COMMENTARY Chemical Or Nematocyst-Based Defence in the Nudibranch Cratena Peregrina? – a Reply to B.K

Total Page:16

File Type:pdf, Size:1020Kb

COMMENTARY Chemical Or Nematocyst-Based Defence in the Nudibranch Cratena Peregrina? – a Reply to B.K COMMENTARY Chemical or nematocyst-based defence in the nudibranch Cratena peregrina? – a reply to B.K. Penney Arnaldo Marin Departamento de Ecologı´a e Hidrologı´a, Facultad de Biologı´a, Universidad de Murcia, 30100 Murcia, Spain Aguado & Marin (2007) analysed the interaction between (Karuso, 1987; Rogers & Paul, 1991). Thus, metabolite Cratena peregrina (Gmelin, 1791) and predatory fish in labora- accumulations within opisthobranchs may represent a mechan- tory and field assays, using both live aeolids and artificial ism to store toxic chemicals with impunity for subsequent elim- models. Penney’s comment (2009) on the article reopens the ination, and not necessarily to defend the organism (Pennings old question of the role of nematocyst-based defence in nudi- & Paul, 1993). Downloaded from branchs. Penney suggests that the defensive mechanism of Penney suggests that because E. carneum from North C. peregrina is chemical because the nematocysts used in American possesses chemical extracts that deter feeding by assays could be unarmed. Penney argues that (1) Aguado & pinfish, extracts from Eudendrium employed with models of C. Marin (2007) obtained nematocysts by macerating Eudendrium peregrina could be unpalatable because they contain chemicals hydroids with a mortar and pestle, and this cannot be con- and not active nematocysts. Stachowicz & Lindquist (2000) sidered equivalent to kleptocnidae isolated from C. peregrina; indicated that crude extracts from Eudendrium deterred feeding, http://mollus.oxfordjournals.org/ (2) the method by which the authors attempted to incorporate ‘demonstrating’ that defensive chemistry plays a significant role nematocysts into the test food is unclear; and (3) regardless of in the unpalatability of these species. To test their hypothesis how nematocysts were added to the artificial food models, it is that unpalatable secondary metabolites represent alternative possible that no functional nematocysts would remain by the antipredator defences for hydroids, they compared the palat- time fish encountered them. ability of intact polyps with those in which the nematocysts The main purpose of our article was to demonstrate that fish had been chemically stimulated to discharge. Hydroid polyps learn to avoid the warning coloration pattern of C. peregrina, defended solely by nematocysts should become palatable when due to associating bad taste or unpleasant experience with the their nematocysts are discharged before offering them to preda- colour pattern. Nematocysts are contained in the defensive tors, whereas the palatability of chemically defended hydroids should not change after treatment. However, neither the lipo- exudates and in the external part of the body of C. peregrina, at Western Washington University on March 3, 2014 which can only be regarded as circumstantial evidence that philic (DCM þ butanol soluble compounds) nor the water- these defensive cells or the molecules that they contain rep- soluble fractions of Eudendrium deterred feeding. These authors resent a deterrent for predators. Of course, the article does not suggested that there is an additive or synergistic effect among provide experimental evidences that the source of deterrence is compounds in the two fractions, or that the deterrent com- the nematocysts, but there is no proof, either, that chemical pounds decomposed during the partitioning of the crude defences play an active role. If we support the general idea extract. In my opinion these results do not demonstrated that that a positive result for deterrence alone cannot be taken as defensive chemistry plays a significant role in the unpalatabil- evidence for a nematocyst-based defence, the same argument ity because toxins contained in nematocysts could also act as a must apply to chemical-based defence. We must classify chemical deterrence. If there truly are active chemicals in nematocyst-based defences as a special form of chemical Eudendrium, the lipophilic and the water-soluble fractions must defences because nematocysts contain harmful molecules. From be clearly deterrent to fish, but this is not the case. Secondary this point of view, C. peregrina transfers chemicals from food to metabolites contained in the discharged nematocysts could be the cnidosacs at the tip of the ceras. responsible for