Guidance on Natural Attenuation for Petroleum Releases January 2014 RR-614

Total Page:16

File Type:pdf, Size:1020Kb

Guidance on Natural Attenuation for Petroleum Releases January 2014 RR-614 Guidance On Natural Attenuation For Petroleum Releases January 2014 RR-614 Wisconsin Department of Natural Resources P.O. Box 7921, Madison, WI 53707 dnr.wi.gov, search “brownfield” ii TABLE OF CONTENTS PURPOSE .................................................................................................................................................................. IV APPLICABILITY AND LIMITATIONS............................................................................................................................... IV OTHER RELEVANT GUIDANCE DOCUMENTS ................................................................................................................ V DISCLAIMER ............................................................................................................................................................... V INTRODUCTION ........................................................................................................................................................... 1 SECTION 1 .................................................................................................................................................................. 3 SITE INVESTIGATION NEEDS ............................................................................................................................... 3 I. FORMATION OF A CONCEPTUAL MODEL ............................................................................................................. 3 II. IDENTIFY RECEPTORS ......................................................................................................................................... 4 A. Determine Location of Receptors ............................................................................................................. 4 B. Information Sources for Identifying Receptors ....................................................................................... 4 III. SOIL & GROUNDWATER CHARACTERIZATION .................................................................................................. 5 A. Source Zone Characterization .................................................................................................................. 6 B. Source Zone Contaminant Mass Distribution & Interim Measures ...................................................... 7 C. Groundwater Characterization ................................................................................................................ 7 D. Chemical/Physical Properties of the Contaminants ................................................................................ 9 IV. DETERMINING DISSOLVED PLUME BEHAVIOR ............................................................................................... 10 A. Methods to Define Behavior of a Dissolved Contaminant Plume ........................................................ 10 B. Interpretations of Plume Behavior ......................................................................................................... 13 V. CONDITIONS WHERE NATURAL ATTENUATION SHOULD NOT BE USED AS A SOLE REMEDY FOR GROUNDWATER CONTAMINATION ....................................................................................................................................................... 14 VI. SITE INVESTIGATION REPORT (NR 716.15) ................................................................................................... 15 SECTION 2 ................................................................................................................................................................ 17 DATA ANALYSIS FOR NATURAL ATTENUATION......................................................................................... 17 I. LINES OF EVIDENCE SUPPORTING NATURAL ATTENUATION ............................................................................... 17 A. Primary Line of Evidence – Decreasing Contaminant Trends ............................................................. 17 B. Secondary Line of Evidence – Trends in Geochemical Parameters ..................................................... 18 C. Third Line of Evidence – Microbial Studies and Other Analysis ........................................................ 18 II. DATA REQUIREMENTS ...................................................................................................................................... 18 III. PRIMARY LINE OF EVIDENCE – CONTAMINANT TREND ANALYSIS ................................................................... 19 A. Estimates of Contaminant Decay Rate in Groundwater ....................................................................... 19 B. Estimates of Contaminant Decay Rate in the Source Zone .................................................................. 20 IV. SECONDARY LINE OF EVIDENCE – TRENDS IN GEOCHEMICAL PARAMETERS................................................... 21 A. Assessing Geochemical Trends ................................................................................................................ 21 B. Assimilative Capacity ............................................................................................................................... 21 C. Screening Models ..................................................................................................................................... 22 V. THIRD LINE OF EVIDENCE – MICROBIAL AND OTHER STUDIES ........................................................................... 22 VI. PROGRESS REPORTS ..................................................................................................................................... 23 VII. REMEDIAL ACTION OPTIONS REPORT OR CLOSURE REPORT .......................................................................... 23 SECTION 3 ................................................................................................................................................................ 24 NATURAL ATTENUATION MONITORING RECOMMENDATIONS ........................................................... 24 I. GEOCHEMICAL PARAMETERS AS INDICATORS OF NATURAL ATTENUATION .......................................................... 24 A. Introduction .............................................................................................................................................. 24 B. Data Quality.............................................................................................................................................. 