Activation of a Silent Type I Polyketide Synthase Gene Cluster In

Total Page:16

File Type:pdf, Size:1020Kb

Activation of a Silent Type I Polyketide Synthase Gene Cluster In Activation of a silent type I polyketide synthase gene cluster in Streptomyces ambofaciens ATCC23877 : isolation and characterization of a novel giant macrolide Luisa Laureti To cite this version: Luisa Laureti. Activation of a silent type I polyketide synthase gene cluster in Streptomyces ambo- faciens ATCC23877 : isolation and characterization of a novel giant macrolide. Genomics [q-bio.GN]. Université Henri Poincaré - Nancy 1, 2010. English. NNT : 2010NAN10001. tel-01748223 HAL Id: tel-01748223 https://hal.univ-lorraine.fr/tel-01748223 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm Faculté des Sciences- UFR Sciences et Techniques Biologiques Ecole Doctorale BioSE : Biologie, Santé, Environnement Thèse présentée et soutenue publiquement pour l’obtention du titre de Docteur de l’Université Henri Poincaré en Sciences de la Vie et de la Santé par Luisa LAURETI Activation of a silent type I polyketide synthase gene cluster in Streptomyces ambofaciens ATCC23877: isolation and characterization of a novel giant macrolide Activation d’un cluster de gènes de polycétide synthase de type I chez Streptomyces ambofaciens ATCC23877 : isolation et caractérisation d’un nouveau macrolide géant Soutenance publique prévue le 7 janvier 2010 devant la commission d’examen : Membres du jury : Rapporteurs : M. Mervyn BIBB Professeur, John Innes Center, Norwich M. Jean-Luc PERNODET Directeur de Recherche CNRS, Université Orsay Examinateurs : M. Frédéric BOURGAUD Professeur, Nancy-Université M. Bernard DECARIS Professeur, Nancy-Université M. Pierre LEBLOND Professeur, Nancy-Université (Directeur de thèse) M. Bertrand AIGLE Maître de Conférences, Nancy-Université Laboratoire de Génétique et Microbiologie UMR INRA-UHP 1128 Faculté des Sciences et Techniques – 54506 Vandœuvre-lès-Nancy The Fishermen know that the sea is dangerous and the storm terrible, but they have never found these dangers sufficient reason for remaining ashore. (Vincent van Gogh) ACKNOWLEDGEMENTS/REMERCIEMENTS Je remercie le Professeur Pierre Leblond pour m’avoir accueillie au sein du Laboratoire de Génétique et Microbiologie et pour m’avoir permis d’entreprendre cette thèse. I would like to thank Professor Mervyn Bibb and Professor Jean-Luc Pernodet for accepting to be my referees. For me it has been a great honour and I hope for them it will be a pleasure to read this thesis. Je voudrais aussi remercier le Professeur Frédéric Bourgaud et le Professeur Bernard Decaris pour avoir accepté d’être mes examinateurs. I would like to thank Professor Greg Challis and the Dr Lijiang Song and Dr Christophe Corre for welcoming me in the lab and for all the precious help in the discovery and the characterization of sambomycin, our “little baby”. I really learned a lot from them and I enjoyed my staying in England very much. Je tiens surtout à remercier mon “dear boss” (☺) le Docteur Bertrand Aigle qui a toujours cru en moi et dans ce projet, même quand moi je n’y croyais plus ! Merci pour la confiance que tu m’as accordée tout au long de cette thèse et pour tous tes conseils professionnels, mais aussi personnels. Merci d’avoir accepté mon « sacré caractère » de petite Calimero et d’avoir été toujours très compréhensible et disponible avec moi ! J’ai beaucoup appris de toi. Ton enthousiasme et ta rigueur scientifique resteront toujours un exemple pour moi. Enfin, travailler côte à côte avec toi a été un vrai plaisir et je sais que tout ça va beaucoup me manquer. Cette thèse n’aurait jamais été achevée sans l’aide et le soutien de toutes les personnes que j’ai eu la chance de rencontrer à Nancy et de celles qui faisaient déjà partie de ma vie. Je suis devenue celle que je suis aussi grâce à eux ! Tout d’abord, je tiens à remercier de tout mon coeur l’équipe Streptomyces ☺ : Laurence, pour sa gentillesse infinie et pour tous les petits moments de bonheur et de pause thé partagés avec moi. Je me suis sentie en famille avec toi, Christophe et les enfants ! Robert, un grand merci à toi pour ton aide à la paillasse et pour ta patience à répondre à mes questions et à mes doutes. Un grand merci également pour avoir été mon partenaire de badminton et de danse, on s’est beaucoup éclatés ensemble. Sans toi le labo n’a plus été pareil ! Merci à Caths, toujours pleine de bonne humeur, d’énergie et toujours disponible envers les autres… promets-moi d’apprendre à dire non de temps en temps ! ;-) Thanks a lot to Isolde, the other foreign English speaking in the lab ! Even if we met at the end of this adventure, we had the chance to share a lot of nice and funny moments and I wish you all the best for your future! Merci à Annabelle, pour son accueil chaleureux et pour son aide à chercher mon petit coin douillet, sans même me connaître auparavant ! Merci pour m’avoir laissée faire du babysitter au petit Daniel, j’ai vraiment aimé ! Je tiens aussi à remercier toutes les autres personnes du laboratoire présentes, passées ou venant