Eindhoven University of Technology MASTER Fault Attacks on Java

Total Page:16

File Type:pdf, Size:1020Kb

Eindhoven University of Technology MASTER Fault Attacks on Java Eindhoven University of Technology MASTER Fault attacks on Java Card an overview of the vulnerabilities of Java Card enabled Smart Cards against fault attacks Gadellaa, K.O. Award date: 2005 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Mathematics and Computing Science MASTER'S THESIS Fault Attacks on Java Card An overview of the vulnerabilities of Java Card enabled Smart Cards against fault attacks by K.O. Gadellaa Supervisors: dr. E.P. de Vink Eindhoven, August 2005 Abstract This thesis gives a wide overview of the problems of the Java Card technology regarding fault attacks. It uses fault attacks on RSA as an example, and shows how RSA can be broken in various ways. It then gives an overview of the di®erent defense strategies against fault attacks, and how these are applicable against the various means of fault injection. Preface This document presents my master thesis for Technische Informatica at the Eindhoven University of Technology. The research and work was done between november 2004 and august 2005 within the Formal Methods group of the De- partment of Mathematics and Computer Science. My supervisor was Dr. Erik de Vink. Other members of the committee were Dr. Jerry den Hartog, and Dr. Rudolf Mak. ii Contents 1 Introduction 1 1.1 Goal de¯nition . 1 1.2 Structure . 2 2 Smart Cards 3 2.1 Smart Card technology . 3 2.2 Writing programs which use Smart Cards . 4 2.3 Writing programs on Smart Cards . 5 2.3.1 Java Card . 5 2.3.2 MultOS . 9 2.4 Summary . 10 3 Weakness: Inducing Faults 11 3.1 Attacking the Application . 12 3.1.1 O®-card Attacks . 13 3.1.2 Modifying the on-card code . 14 3.2 Attacking the Java Card Runtime Environment . 14 3.2.1 Java Card Runtime Environment issues . 14 3.3 Attacking the Smart Card Processor . 15 3.3.1 Spike Attacks . 16 3.3.2 Glitch Attacks . 16 3.3.3 Optical Attacks . 16 3.3.4 Electromagnetic Perturbation Attacks . 16 3.4 Classi¯cation of di®erent attacks . 17 4 Using Faults: Fault Analysis 19 4.1 RSA . 19 4.2 Fault Analysis . 20 4.2.1 Fault Attack on RSA + CRT . 20 4.2.2 Fault Attack on RSA with Squaring . 21 4.3 Di®erential Fault Analysis . 23 4.3.1 DFA attack on a simple signing protocol . 23 4.3.2 A bit of both | A di®erent attack . 24 4.4 How to use Fault Injection . 24 4.4.1 Attacking the Application . 25 4.4.2 Other methods . 26 iii 5 Prevention and hardening 27 5.1 Hardware Measures . 27 5.1.1 Passive protection . 27 5.1.2 Active Protection . 28 5.2 Software Measures . 28 5.2.1 Checking the outcome . 28 5.2.2 Shamir's countermeasure . 29 5.3 Fault Cryptanalysis hardened algorithms . 29 5.3.1 Threat Classi¯cation . 29 5.3.2 Infective Computation . 30 5.4 Global Platform . 31 5.4.1 Structure . 32 5.4.2 Additional Security . 32 5.5 Overview . 33 5.6 Quality of protection . 33 5.6.1 Software protection . 34 5.6.2 Hardware Protection . 34 5.6.3 Hardened Algorithms . 35 5.6.4 Global Platform . 35 6 Conclusion 36 6.1 Programming in Java Card . 36 6.2 Java Card Security . 37 6.2.1 Open vs. closed source security . 37 6.2.2 Fault attack risk analysis . 37 A Installing OCF and the Chipdrive 39 A.1 Installing the chipdrive . 39 A.2 Getting OCF and using it . 39 A.2.1 Error codes . 40 A.3 Communication between components . 40 A.3.1 APDU's . 40 A.3.2 TLV's . 41 A.4 Working with Smart Cards and OCF . 42 A.4.1 Communicating with the Smart Card . 42 A.4.2 Implementation of the stock-broker example . 43 B Installing Eclipse and the Java Card API 44 B.1 Eclipse . 44 B.2 JCOP . 44 B.3 Error codes . 45 B.3.1 Error codes in Eclipse . 45 B.3.2 Debuggin JavaCard in Eclipse . 45 B.3.3 Error codes in the Simulation . 46 B.3.4 Error codes communicating with the on-card program . 46 iv C Java Card 47 C.1 Working with Java Cards . 47 C.1.1 On-card Applications . 47 C.1.2 Cash Pay . 48 C.2 Cash Pay Code . 49 D Implementation of fault attacks 50 D.1 Implementation of DFA on RSA+CRT . 