fish rejection. There is no evidence that C. peregrina contains secondary The biosynthesis of defensive metabolites is costly for organ- metabolites other than the nematocyst toxins. Chemical analy- isms. It is not surprising that species showing de novo biosyn- sis supports the general hypothesis that the nematocysts are the thesis of defensive metabolites use these metabolites for other main weapons. Cimino et al. (1980) studied three species of the purposes. This is the case in the nudibranch Tethys fimbria, hydroid Eudendrium (E. rameum, E. racemosum, E. ramosum) in the which synthesizes prostaglandin derivates (Marı´n, Di Marzo & Bay of Naples (Italy), which are prey of C. peregrina. These Cimino, 1991). The structural variety of the lactones and the authors found the same pathway of polyhydroxylated steroids data on their distribution in the body of T. fimbria suggest a (Cholest-4-en-4, 16b, 18, 22R-tetrol-3-one 16,18-diacetate) in range of different biological functions: to contract smooth the hydroids and in the nudibranchs. Unfortunately these muscle fibres, defence allomones of the ceratal secretion, and in steroids do not play a defensive role in hydroids or nudi- basic physiological functions (e.g. ion regulation, renal function branchs. Some aeolids contain pigments and secondary meta- and reproductive biology). These arguments do not mean that bolites from their prey, which probably have no chemical other aeolidoidean nudibranchs should also contain defensive defence role either (e.g. Goodwin & Fox, 1955; McBeth, 1972: metabolites. The aeolid nudibranch Phyllodesmium guamensis the compounds are ubiquitous and conserved amongst numer- feeds on the soft corals Sinularia maxima and S. polydactyla. ous non-deterrent species; Cimino et al., 1980: the compounds Phyllodesmium guamensis sequesters a diet-derived diterpene are located within internalized structures and thus not quickly 11b-acetoxypukalide selectively within various body parts. encountered by predators). Sequestered compounds can occur Levels were highest in the cerata, with moderate and low to at concentrations lower than threshold feeding deterrent levels non-existent levels in the mantle and viscera, respectively. Laboratory tests showed that 11b-acetoxypukalide deters feeding by the puffer fish Canthigaster solandri at a given concen- Correspondence: A. Marin; e-mail: [email protected] tration (0.5% dry mass), while feeding field experiments with Journal of Molluscan Studies (2009) 75: 201–202 # The Author 2009. Published by Oxford University Press on behalf of The Malacological Society of London, all rights reserved COMMENTARY nudibranch tissues exhibited species-specific reactions to the comparing past studies of isolated nematocyst discharge nudibranch tissues and their isolated metabolite, which ranged (Greenwood et al., 2002). from non-deterrence to emesis (Slattery et al., 1998). Penney also suggests that nematocysts obtained by macerating Even if active deterrent metabolites are present in C. peregrina, Eudendrium cannot be considered equivalent to kleptocnidae iso- it is very unlikely that chemical defence is the sole defensive lated from C. peregrina. However, Martin (2003) in an exhaustive mechanism, because retaining functional nematocysts must be study of C. peregrina found, when feeding on polyps of the hydro- energetically expensive. Several studies in opisthobranchs have zoan Eudendrium, that phagocytosis of nematocysts and food par- indicated that chemical and physical defences commonly ticles by digestive cells is rather non-selective. In the course of co-occur and can function either additively, or synergistically, over two years of this study there was no evidence of selective to reduce susceptibility to predators. In the nudibranch Doris exclusion of specific nematocyst types by cnidophagous cells. verrucosa, several defensive strategies occur at the same time. This nudibranch is perfectly mimetized in its habitat and its mantle is protected by spicules and by the presence of two toxic REFERENCES molecules, verrucosin-a and -b (Cimino et al., 1988). Many AGUADO, F. & MARIN, A. 2007. Warning coloration associated algae and invertebrates display redundant defence mechanisms with nematocyst-based defences in aeolidiodean nudibranchs. against predation (Hay et al., 1994; Schupp & Paul, 1994). Journal of Molluscan Studies, 73: 23–28. Nudibranchs utilize both physical (spicules, tunic toughness) CIMINO, G., DE ROSA, S., DE STEFANO, S. & SODANO, G. Downloaded from and chemical (secondary metabolites, acidity) defences