24 II. METHODS OF COLLECTING & ANALYZING SAMPLES FOR GEOCHEMICAL PARAMETERS ...................................... 25 A. Well Purging ............................................................................................................................................. 26 i B. Sample Methodology for Geochemical Parameters .............................................................................. 27 C. Quality Control Checks for Field Measurements .................................................................................. 30 III. MONITORING FOR CONTAMINANTS OF CONCERN .......................................................................................... 31 A. Data Quality.............................................................................................................................................. 31 B. Parameters & Methodology for Petroleum Contaminants ................................................................... 31 IV. MONITORING SCHEDULE .............................................................................................................................. 31 A. Recommended Monitoring Schedule ...................................................................................................... 31 B. Long Term Monitoring ............................................................................................................................ 32 V. DATA REPORTING ............................................................................................................................................. 32 SECTION 4 ................................................................................................................................................................ 34 REGULATORY REQUIREMENTS FOR SITE CLOSURE WHEN USING NATURAL ATTENUATION AS A REMEDIAL ACTION........................................................................................................................................... 34 I. SITE CLOSURE CRITERIA ................................................................................................................................... 34 A. Summary of NR 726.05(6)(a)1. to 5. Requirements, Source Zone & Interim Actions Completed .... 34 B. Satisfying the Requirements of NR 726.05(6)(a) and (c) Related to Demonstrating Effectiveness of Natural Attenuation Processes................................................................................................................ 34 C. Satisfying the Requirements of NR 726.05(6)(b) Related to Meeting NR 140 Standards within a Reasonable Period of Time ..................................................................................................................... 35 D. Continuing Obligations ............................................................................................................................ 36 II. NR 726, CASE CLOSURE REQUEST & REPORT ................................................................................................... 37 REFERENCES
Recommended publications
  • Products of OH + Furan Reactions and Some Implications for Aromatic Hydrocarbon Atmospheric Degradation
    Products of OH + Furan Reactions and Some Implications for Aromatic Hydrocarbon Atmospheric Degradation Roger Atkinson, Air Pollution Research Center, University of California, Riverside Unsaturated 1,4-dicarbonyls are important products of the atmospheric degradations of aromatic hydrocarbons such as benzene, toluene, xylenes and trimethylbenzenes, which comprise 20% of the non- methane volatile organic compounds present in urban air masses in the USA. However, in many cases the measured formation yields of the unsaturated 1,4-dicarbonyls are significantly lower than those of these presumed co-product 1,2-dicarbonyls. These discrepancies could be due to analytical problems and/or rapid photolysis of unsaturated 1,4-keto-aldehydes and unsaturated 1,4-dialdehydes, or to incorrect reaction mechanisms for the OH radical-initiated reactions of aromatic hydrocarbons. Since unsaturated 1,4- dicarbonyls are major products of OH + furans, with apparently simpler product distributions and mechanisms, we have investigated the reactions of OH radicals with furan, 2- and 3-methylfuran, and 2,3- and 2,5- dimethylfuran, in the presence of NO. Using direct air sampling atmospheric pressure ionization tandem mass spectrometry and gas chromatography, the unsaturated 1,4-dicarbonyls were observed and quantified. The measured unsaturated 1,4-dicarbonyl formation yields ranged from 8 ± 2% from OH + 2,3-dimethylfuran to 75 ± 5% from OH + furan. Other products were also formed. These data will be presented and discussed and, time permitting, a brief discussion of in situ nitro-aromatic and nitro-PAH formation from the atmospheric degradations of aromatic hydrocarbons and PAHs will also be presented. Live cast on the link below: http://www.fin.ucar.edu/it/mms/fl-live.htm A recording will be available on ACD’s website for viewing at a later date.
    [Show full text]
  • Formation of Highly Oxygenated Organic Molecules from Aromatic Compounds
    Formation of highly oxygenated organic molecules from aromatic compounds. Ugo Molteni1, Federico Bianchi1-2, Felix Klein1, Imad El Haddad1, Carla Frege1, Michel J. Rossi1, Josef Dommen1, Urs Baltensperger1,* 5 1Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland 2Department of Physics, University of Helsinki, 00014 Helsinki, Finland Correspondence to: Urs Baltensperger ([email protected]) Abstract 10 Anthropogenic volatile organic compounds (AVOC) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHC), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g. from handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Despite their recognized importance as atmospheric reactants, the formation of highly oxygenated molecules (HOMs) in the gas phase leading to (extremely) low volatility compounds has not been studied in the past. Here we show that oxidation of 15 aromatics with OH leads to a subsequent autoxidation chain reaction forming HOMs with an O:C ratio of up to 1.09. This is exemplified for five single-ring ArHC (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHC (naphthalene and biphenyl). We present the identified compounds, differences in the observed oxidation patterns and discuss mechanistic pathways. We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the 20 formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOC may contribute substantially to new particle formation events that have been detected in urban areas.