juste d’arriver, avec qui j’ai eu le plaisir de partager ces trois années de thèse et qui m’ont permis de ne pas trop sentir la solitude et la distance avec mon pays et mes proches. En particulier, merci à Catherine, Virginie, Séverine, Céline, Xavier et Stéphane pour toutes les petites soirées gourmandes et arrosées passées ensemble. Merci à mes « collègues » thésards Nico, Ludo et Romain à qui je souhaite très bon courage ! Merci aux « petits » du labo (comme je les appelle amicalement) Julien, Aurore, Emilie, Fabien, Justine et Maxime car ils contribuent à rendre le labo très sympa et rigolo! Merci à Sophie pour son super talent d’organisation ! Merci enfin à Fred et Julie, mes deux amis en dehors du labo, avec qui j’ai passé des moments très sympas, oubliant pour quelques heures mon boulot ! A special thank to my dear friend Bjørn, who has always been there for me for better or for worse, even being across the ocean as proof that nothing can ruin our friendship! Thank you very much for reading and correcting my manuscript, you gave me very useful advices and comments, but most of all you always encouraged me in my work because you know how silly I can be when an experiment doesn’t work as I want!! Waar ik ook heen zal gaan, ik zal je altijd in mijn hart dragen. Un grazie infinito ai miei cari amici italiani Gi, Valentina e Laura che sono sempre riusciti a infondermi coraggio e fiducia e che per dimostrarmi il loro affetto sono venuti fino a Nancy! ☺ E infine voglio ringraziare la mia famiglia che mi ha sostenuto per tutto questi anni, standomi sempre vicino e facendomi sentire il loro affetto incondizionato. Se sono quella che sono, lo devo soprattutto a voi e all’esempio di amore, rispetto, altruismo e professionalità che mi avete sempre dato. INDEX ABBREVIATIONS__________________________________________________________________1 INTRODUCTION__________________________________________________________________ 3 1. General context___________________________________________________________________5 2. Secondary metabolism and microbial natural products__________________________________7 2.1 Interconnection between primary and secondary metabolism_______________________________ 9 2.2 The antibiotics___________________________________________________________________10 2.3 Mechanisms of bacterial resistance___________________________________________________12 2.3.1 Active-efflux pumps______________________________________________________ 12 2.3.2 Enzymatic inactivation of the antibiotic_______________________________________ 13 2.3.3 Modification of the target site _______________________________________________13 3. Strategies to discover novel natural bioactive molecules_________________________________14 3.1 Genome mining __________________________________________________________________15 3.1.1 OSMAC approach ________________________________________________________16 3.1.2 Genomisotopic approach ___________________________________________________16 3.1.3 Gene inactivation and comparative metabolic profiling approach ___________________17 3.1.4 Heterologous expression ___________________________________________________18 3.1.5 Modification of the regulatory network________________________________________19 3.2 Metagenomics ___________________________________________________________________20 3.3 Combinatorial biosynthesis _________________________________________________________21
Recommended publications
  • Harnessing Synthetic Biology for the Bioprospecting and Engineering of Aromatic Polyketide Synthases
    HARNESSING SYNTHETIC BIOLOGY FOR THE BIOPROSPECTING AND ENGINEERING OF AROMATIC POLYKETIDE SYNTHASES A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering (2017) MATTHEW J. CUMMINGS SCHOOL OF CHEMISTRY 1 THIS IS A BLANK PAGE 2 List of contents List of contents .............................................................................................................................. 3 List of figures ................................................................................................................................. 8 List of supplementary figures ...................................................................................................... 10 List of tables ................................................................................................................................ 11 List of supplementary tables ....................................................................................................... 11 List of boxes ................................................................................................................................ 11 List of abbreviations .................................................................................................................... 12 Abstract ....................................................................................................................................... 14 Declaration .................................................................................................................................
