the three elements of the Bjerknes positive feedback exist in the Atlantic and are spatially similar to those of the Pacific. The cross-correlation functions of the elements of the Bjerknes feedback are also similar and consistent with an ocean–atmosphere coupled mode. However, the growth rate in the Atlantic is up to 50% weaker, and explained variance is significantly lower. The Bjerknes feedback in the Atlantic is strong in boreal spring and summer, and weak in other seasons, which explains why the largest sea surface temperature anomalies (SSTAs) occur in boreal summer. Its seasonality is determined by seasonal variations in both atmospheric sensitivity to SSTA and SSTA sensitivity to subsurface temperature anomalies. 1. Introduction sphere to cross-equatorial SST gradients is recognized (Chiang et al. 2002), but it is not clear if it results in a Studies of tropical Atlantic variability over the past positive ocean–atmosphere feedback (Chang et al. two decades have shown that on interannual time scales 2000; Sutton et al. 2000). coherent SST variability occurs in three main regions: The Atlantic equatorial mode of variability, also re- the north tropical Atlantic (NTA), equatorial Atlantic, ferred to as the equatorial zonal mode or Atlantic Niño and southern subtropical Atlantic (e.g., Enfield and mode, is the focus of this paper.
    [Show full text]
  • Chapter 6 ENSO, ATLANTIC CLIMATE VARIABILITY, and the WALKER and HADLEY CIRCULATIONS
    Chapter 6 ENSO, ATLANTIC CLIMATE VARIABILITY, AND THE WALKER AND HADLEY CIRCULATIONS Chunzai Wang NOAA Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, Florida 33149, U.S.A. E-mail: [email protected]. Abstract This chapter describes and discusses the Walker and Hadley circulations associated with the El Niño/Southern Oscillation (ENSO), the Atlantic “Niño”, the tropical Atlantic meridional gradient variability, the Western Hemisphere warm pool (WHWP), and the North Atlantic Oscillation (NAO). During the warm phase of ENSO, the Pacific Walker circulation, the western Pacific Hadley circulation, and the Atlantic Hadley circulation are observed to be weakened, whereas the eastern Pacific Hadley circulation is strengthened. During the peak phase of the Atlantic Niño, the Atlantic Walker circulation weakens and extends eastward and the Atlantic Hadley circulation strengthens. The tropical Atlantic meridional gradient vari- ability corresponds to a meridional circulation in which the air rises over the warm sea surface temperature (SST) anomaly region, flows toward the cold SST anomaly region aloft, sinks in the cold SST anomaly region, then crosses the equator toward the warm SST region in the lower tropo- sphere. During periods when the NAO index is high, the atmospheric Fer- rel and Hadley circulations are strengthened, consistent with surface west- erly and easterly wind anomalies in the North Atlantic and in the middle to tropical Atlantic, respectively. The chapter also discusses a tropo- spheric bridge by the Walker/Hadley circulation that links the Pacific El Niño with warming of the tropical North Atlantic (TNA) and the WHWP. 173 H.F. Diaz and R.S.
    [Show full text]
  • Growth and Decay of the Equatorial Atlantic SST Mode by Means Of
    Growth and decay of the equatorial Atlantic SST mode by means of closed heat budget in a coupled general circulation model Irene Polo, Alban Lazar, Belén Rodríguez-Fonseca, Juliette Mignot To cite this version: Irene Polo, Alban Lazar, Belén Rodríguez-Fonseca, Juliette Mignot. Growth and decay of the equa- torial Atlantic SST mode by means of closed heat budget in a coupled general circulation model. Frontiers in Earth Science, Frontiers Media, 2015, 3, pp.37. 10.3389/feart.2015.00037. hal-01497534 HAL Id: hal-01497534 https://hal.archives-ouvertes.fr/hal-01497534 Submitted on 5 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License ORIGINAL RESEARCH published: 24 July 2015 doi: 10.3389/feart.2015.00037 Growth and decay of the equatorial Atlantic SST mode by means of closed heat budget in a coupled general circulation model Irene Polo 1, 2*, Alban Lazar 3, 4, Belen Rodriguez-Fonseca 2, 5 and Juliette Mignot 3, 6 1 Department of Meteorology, University of
    [Show full text]
  • Atlantic Climate Variability and Its Associated Atmospheric Circulation Cells
    1516 JOURNAL OF CLIMATE VOLUME 15 Atlantic Climate Variability and Its Associated Atmospheric Circulation Cells CHUNZAI WANG Physical Oceanography Division, Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, Florida (Manuscript received 1 May 2001, in ®nal form 19 October 2001) ABSTRACT Phenomena important for Atlantic climate variability include the Atlantic zonal equatorial mode, the tropical Atlantic meridional gradient mode, and the North Atlantic Oscillation (NAO). These climate phenomena and their associated atmospheric circulation cells are described and discussed using the NCEP±NCAR reanalysis ®eld and the NCEP sea surface temperature (SST) from January 1950 to December 1999. Atmospheric divergent wind and vertical motion are used for the identi®cation of atmospheric circulation cells. During the peak phase of the Atlantic equatorial mode, the Atlantic Walker circulation weakens and extends eastward, which results in surface westerly wind anomalies in the equatorial western Atlantic. These westerly wind anomalies are partly responsible for warming in the equatorial eastern Atlantic that occurs in the second half of the year. The Atlantic equatorial mode involves a positive ocean±atmosphere feedback associated with the Atlantic Walker circulation, similar to the Paci®c El NinÄo. The tropical Atlantic meridional gradient mode is characterized by a strong SST gradient between the tropical North Atlantic (TNA) and the tropical South Atlantic. Corresponding to the meridional gradient mode is an atmospheric meridional circulation cell in which the air rises over the warm SST anomaly region, ¯ows toward the cold SST anomaly region aloft, sinks in the cold SST anomaly region, then crosses the equator toward the warm SST region in the lower troposphere.