and 1980. Cholest-4-en-4, 16b, 18, 22R-tetrol-3-one 16, 18-diacetate a suffer relatively little predation by generalist predators. novel polyhydroxylated steroid from the hydroid Eudendrium sp. The method by which we incorporated nematocysts into the Tetrahedron Letters, 21: 3303–3304. test food was clearly described: ‘the artificial models were CIMINO, G., GAVAGNIN, M., SODANO, G., PULITI, R., bathed in hydroid sauce’ (Aguado & Marin, 2007). We used MATTIA, C.A. & MAZZARELLA, L. 1988. Verrucosin-a and -b, the word impregnation incorrectly because it suggests that the ichthyotoxic diterpenoic acid glycerides with a new carbon skeleton hydroid sauce entered and spread completely through the
Recommended publications
  • NIH Public Access Author Manuscript Toxicon
    NIH Public Access Author Manuscript Toxicon. Author manuscript; available in PMC 2010 December 15. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Toxicon. 2009 December 15; 54(8): 1065±1070. doi:10.1016/j.toxicon.2009.02.029. Acquisition and Use of Nematocysts by Cnidarian Predators Paul G. Greenwood Department of Biology, Colby College, Waterville, ME 04901, USA, [email protected] Abstract Although toxic, physically destructive, and produced solely by cnidarians, cnidocysts are acquired, stored, and used by some predators of cnidarians. Despite knowledge of this phenomenon for well over a century, little empirical evidence details the mechanisms of how (and even why) these organisms use organelles of cnidarians. However, in the past twenty years a number of published experimental investigations address two of the fundamental questions of nematocyst acquisition and use by cnidarian predators: 1) how are cnidarian predators protected from cnidocyst discharge during feeding, and 2) how are the nematocysts used by the predator? Keywords Nudibranch; Nematocyst; Kleptocnidae; Cerata; Cnidocyst; Venom; Cnidaria Introduction Nematocysts, cnidocysts used to inject venom, offer a formidable defense from predators, but despite this weaponry numerous animals from many phyla prey on cnidarians (Salvini-Plawen, 1972; Ates, 1989, 1991; Arai, 2005). Some of these predators acquire unfired cnidocysts from their prey and store those cnidocysts in functional form within their own cells; the acquired cnidocysts (which are always nematocysts) are referred to as kleptocnidae. While aeolid nudibranchs are known for sequestering nematocysts from their prey (reviewed in Greenwood, 1988), one ctenophore species, Haeckelia rubra, preys upon narcomedusae and incorporates nematocysts into its own tentacles (Carré and Carré, 1980; Mills and Miller, 1984; Carré et al., 1989).
    [Show full text]
  • Structure and Function of the Digestive System in Molluscs
    Cell and Tissue Research (2019) 377:475–503 https://doi.org/10.1007/s00441-019-03085-9 REVIEW Structure and function of the digestive system in molluscs Alexandre Lobo-da-Cunha1,2 Received: 21 February 2019 /Accepted: 26 July 2019 /Published online: 2 September 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The phylum Mollusca is one of the largest and more diversified among metazoan phyla, comprising many thousand species living in ocean, freshwater and terrestrial ecosystems. Mollusc-feeding biology is highly diverse, including omnivorous grazers, herbivores, carnivorous scavengers and predators, and even some parasitic species. Consequently, their digestive system presents many adaptive variations. The digestive tract starting in the mouth consists of the buccal cavity, oesophagus, stomach and intestine ending in the anus. Several types of glands are associated, namely, oral and salivary glands, oesophageal glands, digestive gland and, in some cases, anal glands. The digestive gland is the largest and more important for digestion and nutrient absorption. The digestive system of each of the eight extant molluscan classes is reviewed, highlighting the most recent data available on histological, ultrastructural and functional aspects of tissues and cells involved in nutrient absorption, intracellular and extracellular digestion, with emphasis on glandular tissues. Keywords Digestive tract . Digestive gland . Salivary glands . Mollusca . Ultrastructure Introduction and visceral mass. The visceral mass is dorsally covered by the mantle tissues that frequently extend outwards to create a The phylum Mollusca is considered the second largest among flap around the body forming a space in between known as metazoans, surpassed only by the arthropods in a number of pallial or mantle cavity.
