Investigation of Marine Components of Large
Total Page:16
File Type:pdf, Size:1020Kb
INVESTIGATION OF MARINE COMPONENTS OF LARGE DIRECT SEAWATER INTAKE & BRINE DISCHARGE SYSTEMS FOR DESALINATION PLANTS, TOWARDS DEVELOPMENT OF A GENERAL DESIGN APPROACH MARIA LE ROUX A Thesis submitted in partial fulfilment for the requirement of the degree of MASTERS OF SCIENCE DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF STELLENBOSCH Supervisor: D.E. Bosman & G. Toms March 2010 Analysis of Seawater Intake & Brine Discharge Systems for Desalination Plants Declaration: By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 4 February 2010 Copyright © 2010 Stellenbosch University All rights reserved University of Stellenbosch i Analysis of Seawater Intake & Brine Discharge Systems for Desalination Plants ABSTRACT This investigation focused on the marine components of large direct seawater intake and brine discharge systems for seawater desalination plants, with the main aim to provide an overall design approach for these components. Due to its complexity, an overall and systematic design approach, addressing all the components (feedwater requirements, plant technology, marine structures and environmental issues) is required to ensure an optimum design. A literature review was done on the various desalination technologies, the main components of a seawater desalination plant, as well as the physical, hydraulic, operational and environmental issues regarding seawater extraction facilities, marine pipelines and discharge structures (diffuser). In order to obtain practical input to the development of an overall design approach, information regarding the marine structures of ten of the largest existing seawater desalination plants throughout the world were obtained and compared with each other and the available technologies. By way of example, the recently designed marine components of a new seawater reverse osmosis desalination plant in Namibia were reviewed and, as part of this thesis, alternative conceptual concepts which will include two additional components (sump and brine reservoir) were designed. The alternative design was compared with the actual design in order to determine the feasibility of the alternative in terms of operation and cost and subsequently provide input to the overall design recommendations. Furthermore, from the literature review it seems that there are still significant uncertainties regarding the required performance of a brine (dense) outfall and this required more attention in terms of environmental and hydraulic performance. Based on the Namibian plant, the diffuser configuration was analysed in terms of its hydraulic and environmental performance and subsequently some general guidance with specific respect to a brine diffuser was developed, which in turn formed part of the overall design approach for the marine components. Finally, the design approach for seawater intake structures, brine outfalls and the connecting marine pipelines is provided in the form of flow diagrams. University of Stellenbosch ii Analysis of Seawater Intake & Brine Discharge Systems for Desalination Plants SAMEVATTING Hierdie ondersoek handel oor die mariene komponente van groot en direkte toevoer van seewater en die sout-uitvloeisisteme van ontsoutingsaanlegte van seewater. Die doel is om ‘n oorsigtelike ontwerpbenadering vir hierdie component te verskaf. As gevolg van die kompleksiteit, is ‘n oorsigtelike en sistimatiese benadering, wat al die komponente (vereistes vir toevoerwater, tehnologie by die aanleg, mariene omstandighede en omgewingsfaktore) in ag neem noodsaaklik om die beste ontwerp te verseker. ‘n Literêre oorsig is gedoen ten opsigte van die tegnologie van verskeie ontsoutingsmetodes, die hoofkomponente van ‘n seewater-ontsoutingsaanleg, asook die fisiese, hidrouliese, operasionele en omgewingskwessies rakende die fasiliteite om die seewater te onttrek, die mariene pyplyne en die strukture vir die afvloei. Ten einde die optimum ontwerp te ontwikkel, is inligting oor die tegnologie en strukture van tien van die grootste bestaande onsoutingsaanlegte in die wêreld bekom, bestudeer en vergelyk Hulle is met mekaar vergelyk, asook met beskikbare tegnologie. As ‘n voorbeeld is die nuut ontwerpte mariene komponente van die nuwe ontsoutingsaanleg in Namibië, waar ontsouting d.m.v. omgekeerde osmose gedoen word ondersoek en as deel van hierdie tesis, is ‘n alternatiewe konsep, wat twee bykomende komponente – ‘n opvangput en reservoir vir die afloop – ontwerp. Hierdie alternatiewe ontwerp is met die werklike aanleg vergelyk om die uitvoerbaarheid van die onderneming en die koste daaraan verbonde te toets. Dit is gebruik as aanbeveling vir die oorhoofse ontwerp. Uit die literêre oorsig blyk dit dar daar nog groot onsekerheid is oor die vereistes van die (digte) waterafloop en dat meer aandag aan die omgewings- en hidrouliese aspekte gegee moet word. Met die Namibiese aanleg as voorbeeld, is die struktuur van die spreiers t.o.v. hidrouliese werkverrigting en die omgewing ontleed. Voortspruitend daaruit is algemene riglyne vir ‘n spesifieke spreier vir afloopwater ontwikkel, wat op sy beurt weer deel vorm van die oorhoofse ontwerp vir mariene komponente. Laastens is die ontwerp vir die strukture vir seewater-invloei, die afloopwater en die mariene verbindingspyplyne as vloeidigramme aangetoon. University of Stellenbosch iii Analysis of Seawater Intake & Brine Discharge Systems for Desalination Plants ACKNOWLEDGEMENTS I wish to extend my thanks to my supervisors; Mr DE Bosman and Mr G Toms, who aided me in this study, providing a lot of guidance and assistance. Furthermore, thanks to my employer WSP Africa Coastal Engineers, making available the funds and resources to complete this thesis. I am also very grateful to Mr WAM Botes who taught me the importance of protecting our marine environment and providing me with the tools to do so. Finally, Areva Resources Namibia who made design information available of their project in Namibia, Trekkopje as well as Steve Christie, senior engineer at the Perth desalination plant who provided detailed information on the operational procedures of the plant. University of Stellenbosch iv Analysis of Seawater Intake & Brine Discharge Systems for Desalination Plants TABLE OF CONTENT ABSTRACT .............................................................................................................................................. ii SAMEVATTING .................................................................................................................................... iii ACKNOWLEDGEMENTS ................................................................................................................... iv TABLE OF CONTENT ........................................................................................................................... v LIST OF TABLES ................................................................................................................................ viii LIST OF FIGURES ................................................................................................................................ ix GLOSSARY ............................................................................................................................................... x 1 INTRODUCTION ............................................................................................................................. 1 2 OBJECTIVES OF INVESTIGATION ........................................................................................... 1 3 METHODOLOGY ............................................................................................................................ 2 4 LITERATURE STUDY .................................................................................................................... 3 4.1 Desalination Technologies .................................................................................................................... 3 4.1.1 Thermal processes ............................................................................................................................................... 4 4.1.2 Membrane processes ........................................................................................................................................... 5 4.1.3 Hybrid facilities ................................................................................................................................................... 7 4.1.4 Co-generation (Co-location) ............................................................................................................................... 7 4.2 Main Components of a seawater desalination plant .............................................................................. 8 4.3 Seawater Intake System ........................................................................................................................ 9 4.3.1 Intake works location selection ........................................................................................................................ 10 4.3.2 Feedwater flow rate & quality .......................................................................................................................... 10 4.3.3 Intake Types .....................................................................................................................................................