50 D.2 Implementation of DFA on RSA with squaring . 51 D.3 Implementation of DFA on a simple signing protocol . 55 D.4 Implementation of DFA on RSA by flipping bits . 56 E Java Card Bytecode Converter 58 E.1 PHP code . 58 E.2 Sample . 62 E.2.1 Actual program . 62 E.2.2 output of method.cap . 63 v List of Tables 3.1 Characterization of the di®erent forms of physical attacks . 17 3.2 Overview of requirements and impact of attacks . 18 5.1 Overview of di®erent types of errors . 30 5.2 Overview of the protection given by various defenses . 33 vi List of Figures 2.1 Sample Smart Card . 4 2.2 Java Card Architecture . 7 2.3 MultOS Architecture . 10 3.1 layers on a Java Card enabled Smart Card . 12 3.2 Sample code which can circumvent the ¯rewall . 15 4.1 Exponentiation by squaring and multiplying . 22 4.2 Sample simple RSA implementation . 25 A.1 Schematic display of a Command APDU . 41 A.2 Schematic display of a Response APDU . 41 A.3 Sample code to get data from a smartcard . 42 C.1 Sample Java Card On-Card Application . 48 C.2 The Cash Pay protocol . 49 vii Chapter 1 Introduction This chapter discusses the goals as were set out when starting this research, and the structure of the document. 1.1 Goal de¯nition The goal of this project is to identify vulnerabilities of Java Card applications with respect to di®erential fault attacks. This concerns both the reconstruction of fault attacks reported in the literature, as well as the simulation of di®erential fault attacks. The project results in a Master thesis and a demonstrator. The planning of the project distinguishes ¯ve phases: ² Obtaining hands-on experience with the OCF Framework. Deliverable: working Internet Broker Demo (or similar). ² Getting acquainted with Java Card and the JCOP Toolset by implement- ing small Java Card programs. Deliverable: running generic purse appli- cation (or similar). ² Literature study on fault attacks, including di®erential fault attacks, electro- magnetic side-channels and fault injection, power glitching. Deliverable: discussion of fault attacks in general and description of fault attack vul- nerabilities of Smart Card in particular. ² Vulnerability analysis of Java Card applications regarding di®erential fault attacks based on the reconstruction of known fault attacks. Deliverable: report on the reconstruction and simulation of known fault attacks for Java Card. ² Identi¯cation and validation of countermeasures and robustness of Java Card regarding di®erential fault attacks. Deliverable: report on possibili- ties for DFA hardening. Apart from a discussion of the above issues the ¯nal report will include an overview of the fault attacks that are relevant to Java Card and the implications thereof for the Java Card platform. Also a demonstrator or simulation will be built that illustrates the fault attack vulnerabilities discussed. Java Cards, and fault analysis, and a discussion whether it is actually viable to do fault injection on a Java Card will be presented 1 1.2 Structure To apply to the stated goals, this document document is set up as follows: First, in chapter 2, an introduction to Smart Cards is given which flows into the general principles of programming software which uses a Smart Card, and then into programming software which can reside on a Smart Card. From there, it discusses the vulnerabilities Java Cards have with respect to fault injection in chapter 3, and then shows a few practical fault attacks on RSA in chapter 4. The next chapter then discusses the countermeasures and their quality, and the document ¯nishes with a small chapter in which the experiences with Java Card are discussed, and the security of Java Card. 2 Chapter 2 Smart Cards Smart Cards are said to be used for new, advanced appliances. Everyone should have one, it is said. This chapter digs into what Smart Cards essentially are, how they function, how it is possible to program applications using them, and what options exist for writing applications which can run on Smart Cards. 2.1 Smart Card technology A Smart Card is a chip put on a piece of plastic.