    [Show full text]
  • The Extraordinary Genus Myja Is Not a Tergipedid, but Related to the Facelinidae S
    A peer-reviewed open-access journal ZooKeys 818: 89–116 (2019)The extraordinary genusMyja is not a tergipedid, but related to... 89 doi: 10.3897/zookeys.818.30477 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The extraordinary genus Myja is not a tergipedid, but related to the Facelinidae s. str. with the addition of two new species from Japan (Mollusca, Nudibranchia) Alexander Martynov1, Rahul Mehrotra2,3, Suchana Chavanich2,4, Rie Nakano5, Sho Kashio6, Kennet Lundin7,8, Bernard Picton9,10, Tatiana Korshunova1,11 1 Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009 Moscow, Russia 2 Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 3 New Heaven Reef Conservation Program, 48 Moo 3, Koh Tao, Suratthani 84360, Thailand 4 Center for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn Univer- sity, Bangkok 10330, Thailand5 Kuroshio Biological Research Foundation, 560-I, Nishidomari, Otsuki, Hata- Gun, Kochi, 788-0333, Japan 6 Natural History Museum, Kishiwada City, 6-5 Sakaimachi, Kishiwada, Osaka Prefecture 596-0072, Japan 7 Gothenburg Natural History Museum, Box 7283, S-40235, Gothenburg, Sweden 8 Gothenburg Global Biodiversity Centre, Box 461, S-40530, Gothenburg, Sweden 9 National Mu- seums Northern Ireland, Holywood, Northern Ireland, UK 10 Queen’s University, Belfast, Northern Ireland, UK 11 Koltzov Institute of Developmental Biology RAS, 26 Vavilova Str., 119334 Moscow, Russia Corresponding author: Alexander Martynov ([email protected]) Academic editor: Nathalie Yonow | Received 10 October 2018 | Accepted 3 January 2019 | Published 23 January 2019 http://zoobank.org/85650B90-B4DD-4FE0-8C16-FD34BA805C07 Citation: Martynov A, Mehrotra R, Chavanich S, Nakano R, Kashio S, Lundin K, Picton B, Korshunova T (2019) The extraordinary genus Myja is not a tergipedid, but related to the Facelinidae s.
    [Show full text]
  • A Tropical Atlantic Species of Melibe Rang, 1829 (Mollusca, Nudibranchia, Tethyiidae)
    A peer-reviewed open-access journal ZooKeys 316:A tropical 55–66 (2013) Atlantic species of Melibe Rang, 1829 (Mollusca, Nudibranchia, Tethyiidae) 55 doi: 10.3897/zookeys.316.5452 RESEARCH articLE www.zookeys.org Launched to accelerate biodiversity research A tropical Atlantic species of Melibe Rang, 1829 (Mollusca, Nudibranchia, Tethyiidae) Erika Espinoza1,†, Anne DuPont2,‡, Ángel Valdés1,§ 1 Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomo- na, California 91768, USA 2 4070 NW 7th Lane, Delray Beach, Florida 33445, USA † urn:lsid:zoobank.org:author:9B1ADF42-1CDF-4CAA-A2BB-0394695C2E96 ‡ urn:lsid:zoobank.org:author:F3469A4A-29CA-43AD-9663-1ECD09B067A1 § urn:lsid:zoobank.org:author:B5F56B28-F105-4537-8552-A2FE07E945EF Corresponding author: Ángel Valdés ([email protected]) Academic editor: Robert Hershler | Received 3 May 2013 | Accepted 1 July 2013 | Published 11 July 2013 urn:lsid:zoobank.org:pub:7F156A4D-1925-464C-A0D4-8E4B40241DA3 Citation: Espinoza E, DuPont A, Valdés Á (2013) A tropical Atlantic species of Melibe Rang, 1829 (Mollusca, Nudibranchia, Tethyiidae). ZooKeys 316: 55–66. doi: 10.3897/zookeys.316.5452 Abstract A new species of Melibe is described based on two specimens collected in Florida. This new species is well differentiated morphologically and genetically from other species of Melibe studied to date. The four residue deletions in the cytochrome c oxidase subunit 1 protein found in all previously sequenced tropical species of Melibe sequenced (and Melibe rosea) are also present in this new species. These deletions do not appear to affect important structural components of this protein but might have fitness implications. This paper provides the first confirmed record of Melibe in the tropical western Atlantic Ocean.