    [Show full text]
  • Seasonal and Spatial Variations in the Attenuation of Light in the North Atlantic Ocean
    JEFFREY H. SMART SEASONAL AND SPATIAL VARIATIONS IN THE ATTENUATION OF LIGHT IN THE NORTH ATLANTIC OCEAN This article examines seasonal and spatial vanatlOns in the average depth profiles of the diffuse attenuation coefficient, Kd, for visible light propagating downward from the ocean surface at wavelengths of 490 and 532 nm. Profiles of the depth of the nth attenuation length are also shown. Spring, summer, and fall data from the northwestern and north central Atlantic Ocean and winter data from the northeastern Atlantic Ocean are studied. Variations in the depth-integrated Kd profiles are important because they are related to the depth penetration achievable by an airborne active optical antisubmarine warfare system. INTRODUCTION Numerous investigators have tried to characterize the the geographic areas and seasons indicated in Table 1 and diffuse attenuation coefficient (hereafter denoted as Kd) Figure 1. Despite the incomplete spatial and temporal for various ocean areas and for the different seasons. Platt coverage across the North Atlantic Ocean, this article and Sathyendranath 1 generated numerical fits to averaged should serve as a useful resource to estimate the optical profiles from coastal and open-ocean regions, and they characteristics in the areas studied. divided the North Atlantic into provinces that extended The purpose of this article is to characterize the sea­ from North America to Europe and over large ranges sonal and spatial variations in diffuse attenuation at 490 in latitude (e.g. , from 10.0° to 37.00 N and from 37.0° to and 532 nm. Because Kd frequently changes with depth, 50.00 N). In addition, numerous papers have attempted profiles of depth versus number of attenuation lengths are to model chlorophyll concentrations (which are closely required to characterize the attenuation of light as it correlated with Kd ) using data on available sunlight as a propagates from the surface downward into the water function of latitude and season, nutrient concentrations, column.
    [Show full text]
  • Trimethylbenzenes CAS Registry Numbers: 526-73-6 (1,2,3-TMB) 95-63-6 (1,2,4-TMB) 108-67-8 (1,3,5-TMB) 25551-13-7 (Mixed Isomers)
    Development Support Document Final, September 4, 2015 Trimethylbenzenes CAS Registry Numbers: 526-73-6 (1,2,3-TMB) 95-63-6 (1,2,4-TMB) 108-67-8 (1,3,5-TMB) 25551-13-7 (Mixed Isomers) Prepared by Joseph T. Haney, Jr., M.S. Angela Curry, M.S. Toxicology Division Office of the Executive Director TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Trimethylbenzenes Page i TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................................ I LIST OF TABLES ......................................................................................................................................................II ACRONYMS AND ABBREVIATIONS ................................................................................................................. III CHAPTER 1 SUMMARY TABLES .......................................................................................................................... 1 CHAPTER 2 MAJOR SOURCES AND USES ......................................................................................................... 4 CHAPTER 3 ACUTE EVALUATION ...................................................................................................................... 4 ACUTE 3.1 HEALTH-BASED ACUTE REV AND ESL ........................................................................................................ 4 3.1.1 Physical/Chemical Properties ....................................................................................................................
    [Show full text]
  • Natural and Enhanced Attenuation of Soil and Ground Water At
    LMS/MON/S04243 Office of Legacy Management Natural and Enhanced Attenuation of Soil and Groundwater at Monument Valley, Arizona, and Shiprock, New Mexico, DOE Legacy Waste Sites 2007 Pilot Study Status Report June 2008 U.S. Department OfficeOffice ofof LegacyLegacy ManagementManagement of Energy Work Performed Under DOE Contract No. DE–AM01–07LM00060 for the U.S. Department of Energy Office of Legacy Management. Approved for public release; distribution is unlimited. This page intentionally left blank LMS/MON/S04243 Natural and Enhanced Attenuation of Soil and Groundwater at Monument Valley, Arizona, and Shiprock, New Mexico, DOE Legacy Waste Sites 2007 Pilot Study Status Report June 2008 This page intentionally left blank Contents Acronyms and Abbreviations ....................................................................................................... vii Executive Summary....................................................................................................................... ix 1.0 Introduction......................................................................................................................1–1 2.0 Monument Valley Pilot Studies.......................................................................................2–1 2.1 Source Containment and Removal..........................................................................2–1 2.1.1 Phreatophyte Growth and Total Nitrogen...................................................2–1 2.1.2 Causes and Recourses for Stunted Plant Growth........................................2–5
    [Show full text]
  • Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients from 10 Kev to 100 Gev*
    1 of Stanaaros National Bureau Mmin. Bids- r'' Library. Ml gEP 2 5 1969 NSRDS-NBS 29 . A111D1 ^67174 tioton Cross Sections, i NBS Attenuation Coefficients, and & TECH RTC. 1 NATL INST OF STANDARDS _nergy Absorption Coefficients From 10 keV to 100 GeV U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS T X J ". j NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation’s central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology. The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scientific community, industry, and com- merce. The Institute consists of an Office of Measurement Services and the following technical divisions: Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molec- ular Physics—Radio Physics -—Radio Engineering -—Time and Frequency -—Astro- physics -—Cryogenics.