Recommended publications
  • An Architecture for Cryptography with Smart Cards and NFC Rings on Android
    OpenKeychain: An Architecture for Cryptography with Smart Cards and NFC Rings on Android DOMINIK SCHÜRMANN, TU Braunschweig, Germany SERGEJ DECHAND, University of Bonn, Germany LARS WOLF, TU Braunschweig, Germany While many Android apps provide end-to-end encryption, the cryptographic keys are still stored on the device itself and can thus be stolen by exploiting vulnerabilities. External cryptographic hardware solves this issue, but is currently only used for two-factor authentication and not for communication encryption. In this paper, we design, implement, and evaluate an architecture for NFC-based cryptography on Android. Our high-level API provides cryptographic operations without requiring knowledge of public-key cryptography. By developing OpenKeychain, we were able to roll out this architecture for more than 100,000 users. It provides encryption for emails, messaging, and a password manager. We provide a threat model, NFC performance measurements, and discuss their impact on our architecture design. As an alternative form factor to smart cards, we created the prototype of an NFC signet ring. To evaluate the UI components and form factors, a lab study with 40 participants at a large company has been conducted. We measured the time required by the participants to set up the system and reply to encrypted emails. These measurements and a subsequent interview indicate that our NFC-based solutions are more user friendly in comparison to traditional password-protected keys. CCS Concepts: • Security and privacy → Usability in security and privacy; Key management; Hardware-based security protocols; • Human-centered computing → Mobile devices; Additional Key Words and Phrases: NFC, near-field communication, smart card, ring ACM Reference Format: Dominik Schürmann, Sergej Dechand, and Lars Wolf.
    [Show full text]
  • Ghostscript Wrapper for C:\Documents and Settings\Owner\Desktop\Tasks
    Potential Misuse of NFC Enabled Mobile Phones with Embedded Security Elements as Contactless Attack Platforms Lishoy Francis, Gerhard Hancke, Keith Mayes and Konstantinos Markantonakis The Information Security Group, Smart Card Centre, Royal Holloway University of London, Egham Hill, TW20 0EX, Surrey, United Kingdom. Email: {L.Francis, Gerhard.Hancke, Keith.Mayes, K.Markantonakis}@rhul.ac.uk Abstract a turnstile, and the opportunity for a single device to con- tain multiple tokens. The NFC devices can also be used as a In this paper we investigate the possibility that a Near contactless reader that interacts with a variety of contactless Field Communication (NFC) enabled mobile phone, with “smart objects”. For example, a customer could initiate the an embedded Secure Element (SE), could be used as a mo- process to buy a cinema ticket by touching his NFC mobile bile token cloning and skimming platform. We show how an phone against a smart movie poster. More details on the attacker could use a NFC mobile phone as such an attack potential of NFC technology can be found in [2]. platform by exploiting the existing security controls of the Up to now, contactless transactions have been well re- embedded SE and the available contactless APIs. To illus- ceived by merchants and customers due to their inherent trate the feasibility of these actions we also show how to benefits such as ease of use, quick transaction time and lim- practically skim and emulate certain tokens typically used ited maintenance requirements. However, the increased use in payment and access control applications with a NFC mo- of mobile phones in contactless transactions could provide bile phone.
    [Show full text]
  • Secure Element Development
    Near Field Communication Research Lab Hagenberg Secure Element Development Josef Langer, Andreas Oyrer 4th Sept. 2009, Oulu Developers Summit www.nfc-research.at Near Field Communication Research Lab Hagenberg Agenda Part I: 11:45 – 12:30 . What is a Secure Element? . Secure Elements & SmartCards . Components of a Secure Elements . Tools for Developing Secure Elements . Standards www.nfc-research.at © Josef Langer, Andreas Oyrer 2009 2 Near Field Communication Research Lab Hagenberg Agenda Part II 1:30 – 3:00 . Secure Element in Details . Presentation Development Tools . Communicating with the Secure Element: – Mobilephone: J2ME – PC: Reader-Writer mode via PC/SC . Difficulties in Programming Secure Elements . Benefits and Drawbacks with Secure Element Programming www.nfc-research.at © Josef Langer, Andreas Oyrer 2009 3 Near Field Communication Research Lab Hagenberg Abbreviations and Definitions . J2ME: Java Platform Micro Edition . JSR: Java Specification Requests . Midlet: Java-applications running on a mobile phone . Applet: JavaCard-Application running on a SmartCard . APDU: Application Protocol Data Unit . SCWS: Smart Card Web Server www.nfc-research.at © Josef Langer, Andreas Oyrer 2009 4 Near Field Communication Research Lab Hagenberg Abbreviations and Definitions . SWP: Single Wire Protocol . USB: Universal Serial Bus . PC/SC: Smartcard Standard for PC . API: Application Programming Interface . SAT: SIM Application Toolkit www.nfc-research.at © Josef Langer, Andreas Oyrer 2009 5 Near Field Communication Research Lab Hagenberg What is a Secure Element? . Secure storage in your NFC device . Current Secure Element Implementations – Embedded in Mobile Phone – SIM Based – Removeable Secure Element (SD Card) Picture from G&D www.nfc-research.at © Josef Langer, Andreas Oyrer 2009 6 Near Field Communication Research Lab Hagenberg Motivation for Secure Elements .