    [Show full text]
  • Species Report Bursatella Leachii (Ragged Sea Hare)
    Mediterranean invasive species factsheet www.iucn-medmis.org Species report Bursatella leachii (Ragged sea hare) AFFILIATION MOLLUSCS SCIENTIFIC NAME AND COMMON NAME REPORTS Bursatella leachii 17 Key Identifying Features This large sea slug can reach more than 10 cm in length. The body has numerous long, branching, white papillae (finger-like outgrowths) that give the animal its ragged appearance. A key distinctive feature is its grey-brown body with dark brown blotches on the white papillae and bright blue eyespots scattered over the body. The head bears four tentacles: two olfactory tentacles originating on the dorsal part of the head resembling long ears, and two oral tentacles, similar in shape, near the mouth. Adults lack an external shell. 2013-2021 © IUCN Centre for Mediterranean Cooperation. More info: www.iucn-medmis.org Pag. 1/5 Mediterranean invasive species factsheet www.iucn-medmis.org Identification and Habitat Other species that look similar This species occurs most commonly in shallow, sheltered waters, often on sandy or muddy bottoms with Caulerpa prolifera, well camouflaged in seagrass beds, and occasionally in harbour environments. If disturbed or touched it can release purple ink. Its behaviour varies with the time of day, as it is more active during the daytime and hides at night. In the early morning sea hares are found clustered together in groups of 8–12 individuals, and they disperse to feed on algal films during the day. They reassemble again at night. Reproduction Bursatella leachii is a hermaphroditic species with a very fast life cycle and continuous reproduction. When mating, one individual acts as a male and crawls onto another one to fertilize it.
    [Show full text]
  • Zoo-33-1-8-0801-5:Mizanpaj 1
    Turk J Zool Research Article 33 (2009) 57-68 © TÜBİTAK doi:10.3906/zoo-0801-5 Contributions to the Eastern Mediterranean Opisthobranchia (Mollusca: Gastropoda) Fauna of Turkey Ant TÜRKMEN*, Ali DEMİRSOY Hacettepe University, Faculty of Science, Department of Biology, 06800 Beytepe, Ankara – TURKEY Received: 23.01.2008 Abstract: Studies of Opisthobranchia diversity in the Eastern Mediterranean Sea are scarce. In the present study Opisthobranchia species collected along the Mediterranean and Aegean coasts of Turkey in 2004 and 2005 were evaluated. Samples were taken from Çanakkale Strait and the northern coast of Gelibolu Peninsula in the northern Aegean Sea, and from Bodrum, Bay of Fethiye, Kaş, and Adrasan along Turkey’s Mediterranean coast. Sampling was carried out by means of scuba diving. In some locations a bottom dredge sampler was used. In all, 321 individuals were collected, representing 30 species from 7 orders. Among the sampled species, 8 are new taxonomical records for Turkish coasts: Trapania lineata, T. maculata, Diaphorodoris papillata, D. luteocincta, Limacia clavigera, Chromodoris elegantula, Hypselodoris orsinii, and Phyllidia flava. Some of these species, however, were previously recorded in photographs from Turkey taken by amateur divers and underwater photographers. Key Words: Opisthobranchia, Eastern Mediterranean, Turkey, Fethiye, Çanakkale, Kaş, Adrasan, Bodrum Doğu Akdeniz’deki Opisthobranchia (Mollusca: Gastropoda) Faunasına Türkiye’den Katkılar Özet: Doğu Akdeniz Opisthobranchia çeşitliliği ile ilgili çalışmalar az miktarda bulunmaktadır. Bu çalışmada, Türkiye’nin Ege ve Akdeniz kıyılarında 2004 ve 2005 yıllarında bulunan Opisthobranchia türleri değerlendirilmiştir. Örnekler, Kuzey Ege’de Çanakkale Boğazı ve Gelibolu Yarımadası’ndan, Akdeniz’de Bodrum, Fethiye Körfezi, Kaş ve Adrasan’dan toplanmıştır. Örneklemeler tüplü dalışlarla gerçekleştirilmiştir.