    [Show full text]
  • Atmosphere Observation by the Method of LED Sun Photometry
    Atmosphere Observation by the Method of LED Sun Photometry A Senior Project presented to the Faculty of the Physics Department California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements of the Degree Bachelor of Science by Gregory Garza April 2013 1 Introduction The focus of this project is centered on the subject of sun photometry. The goal of the experiment was to use a simple self constructed sun photometer to observe how attenuation coefficients change over longer periods of time as well as the determination of the solar extraterrestrial constants for particular wavelengths of light. This was achieved by measuring changes in sun radiance at a particular location for a few hours a day and then use of the Langley extrapolation method on the resulting sun radiance data set. Sun photometry itself is generally involved in the practice of measuring atmospheric aerosols and water vapor. Roughly a century ago, the Smithsonian Institutes Astrophysical Observatory developed a method of measuring solar radiance using spectrometers; however, these were not usable in a simple hand-held setting. In the 1950’s Frederick Volz developed the first hand-held sun photometer, which he improved until coming to the use of silicon photodiodes to produce a photocurrent. These early stages of the development of sun photometry began with the use of silicon photodiodes in conjunction with light filters to measure particular wavelengths of sunlight. However, this method of sun photometry came with cost issues as well as unreliability resulting from degradation and wear on photodiodes. A more cost effective method was devised by amateur scientist Forrest Mims in 1989 that incorporated the use of light emitting diodes, or LEDs, that are responsive only to the light wavelength that they emit.
    [Show full text]
  • Radio Astronomy
    Edition of 2013 HANDBOOK ON RADIO ASTRONOMY International Telecommunication Union Sales and Marketing Division Place des Nations *38650* CH-1211 Geneva 20 Switzerland Fax: +41 22 730 5194 Printed in Switzerland Tel.: +41 22 730 6141 Geneva, 2013 E-mail: [email protected] ISBN: 978-92-61-14481-4 Edition of 2013 Web: www.itu.int/publications Photo credit: ATCA David Smyth HANDBOOK ON RADIO ASTRONOMY Radiocommunication Bureau Handbook on Radio Astronomy Third Edition EDITION OF 2013 RADIOCOMMUNICATION BUREAU Cover photo: Six identical 22-m antennas make up CSIRO's Australia Telescope Compact Array, an earth-rotation synthesis telescope located at the Paul Wild Observatory. Credit: David Smyth. ITU 2013 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. - iii - Introduction to the third edition by the Chairman of ITU-R Working Party 7D (Radio Astronomy) It is an honour and privilege to present the third edition of the Handbook – Radio Astronomy, and I do so with great pleasure. The Handbook is not intended as a source book on radio astronomy, but is concerned principally with those aspects of radio astronomy that are relevant to frequency coordination, that is, the management of radio spectrum usage in order to minimize interference between radiocommunication services. Radio astronomy does not involve the transmission of radiowaves in the frequency bands allocated for its operation, and cannot cause harmful interference to other services. On the other hand, the received cosmic signals are usually extremely weak, and transmissions of other services can interfere with such signals.