    [Show full text]
  • Certificate of Security Evaluation Upteq NFC422 V1.0
    Certificate of Security Evaluation Upteq NFC422 v1.0 Certification Number: GP-SE-2019/02 Product Name: Upteq NFC422 v1.0 Issuance Date: Sept. 9th 2019 Configurations: --- Sponsor: Gemalto (Thales Group) Platform / Developer: Upteq NFC422 v1.0 / Gemalto (Thales Group) IC / Developer: S3NSEN4 Rev. 1 / Samsung Protection Profile: GSM Association SGP.25 - Embedded UICC for Product Type: R eUICC Consumer Devices Protection Profile, version 1.0 £ embedded LPA R device LPA PP-Modules: £ LPAe Certification Type: R Unrestricted £ Restricted Evaluation Type: R Full £ Delta £ Fast-track £ Reassessment Certification Report: GP-SE-2019/02-CR Security Evaluation Lab: UL This GlobalPlatform Security Evaluation Product Certificate (“Certificate”) remains valid only while the version of the product specified above is posted on the GlobalPlatform website, and means only that such product version has demonstrated sufficient conformance with applicable Security Requirements, determined by a GlobalPlatform-accredited third-party laboratory evaluation. This Certificate applies only to the product version specified, does not constitute an endorsement or warranty by GlobalPlatform, and is subject to the additional terms, conditions and restrictions set forth in the attached GlobalPlatform Security Evaluation Secretariat Certification Report. GlobalPlatform, Inc. Kevin Gillick, Executive Director 544 Hillside Road | Redwood City, CA 94062 | [email protected] | www.globalplatform.org GlobalPlatform Security Evaluation Secretariat Certification Report
    [Show full text]
  • JCOP V2.4.1 JCOP V2.4.1 Secure Smart Card Controller Rev
    JCOP V2.4.1 JCOP V2.4.1 secure smart card controller Rev. 3.2 — 2 September 2009 Product short specification 167532 CONFIDENTIAL 1. General description NXP Semiconductors offers a Java Card Open Platform operating system called JCOP V2.4.1 based on independent, third party specifications, i.e. by Sun Microsystems, the Global Platform consortium, the International Organization for Standards (ISO), EMV (Europay, MasterCard and VISA) and others. JCOP V2.4.1 family based on the SmartMX family which is manufactured in most advanced CMOS 0.14 μm 5 metal layer technology is positioned to service high volume, single- and multi-application markets such as eGovernment e.g. Smart Passport, banking/finance, mobile communications, public transportation, pay TV, conditional access, network access and digital rights management. The Java Card, GlobalPlatform, EMV and ISO industry standards together ensure application interpretability for card issuers as well as application providers. By adhering not just to the standards themselves, but also to their spirit as evidenced in numerous heritage applications, JCOP V2.4.1 ensures large interpretability with third party applets as well as all existing smart card infrastructures. With JCOP V2.4.1 the promise of multi-sourcing any component in smart card solutions becomes true. Even in existing infrastructures, JCOP V2.4.1 equipped with proper applications can substitute any existing smart card. Within its targeted segments, the new JCOP V2.4.1 platform on SmartMX is the most advanced solution available. It is combining standard interfaces as defined in Java Card 2.2.2 (see Ref. 1), GlobalPlatform Card Specification 2.1.1 (see Ref.