    [Show full text]
  • Willis, TJ, Berglöf, KTL, Mcgill, RAR , Musco, L., Piraino, S., Rumsey, CM, Vega Fernández, T. and Badalamenti
    Willis, T. J., Berglöf, K. T.L., McGill, R. A.R. , Musco, L., Piraino, S., Rumsey, C. M., Vega Fernández, T. and Badalamenti, F. (2017) Kleptopredation: a mechanism to facilitate planktivory in a benthic mollusc. Biology Letters, 13(11), 20170447. (doi:10.1098/rsbl.2017.0447) This is the author’s final accepted version. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/149384/ Deposited on: 06 October 2017 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk 1 Biology Letters (2017) in press – embargoed until publication Kleptopredation: a mechanism to facilitate planktivory in a benthic mollusc Trevor J. Willis1, Kimberly T. L. Berglöf1, Rona A. R. McGill2, Luigi Musco3,4, Stefano Piraino5,6, Claire M. Rumsey1, Tomás Vega Fernández3,4 and Fabio Badalamenti4 1Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth PO4 9LY, UK 2NERC Life Sciences Mass Spectrometry Facility, Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride G75 0QF, UK 3Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy 4CNR-IAMC, Via G. Da Verrazzano 17, 91014 Castellammare del Golfo (TP), Italy 5Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy 6CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, 00196 Roma, Italy Author for correspondence: Trevor J. Willis e-mail: [email protected] Predation occurs when an organism completely or partially consumes its prey.
    [Show full text]
  • Host Specificity Versus Plasticity
    Journal of the Marine Biological Association of the United Kingdom, 2018, 98(2), 231–243. # Marine Biological Association of the United Kingdom, 2016 doi:10.1017/S002531541600120X Host specificity versus plasticity: testing the morphology-based taxonomy of the endoparasitic copepod family Splanchnotrophidae with COI barcoding roland f. anton1, dirk schories2, nerida g. wilson3,4, maya wolf5, marcos abad6 and michael schro¤dl1,7,8 1Mollusca Department, SNSB- Bavarian State Collection of Zoology Munich, Mu¨nchhausenstraße 21, D-81247 Mu¨nchen, Germany, 2Instituto de Ciencias Marinas y Limnolo´gicas, Universidad Austral de Chile, Valdivia, Chile, 3Molecular Systematics Unit, Western Australian Museum, Welshpool, WA 6106, Australia, 4School of Animal Biology, University of Western Australia, Crawley, WA 6009, Australia, 5Department of Biology, University of Oregon/Oregon Institute of Marine Biology, Charleston, OR 97420, USA, 6Estacio´n de Bioloxı´a Marin˜a da Gran˜a, Universidade de Santiago de Compostela, Ru´a da Ribeira, 1 (A Gran˜a), 15590, Ferrol, Spain, 7Department Biology II, BioZentrum, Ludwig-Maximilians-Universita¨tMu¨nchen, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany, 8GeoBioCenter LMU, Mu¨nchen, Germany The Splanchnotrophidae is a family of highly modified endoparasitic copepods known to infest nudibranch or sacoglossan sea slug hosts. Most splanchnotrophid species appear to be specific to a single host, but some were reported from up to nine dif- ferent host species. However, splanchnotrophid taxonomy thus far is based on external morphology, and taxonomic descrip- tions are, mostly, old and lack detail. They are usually based on few specimens, with intraspecific variability rarely reported. The present study used molecular data for the first time to test (1) the current taxonomic hypotheses, (2) the apparently strict host specificity of the genus Ismaila and (3) the low host specificity of the genus Splanchnotrophus with regard to the potential presence of cryptic species.