    [Show full text]
  • Causes of Light Attenuation with Respect to Seagrasses in Upper and Lower Charlotte Harbor
    Causes of Light Attenuation with Respect to Seagrasses in Upper and Lower Charlotte Harbor Final Report Submitted to: Southwest Florida Water Management District Surface Water Improvement and Management Program 7601 U.S. Highway 301 North Tampa, FL 33637 (813) 985-7481 Charlotte Harbor National Estuary Program 4980 Bayline Drive 4th Floor North Fort Myers, Florida 33917 (941) 995-1777 Submitted by: L. Kellie Dixon and Gary J. Kirkpatrick Mote Marine Laboratory 1600 Ken Thompson Parkway Sarasota, FL 34236 (941) 388-4441 September 20, 1999 Mote Marine Laboratory Technical Report No. 650. Please note that pages do not always correspond to those listed in the table of contents. This was caused when the document was converted to a PDF file. Acknowledgments Thanks are due to many, but especially Linda Franklin, Jay Leverone, Tiffany Lutterman, Ari Nissanka, Jon Perry, Joie Simoneaux, Roberta Starke, and David Tomasko. i Table of Contents Acknowledgments.............................................................................................................................i Table of Contents.............................................................................................................................ii List of Tables...................................................................................................................................iv List of Figures...................................................................................................................................v Executive Summary.........................................................................................................................ix
    [Show full text]
  • Mass Attenuation Coefficients of X-Rays in Different Barite Concrete Used in Radiation Protection As Shielding Against Ionizing Radiation
    X congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica Radi opro te ce ion: Nuevos Desafíos para un Mundo en Evolución ” Buenos Aires, 12 al 17 de abril, 2015 SOCIEDAD ARGENTINA DE RADIOPROTECCIÓN MASS ATTENUATION COEFFICIENTS OF X-RAYS IN DIFFERENT BARITE CONCRETE USED IN RADIATION PROTECTION AS SHIELDING AGAINST IONIZING RADIATION Almeida Junior, Airton T.1’4’5, Nogueira, M. S.2, Santos, M. A. P3, L. L. Campos 4, Araújo, F. G. S.5, 1 Brazilian Institute for Safety and Health at Work - FUNDACENTRO, Minas Gerais, Brazil 2 Center of Development of Nuclear Technology - CDTN/CNEN, Minas Gerais, Brazil 3 Regional Center for Nuclear Science - CRCN/CNEN, Pernambuco, Brazil 4 Institute of Energy and Nuclear Research - IPEN/CNEN, São Paulo, Brazil 5 Universidade Federal de Ouro Preto - UFOP /REDEMAT, Minas Gerais, Brazil ABSTRACT The attenuation coefficient depends on the incident photon energy and the nature of the materials. In order to minimize exposure to individuals. Barite concrete has been largely used as a shielding material in installations housing gamma radiation sources as well as X-ray generating equipment. This study was conducted to evaluate the efficacy of different mixtures of barite concrete for shielding in diagnostic X-ray rooms. The mass attenuation coefficient (jn/p). The mass attenuation coefficients have been measured by employing the CdTe detector model XR-1OOT. The distance between the source and the exposed surface of all samples was measured by SSD light indicator of machine which was 350 cm. The slope of the linear plot of the intensity transmitted versus specimen thickness would yield the attenuation coefficient.
    [Show full text]
  • Lecture 3. Optical Properties 1
    Lecture 3. Optical properties 1. Attenuation of atmospheric radiation by particulates. Aerosol particles can scatter or/and absorb electromagnetic radiation at different wavelengths. NOTE: aerosol particles also can emit thermal radiation. Scattering is a process, which conserves the total amount of energy, but the direction in which the radiation propagates may be altered. Absorption is a process that removes energy from the electromagnetic radiation field, and converts it to another form. Extinction (or attenuation) is the sum of scattering and absorption, so it represents total effect of medium on radiation passing the medium. In the atmosphere: aerosol particles can scatter and absorb solar and infrared radiation altering air temperature and the rates of photochemical reactions. Key parameters that govern the scattering and absorption of radiation by a particle: i. the wavelength of the incident radiation; ii. the size of the particles, expressed as a dimensional size parameter x: D x (where D is the particle diameter); iii. complex refractive index (or optical constant) of a particle: m = n + i k where n is the real part of the refractive index, k is the imaginary part of the refractive index. Both n and k depend on the wavelength. Important to remember: complex refractive index of a particle is defined by its chemical composition; real part , n , is responsible for scattering. imaginary part, k, is responsible for absorption. If k is equal to 0 at a given wavelength thus a particle does not absorb radiation at this wavelength. Table 3.1 Some refractive indices of atmospheric aerosol substances at = 0.5 m.
    [Show full text]
  • Attenuation by Atmospheric Gases
    Recommendation ITU-R P.676-11 (09/2016) Attenuation by atmospheric gases P Series Radiowave propagation ii Rec. ITU-R P.676-11 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management SNG Satellite news gathering TF Time signals and frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.
    [Show full text]