    [Show full text]
  • Sar-Pr-2011-15
    Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Fakultät II Institut für Informatik Display-Javakarte mit dynamischer eID-PIN für den neuen Personalausweis Paul Bastian Bachelorarbeit Betreuer: Dr. Wolf Müller Frank Dietrich Gutachter: Prof. Jens-Peter Redlich Dr. Manfred Paeschke Berlin, den 7. November 2011 Inhaltsverzeichnis Abbildungsverzeichnis III Tabellenverzeichnis IV Abkürzungsverzeichnis VI 1. Einleitung 1 1.1. Der neue Personalausweis . 1 1.2. Angriffsszenario . 1 2. Konzept 3 2.1. Teildynamische PIN . 3 2.2. Varianten . 4 2.2.1. Statische Positionierung . 4 2.2.2. Randomisierte Positionierung . 5 2.2.3. Alternative Varianten . 5 3. Wahrscheinlichkeitsbetrachtung 7 3.1. Statische PIN . 7 3.2. Dynamische PIN mit statischer Positionierung . 7 3.3. Dynamische PIN mit randomisierter Positionierung . 8 3.4. Alternative Varianten . 9 4. Der neue Personalausweis 11 4.1. eID-PIN . 11 4.2. CAN . 11 4.2.1. Dynamische CAN . 12 4.3. Anwendung der teildynamischen PIN auf den nPA . 13 4.4. Kompromiss zwischen Komfort und Sicherheit . 14 4.5. Auswertung . 15 5. Chipkarten 17 5.1. Aufbau . 17 5.2. Kommunikation . 18 5.3. Java Card . 19 I 6. Implementation 21 6.1. Aufbau, Hardware und verwendete Software . 21 6.2. Entwicklung . 23 6.2.1. AusweisApp . 23 6.2.2. Konzept . 25 6.3. PACE . 27 6.4. Secure Messaging . 31 6.5. Auswertung . 32 7. Ausblick 34 A. APDU-Trace PACE 35 B. APDU-Trace PACE mit Secure Messaging 37 Literatur 39 II Abbildungsverzeichnis 2.1. Funktionsweise der teildynamischen PIN und des Keyloggerangriffs . 4 2.2. Displaykarte mit statischer Positionierung der Zufallszahlen . 5 2.3.
    [Show full text]
  • Identity Applet V3.4 / Eidas on NXP JCOP 4
    Ministero dello Sviluppo Economico Direzione generale per le tecnologie delle comunicazioni e la sicurezza informatica Istituto Superiore delle Comunicazioni e delle Tecnologie dell'Informazione Schema nazionale per la valutazione e certificazione della sicurezza di sistemi e prodotti ICT (DPCM del 30 ottobre 2003 - G.U. n. 93 del 27 aprile 2004) Certificato n. 12/20 (Certification No.) Prodotto: IDentity Applet v3.4/eIDAS on NXP JCOP 4 P71 (Product) Sviluppato da: ID&Trust Ltd. (Developed by) Il prodotto indicato in questo certificato è risultato conforme ai requisiti dello standard ISO/IEC 15408 (Common Criteria) v. 3.1 per il livello di garanzia: The product identified in this certificate complies with the requirements of the standard ISO/IEC 15408 (Common Criteria) v. 3.1 for the assurance level: EAL4+ (ALC_DVS.2, ATE_DPT.2, AVA_VAN.5) Il Direttore (Dott.ssa Eva Spina) [ORIGINAL DIGITALLY SIGNED] Roma, 28 ottobre 2020 Fino a EAL2 (Up to EAL2) Fino a EAL4 (Up to EAL4) This page is intentionally left blank Page 2 of 35 OCSI/CERT/SYS/08/2016/RC Ver. 1.0 Ministero dello Sviluppo Economico Direzione generale per le tecnologie delle comunicazioni e la sicurezza informatica Istituto Superiore delle Comunicazioni e delle Tecnologie dell'Informazione Certification Report IDentity Applet v3.4/eIDAS on NXP JCOP 4 P71 OCSI/CERT/SYS/08/2016/RC Version 1.0 28 October 2020 Page 3 of 35 OCSI/CERT/SYS/08/2016/RC Ver. 1.0 Courtesy translation Disclaimer: this translation in English language is provided for informational purposes only; it is not a substitute for the official document and has no legal value.