    [Show full text]
  • And Cratena Peregrina (Gmelin, 1791) (Gastropoda Nudi- Branchia) in the Ionian Sea, Central Mediterranean
    Biodiversity Journal, 2020,11 (4): 1045–1053 https://doi.org/10.31396/Biodiv.Jour.2020.11.4.1045.1053 New data on the seasonality of Flabellina affinis (Gmelin, 1791) and Cratena peregrina (Gmelin, 1791) (Gastropoda Nudi- branchia) in the Ionian Sea, Central Mediterranean Andrea Lombardo* & Giuliana Marletta Department of Biological, Geological and Environmental Sciences - Section of Animal Biology, University of Catania, via Androne 81, 95124 Catania, Italy *Corresponding author: [email protected] ABSTRACT Flabellina affinis (Gmelin, 1791) and Cratena peregrina (Gmelin, 1791) are two common nudibranchs in the Mediterranean Sea. However, there are only a few studies on their season- ality which reported these species principally in summer and in well-lit shallow areas. Instead, through the present study carried out throughout three years (from 2017 to 2019) in three areas sited along the Ionian coast of Sicily (Italy), it has been observed that: 1) both species may be present in any season of the year with a high number of specimens; 2) F. affinis in the study areas is more competitive than C. peregrina; 3) both species showed a less photophilous lifestyle than that usually reported in literature, since in this study both species were found in a deeper bathymetric range; 4) F. affinis and C. peregrina could be considered warm-water species and their strong presence in cold seasons might be used as an indicator of the increase in the seawater temperature of the Mediterranean Sea. KEY WORDS Cratena peregrina; Flabellina affinis; Ionian Sea; Nudibranchia; seasonality. Received 30.08.2020; accepted 01.12.2020; published online 30.12.2020 INTRODUCTION eggs of this species usually are produced in a tangle with a pink-violet colouring (Figs.
    [Show full text]
  • The Chemistry and Chemical Ecology of Nudibranchs Cite This: Nat
    Natural Product Reports View Article Online REVIEW View Journal | View Issue The chemistry and chemical ecology of nudibranchs Cite this: Nat. Prod. Rep.,2017,34, 1359 Lewis J. Dean and Mich`ele R. Prinsep * Covering: up to the end of February 2017 Nudibranchs have attracted the attention of natural product researchers due to the potential for discovery of bioactive metabolites, in conjunction with the interesting predator-prey chemical ecological interactions that are present. This review covers the literature published on natural products isolated from nudibranchs Received 30th July 2017 up to February 2017 with species arranged taxonomically. Selected examples of metabolites obtained from DOI: 10.1039/c7np00041c nudibranchs across the full range of taxa are discussed, including their origins (dietary or biosynthetic) if rsc.li/npr known and biological activity. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. 1 Introduction 6.5 Flabellinoidea 2 Taxonomy 6.6 Tritonioidea 3 The origin of nudibranch natural products 6.6.1 Tethydidae 4 Scope of review 6.6.2 Tritoniidae 5 Dorid nudibranchs 6.7 Unassigned families 5.1 Bathydoridoidea 6.7.1 Charcotiidae 5.1.1 Bathydorididae 6.7.2 Dotidae This article is licensed under a 5.2 Doridoidea 6.7.3 Proctonotidae 5.2.1 Actinocyclidae 7 Nematocysts and zooxanthellae 5.2.2 Cadlinidae 8 Conclusions 5.2.3 Chromodorididae 9 Conicts of interest Open Access Article. Published on 14 November 2017. Downloaded 9/28/2021 5:17:27 AM. 5.2.4 Discodorididae 10 Acknowledgements 5.2.5 Dorididae 11
    [Show full text]
  • Sobre La Validez De Cratena Kaoruae Marcus, Er, 1957 (Mollusca: Nudibranchia: Facelinidae) Y Su Ubicación Genérica