    [Show full text]
  • Impacts of the Atlantic Equatorial Mode in a Warmer Climate
    Clim Dyn DOI 10.1007/s00382-015-2471-y Impacts of the Atlantic Equatorial Mode in a warmer climate Elsa Mohino · Teresa Losada Received: 7 July 2014 / Accepted: 7 January 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com Abstract The main source of sea surface temperature 1 Introduction (SST) variability in the Tropical Atlantic at interannual time scales is the Equatorial Mode or Atlantic El Niño. It Interannual variability in the tropical Atlantic basin is dom- has been shown to affect the adjacent continents and also inated by the Equatorial Mode (Zebiak 1993). Its signature remote regions, leading to a weakened Indian Monsoon on sea surface temperature (SST) anomalies is a warming and promoting La Niña-type anomalies over the Pacific. of the tropical eastern Atlantic basin related to a deepening However, its effects in a warmer climate are unknown. This of the thermocline (Carton and Huang 1994; Carton et al. work analyses the impact of the Equatorial Mode at the end 1996). The mode starts in Angola/Benguela region and of the twenty first century by means of sensitivity experi- propagates west and north via Rossby waves (Polo et al. ments with an atmosphere general circulation model. The 2008). prescribed boundary conditions for the future climate are The Equatorial Mode is also known as the Atlantic El based on the outputs from models participating in the cou- Niño due to its similarities with its Pacific counterpart. The pled model intercomparison project—phase V. Our results underlying mechanism for this mode is the Bjerknes feed- suggest that even if the characteristics of the Equatorial back (Chang et al.
    [Show full text]
  • Interannual Variability of Boreal Summer Rainfall in the Equatorial Atlantic
    Interannual Variability of Boreal Summer Rainfall in the Equatorial Atlantic Guojun Gu and Robert F. Adler Popular Summarv Severe weather events frequently appear in the tropical Atlantic basin during boreal summer [June-July-August (JJA)], in particular the Atlantic hurricane activity. The year- to-year changes of these phenomena are evident and directly related to convection and rainfall changes in the basin and the strength of the ITCZ. Local sea surface temperature (SST) variabilities are known to be important factors. Probably due to a much smaller size of the Atlantic than the Pacific, convection and rainfall in the tropical Atlantic are also heavily affected by the variations in the tropical Pacific, specifically the Pacific ENSO. Thus, the two major purposes of this study are to (1) document the boreal summer year-to-year rainfall changes in the tropical Atlantic, and (2) assess and further try to discern the impacts from local SST variations and the Pacific ENSO, by means of a 28- year (1979-2006) monthly precipitation dataset from the Global Precipitation Climatology Project (GPCP). The changes in the ITCZ strength and the basin-mean rainfall during JJA are comparable to the changes during boreal spring [March-April-May (MAM)] when the most intense rainfall variability is usually observed. However, the ITCZ's preferred latitudes do not vary much during JJA, in contrasting to its intense year-to-year fluctuations during MAM. Local SST variations include two types: One is along the equatorial region (usually called the Atlantic Niiio events), another in the tropical north Atlantic (TNA) covering the tropical storm development region.