    [Show full text]
  • Identity Applet V3.4 / QSCD on NXP JCOP 4
    Ministero dello Sviluppo Economico Direzione generale per le tecnologie delle comunicazioni e la sicurezza informatica Istituto Superiore delle Comunicazioni e delle Tecnologie dell'Informazione Schema nazionale per la valutazione e certificazione della sicurezza di sistemi e prodotti ICT (DPCM del 30 ottobre 2003 - G.U. n. 93 del 27 aprile 2004) Certificato n. 11/20 (Certification No.) Prodotto: IDentity Applet v3.4/QSCD on NXP JCOP 4 P71 (Product) Sviluppato da: ID&Trust Ltd. (Developed by) Il prodotto indicato in questo certificato è risultato conforme ai requisiti dello standard ISO/IEC 15408 (Common Criteria) v. 3.1 per il livello di garanzia: The product identified in this certificate complies with the requirements of the standard ISO/IEC 15408 (Common Criteria) v. 3.1 for the assurance level: EAL4+ (AVA_VAN.5) Il Direttore (Dott.ssa Eva Spina) [ORIGINAL DIGITALLY SIGNED] Roma, 28 ottobre 2020 Fino a EAL2 (Up to EAL2) Fino a EAL4 (Up to EAL4) This page is intentionally left blank Page 2 of 31 OCSI/CERT/SYS/07/2016/RC Ver. 1.0 Ministero dello Sviluppo Economico Direzione generale per le tecnologie delle comunicazioni e la sicurezza informatica Istituto Superiore delle Comunicazioni e delle Tecnologie dell'Informazione Certification Report IDentity Applet v3.4/QSCD on NXP JCOP 4 P71 OCSI/CERT/SYS/07/2016/RC Version 1.0 28 October 2020 Page 3 of 31 OCSI/CERT/SYS/07/2016/RC Ver. 1.0 Courtesy translation Disclaimer: this translation in English language is provided for informational purposes only; it is not a substitute for the official document and has no legal value.
    [Show full text]
  • Systemanforderungen Governikus Signer
    Systemanforderungen Governikus Signer Governikus Signer, Release 2.9.6 © 2021 Governikus GmbH & Co. KG Governikus Signer Systemanforderungen Inhaltsverzeichnis 1 Anforderungen Arbeitsplatzcomputer ............................................................................... 3 1.1 Unterstützte Client-Betriebssysteme ........................................................................ 3 1.2 Unterstützung von Terminalservern ......................................................................... 3 1.3 Java Laufzeitumgebung ...........................................................................................4 1.4 Ausstattungsanforderung für das digitale Signieren ................................................. 4 1.5 Voraussetzung für die Nutzung von Diensten .......................................................... 5 2 Ab- und Ankündigungen für Folge-Releases .................................................................... 5 3 Unverbindliche Erläuterung zum End of Lifecycle ............................................................ 6 4 Unterstützte Signaturkarten und Chipkartenleser ............................................................. 7 4.1 Aktuelle Hinweise .....................................................................................................7 4.2 Hinweis zu Änderungen getesteter Produkte ........................................................... 7 4.3 Notwendige Schutzvorkehrungen für diese Anwendung .......................................... 8 4.4 Unterstützte Betriebssysteme und JRE ...................................................................
    [Show full text]
  • D1.1: Report on Use Case and System Architecture
    D1.1 Report on use case and system architecture requirements Project number: 610436 Project acronym: MATTHEW MATTHEW: Multi-entity-security using active Transmission Technology for improved Handling Project title: of Exportable security credentials Without privacy restrictions Start date of the project: 1st November, 2013 Duration: 36 months Programme: FP7-ICT-2013-10 Deliverable type: Report Deliverable reference number: ICT-610436 / D1.1 / 1.0 Work package contributing to the WP 1 deliverable: Due date: Mar 2014 – M05 Actual submission date: 1st April, 2014 Responsible organisation: GTO Editor: GTO – Christian DIETRICH Dissemination level: Public Revision: 1.0 This document defines the requirements of the MATTHEW system architecture to demonstrate three different use cases: Mobile payment, Access Control and Advanced Ticketing. These Abstract: applications will allow the evaluation of the technologies developed and evaluated within the MATTHEW project: active contactless, antenna designs, multiple secure elements, PUFs and privacy requirement. MATTHEW, applications, use cases, scenarios, Keywords: requirements D1.1 - Report on use case and system architecture requirements Editor Dietrich Christian (GTO) Contributors (ordered according to beneficiary numbers) Bock Holger, Buchsbaum Martin (IFAT) Capomaggio Gregory (GTO) Erich Wenger (IAIK) Martin Deutschmann (TEC) Pavel Kristof (IMA) Paillier Pascal (CRX) Copyrights MIFARE and MIFARE Classic are trademarks of NXP B.V. MIFARE DESFire are registered trademarks of NXP B.V. and are used under license. Disclaimer The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7-ICT-2013) under grant agreement n° 610436. MATTHEW D1.1 Page 2 of 41 D1.1 - Report on use case and system architecture requirements Executive Summary This first deliverable of the MATTHEW project forms the foundations of the project and gives the directions for the work addressed by the partners in the following Work Packages.