    Rev. Acad. Canar. Cienc, XVI (Num. 4), 141-149 (2004) (publicado en agosto de 2005) SOBRE LA VALIDEZ DE Cratena kaoruae MARCUS, ER. 1957 (MOLLUSCA: NUDIBRANCHIA: FACELINIDAE) Y SU UBICACION GENERICA J. Ortea*, M. Caballer**, L. Moro*** & J. Espinosa**** * Dep. Biologia de Organismos y Sistemas, Lab. de Zoologia, Univ. de Oviedo ** Area de Ecologia. Dept. de C.C. y T.T. del Agua y del Medio Ambiente. Universidad de Cantabria. *** Consejeria de Politica Territorial y Medio Ambiente del Gobiemo de Canarias. (CEPLAM), Ctra. de La Esperanza km 0'8, Tenerife, Islas Canarias. Email: leopoldo.moroabad@,gobiemodecanarias.org **** Institute de Oceanologia, Avda. la no 18406, E. 184 y 186, Playa, La Habana, Cuba ABSTRACT This paper discusses the vahdity as a species of Cratena kaoruae Er. Marcus, 1957, concluding it is valid and proposing its allocation to a different genus. Key words: Mollusca, Nudibranchia, Cratena kaoruae, Facelina, Cuba. RESUMEN Se discute la validez de Cratena kaoruae Er. Marcus, 1957, considerandose una especie valida proponiendose, ademas, una nueva ubicacion generica. , y Palabras claves: Mollusca, Nudibranchia, Cratena kaoruae, Facelina, Cuba. 1. INTRODUCCION Cratena kaoruae Er. Marcus, 1957 es un Aeolidaceo que vive en aguas de baja sali- nidad, descrito a partir de ejemplares recolectados en una laguna costera de Cananeia (Brasil). Su habitat es el mismo que el de Cratena pilata (Gould, 1870), cuya localidad tipo se encuentra en Charles River, Massachusetts (EUA), con la que fue sinonimizada por Ev. MARCUS [20] bajo la sentencia de presentar ambas especies un aparato reproductor simi- lar y sin aportar otros datos anatomicos concluyentes. Sin embargo, todas las referencias de anatomia externa, incluida la coloracion, que hay en la literatura sobre los animales de Estados Unidos son muy uniformes y se ajustan a la figura de Lemche representada en JUST & EDMUNDS ([14], Lam.
    [Show full text]
  • Sandra Hoett Ecological Study of Nudibranchs in the Armona
    Sandra Hoett a57340 Ecological study of nudibranchs in the Armona Biodiversity Hotspot UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS E TECNOLOGIA 2019 Sandra Hoett a57340 Ecological study of nudibranchs in the Armona Biodiversity Hotspot Master in Marine and Coastal Sciences Work performed under the supervision of: Prof. Doutores Duarte Duarte and Sofia Gamito UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS E TECNOLOGIA 2019 1 Ecological study of nudibranchs in the Armona Biodiversity Hotspot Declaração de autoria de trabalho Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam na listagem de referências incluídas _________________________ Sandra Hoett 2 © Copyright: Sandra Hoett A Universidade do Algarve reserva para si o direito, em conformidade com o disposto no Código do Direito de Autor e dos Direitos Conexos, de arquivar, reproduzir e publicar a obra, independentemente do meio utilizado, bem como de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição para fins meramente educacionais ou de investigação e não comerciais, conquanto seja dado o devido crédito ao autor e editor respetivos _________________________ Sandra Hoett 3 ACKNOWLEDGEMENT I would first like to thank my thesis advisor Professor Duarte Duarte and my co- supervisor Sofia Gamito of the Faculty of Science and Technology at the University of Algarve. The door to Prof. Duarte's office was always open whenever I ran into a trouble spot or had a question about my research or writing. He totally allowed this work to be my own work and supported me enormously in the field.
    [Show full text]