    [Show full text]
  • AMO and Climate Shifts
    The increased Influence of Atlantic Ocean on Pacific Climate after Early 1990s Jin-Yi Yu Department of Earth System Science University of California, Irvine Inter-Basin Interactions in Tropics (modified from JISAO, UW) AMM IOD CP ENSO EP ENSO AEM IO Basin Mode Indian Ocean Basin Mode Eastern-Pacific ENSO Atlantic Equatorial Mode Indian Ocean Dipole Central-Pacific ENSO Atlantic Meridional Mode (from Deser et al. 2010) (from Yu and Paek 2016) (from Deser et al. 2010) Pacific Ocean Indian Ocean (modified from JISAO, UW) AMM IOD CP ENSO EP ENSO AEM IO Basin Mode Indian Ocean Basin Mode Eastern-Pacific ENSO Atlantic Equatorial Mode Indian Ocean Dipole Central-Pacific ENSO Atlantic Meridional Mode (from Deser et al. 2010) (from Yu and Paek 2016) (from Deser et al. 2010) Pacific Ocean Atlantic Ocean (modified from JISAO, UW) AMM IOD CP ENSO EP ENSO AEM IO Basin Mode Indian Ocean Basin Mode Eastern-Pacific ENSO Atlantic Equatorial Mode Indian Ocean Dipole Central-Pacific ENSO Atlantic Meridional Mode (from Deser et al. 2010) (from Yu and Paek 2016) (from Deser et al. 2010) Two Types of El Niño = ENSO Diversity (Yu and Kao 2007; Kao and Yu 2009) Central-Pacific El Niño (New Type) Eastern-Pacific El Niño (traditional type) EP El Niño and Walker Circulation Eastern Pacific El Niño Normal Condition El Niño Condition Walker Circulation (from NOAA) (from NOAA) Tropical Atmosphere-Ocean Coupling CP El Niño and Hadley Circulation Subtropical(from NOAA’s Pacific Fisheries Atmosphere Environmental Laboratory) -Ocean Coupling CP-El Niño SST Variations (Yu et al, 2010) -14 -12 -10 -8 -6 -4 -2 0 +2 Subtropcial Precursor and CP ENSO previous winter DJF(-1) Extratropcial Atmosphere Forcing (NPO) (Chiang and Vimon et al.
    [Show full text]
  • The Relationship Between the Simulated Climatic Variability Modes
    Y INTERNATIONAL JOURNAL OF CLIMATOLOGY $2 Int. J. Cliinatol. 20: 939-953 (2000) THE RELATIONSHIP BETWEEN THE SIMULATED CLIMATIC VARIABILITY MODES OF THE TROPICAL ATLANTIC JACQUES SERVArN"-*, ILANA WAINERb, HERVÉ LUDOS AYINA" and HERVÉ ROQUETc Centre IRD de Bretagne, BP 70, 29280 Plouzané, Frame Dept. Oceanográjïa Fisicá, Universidade de São Paulo, São Paulo, Brazil CMS, Mètèo-France, Lannion, France Received 28 June 1999 Revised 4 October 1999 Accepted 4 October 1999 ABSTRACT Two main modes of climatic variability occur in the tropical Atlantic Ocean at inter-annual time-scales: the equatorial mode, similar to the El Niño phenomenon in the Pacific Ocean, and the meridional mode, or dipole-like mode, with no Pacific counterpart. The Atlantic equatorial mode is characterized by the occurrence of alternating warm and cold episodes at the equator, on the eastern side of the basin. These events are associated with abnormal variations in the zonal equatorial slope of the thermocline. The meridional mode is characterized by an inter-hemispheric gradient in the sea-surface temperature (SST). The mean position of the Inter-tropical Convergence Zone (ITCZ) separates positive and negative SST signals. It was recently shown with observational indices that there is significant correlation between these two climatic modes of variability. This study goes one step further, by using a multi-year numerical simulation, where an oceanic general circulation model is forced by the 1979-1993 ECMWF reanalysis. Model computed indices representing the two main modes of variability compare well with observations. The two inter-annual modes of variability are shown to have the same physics as the annual variability does, which is related to the latitudinal displacement of the ITCZ.
    [Show full text]
  • 1 Impact of Tropical SST Anomalies on West African Rainfall. T. Losada
    Impact of Tropical SST Anomalies on West African Rainfall. T. Losada (1), B. Rodriguez-Fonseca (1,2), E. Mohino (1), J. Bader (3,4), S. Janicot (5), and C. R. Mechoso (6) (1) Departamento de Física de la Tierra, Astronomía y Astrofísica I, Geofísica y Meteorología. UCM, Av. Complutense s/n, 28040 Madrid (Spain). (2) Instituto de Geociencias (CSIC-UCM), Facultad de CC. Físicas, Plaza de Ciencias 1, 28040 Madrid (Spain) (3) Max-Planck-Institut fuer Meteorologie, Hamburg (Germany). (4) Bjerknes Centre for Climate Research, Allegaten 70, 5007 Bergen (Norway). (5) LOCEAN/IPSL, IRD, Université Pierre et Marie Curie, Paris (France). (6) Department of Atmospheric Sciences, University of California, Los Angeles, CA 90095 (USA). E-mail: [email protected] 1 Abstract Previous works have addressed the impact on Sahelian rainfall of sea surface temperature (SST) anomalies in the tropical Pacific, Indian and Atlantic Oceans. Some of them have found these impacts to be non-stationary with important differences before and after the 1970’s. This paper re-examines the problem and its non-stationarity. In the period 1970-present a mode of covariability develops between rainfall in West Africa and SSTs over the entire tropics. Accordingly, an increase of summer rainfall in that region corresponds to an oceanic pattern that resembles a Pacific Niña - Atlantic Niño – western Indian Ocean cooling configuration. The mode accounts for 54% of the squared covariance between West African rainfall and tropical SST anomalies. Sensitivity experiments with two atmospheric general circulation models (AGCMs) are performed to explore the contribution to West African rainfall of SST anomalies corresponding to this mode in different ocean basins.
    [Show full text]