    [Show full text]
  • NXP JCOP4.0 on P73N2M0 Secure Smart Card Controller Security Target Lite Rev
    NXP JCOP4.0 on P73N2M0 Secure Smart Card Controller Security Target Lite Rev. 1.3 – 2018-06-01 Evaluation documentation Evaluation Version CC Confidential NSCIB-CC-16-111441 Document Information Info Content Keywords ASE, JCOP, Common Criteria, EAL6 augmented Abstract This document contains information to fulfill the requirements of the Common Criteria component ASE (Security Target) for the Evalu- ation of the NXP JCOP4.0 on P73N2M0 Secure Smart Card Con- troller developed and provided by NXP Semiconductors, Business Unit Security & Connectivity, according to the Common Criteria for Information Technology Security Evaluation Version 3.1 at EAL6 augmented NXP Semiconductors JCOP4.0 on P73N2M0 Security Target Lite CC Confidential Rev Date Description 1.0 2018-03-23 Release Version 1.1 2018-04-23 Release Version upgrade to EAL6+ 1.2 2018-05-18 Fix Diagram reference in TOE Overview 1.3 2018-06-01 Update Bibliography Evaluation Version ©NXP B.V. 2018. All rights reserved. Evaluation documentation Rev. 1.3 – 2018-06-01 1 of 179 NXP Semiconductors JCOP4.0 on P73N2M0 Security Target Lite CC Confidential 1 ST Introduction (ASE_INT) 1.1 ST Reference and TOE Reference Title NXP JCOP4.0 on P73N2M0 Secure Smart Card Controller Security Target ST Version Revision 1.3 TOE Version R1.00.1 Date 2018-06-01 Product Type Java Card TOE name NXP JCOP4.0 on P73N2M0 Secure Smart Card Controller Certification ID NSCIB-CC-16-111441 CC version Common Criteria for Information Technology Security Evaluation Version 3.1, Revision 4, September 2012 (Part 1 [3], Part 2 [4] and Part 3 [5]) Tab.
    [Show full text]
  • Java Cardtm Open Platform for Smart Cards
    Java CardTM Open Platform for Smart Cards Wolfgang Effing Giesecke & Devrient GmbH Java Card Open Platform Combines tomorrow's technology and platforms C:\Presentations - JavaCard_OpenPlatform.ppt - ef - 29.04.04 - page 1 What happened in the past? • Every company created its own proprietary standard – E.g. a GSM smart card was not able to run a banking application • In the PC world it's the same with WinNT, Linux or Macintosh Platform Specific Applications 123 Operating System Chip Card Platform Microprocessor • But the internet era taught us – The customer wants to use the same applications independent of any platforms Java Card Open Platform Combines tomorrow's technology and platforms C:\Presentations - JavaCard_OpenPlatform.ppt - ef - 29.04.04 - page 2 What are the ideas for the future? • Creating an operating system, which allows the "Write once - Run anywhere" principle – The internet with its JAVA programming language showed us the right way Java Applications (Applets) 123 Java Interpreter Java Virtual Machine Operating System Microprocessor • A powerful smart card, which is able to run a GSM, banking or ID application – The user selects his requested application and starts Java Card Open Platform Combines tomorrow's technology and platforms C:\Presentations - JavaCard_OpenPlatform.ppt - ef - 29.04.04 - page 3 Java Card Basics (1) • What is Java Card? – A programmable smart card – A multi-application smart card – An interoperable smart card – A smart card for secure application loading • A programmable smart card – Easy to program
    [Show full text]