    [Show full text]
  • Characterization of Natural Product Biological Imprints for Computer-Aided Drug Design Applications Noe Sturm
    Characterization of natural product biological imprints for computer-aided drug design applications Noe Sturm To cite this version: Noe Sturm. Characterization of natural product biological imprints for computer-aided drug design applications. Cheminformatics. Université de Strasbourg, 2015. English. NNT : 2015STRAF059. tel-01300872 HAL Id: tel-01300872 https://tel.archives-ouvertes.fr/tel-01300872 Submitted on 11 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES Laboratoire d’Innovation Thérapeutique, UMR 7200 en cotutelle avec Eskitis Institute for Drug Discovery, Griffith University THÈSE présentée par Noé STURM soutenue le : 8 Décembre 2015 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/Spécialité : Chimie/Chémoinformatique Caractérisation de l’empreinte biologique des produits naturels pour des applications de conception rationnelle de médicament assistée par ordinateur THÈSE dirigée par : KELLENBERGER Esther Professeur, Université de Strasbourg QUINN Ronald Professeur, Université de Griffith, Brisbane, Australie RAPPORTEURS : IORGA Bogdan Chargé de recherche HDR, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette GÜNTHER Stefan Professeur, Université Albert Ludwigs, Fribourg, Allemagne Acknowledgments First of all, I would like to thank my two supervisors Professor Kellenberger Esther and Professor Quinn Ronald for their excellent assistance, both academic and personal in nature.
    [Show full text]
  • ABSTRACT ZIN, PHYO PHYO KYAW. Development
    ABSTRACT ZIN, PHYO PHYO KYAW. Development and Applications of Next-Generation Cheminformatics Approaches (Under the Direction of Dr. Denis Fourches). Cheminformatics is the field that solves chemical problems using computers. In the context of drug discovery, one important goal of cheminformatics is to explore and design potential therapeutic drugs by screening very large chemical libraries in a cost-and-time effective manner. Macrolides are glycosylated macrocyclic lactones with twelve to sixteen atoms in the core cyclic frame. They possess unusual druglike properties, often violating Lipinski’s and Veber’s rules of drug likeness and bioavailability. Gaining insight into this unique structural class can potentially transform our understanding and development of novel antibiotic drugs, which has become critical due to increasing antimicrobial resistance. However, macrolides remain under- exploited due to the difficulty in their organic synthesis, and the lack of publicly available screening-ready virtual libraries of macrolides to perform molecular modeling. To overcome these challenges, it is crucial to develop virtual library generating software to diversify and expand the chemical space of macrolides. Subsequently, these libraries can be used for in silico studies to screen, model and prioritize macrolides to be biosynthesized. Herein, our goal is to implement cheminformatics approaches to construct well-designed and diversity-controlled virtual libraries of screening-ready macrolides. In Chapter 2, we developed a novel cheminformatics approach and software called PKS Enumerator software in order to design virtual macrolide/macrocyclic libraries by permuting and adding the building blocks one by one with multiple user-defined constraints. As a case study, we generated our first sample library of V1M (Virtual 1 million Macrolide scaffolds) using PKS Enumerator and conducted a cheminformatics analysis to determine the chemical diversity of all macrolide scaffolds generated.
    [Show full text]
  • Current Topics in Organic Chemistry
    Current Topics in Organic Chemistry Uwe Rinner [email protected] Vorlesungsunterlagen: rinner-group.univie.ac.at Vorlesungstermine: Dienstag, 11.03 10:15 – 12:45 MT 127 Mittwoch, 12.03 10:15 – 12:45 T 406 Dienstag, 18.03 10:15 – 12:45 T 406/1 Mittwoch, 19.03 10:15 – 12:45 T 642 Dienstag, 01.04 10:15 – 12:45 Mittwoch, 02.04 10:15 – 12:45 Empfohlene Literatur: Medicinal Natural Products: A Biosynthetic Approach. Paul M. Dewick John Wiley & Sons Ltd. ISBN: 978-0-470-74167-2 Naturstoffe der chemischen Industrie Bernd Schäfer Elsevier, Spektrum Akademischer Verlag ISBN: 978-3-8274-1614-8 Alkaloids: Nature‘s Curse or Blessing? Manfred Hesse Wiley-VCH ISBN: 3-906390-24-1 The Organic Chemistry of Biological Pathways John McMurry, Tadhg Begley Roberts and Company Publishers ISBN: 0-9747077-1-6 The Acetate Pathway Fatty Acids Prostaglandins Polyketides Polyketide Synthase Erythromycin Epothilone Statins Poison Ivy / Poison Oak Aflatoxin Tetracyclines Fatty Acid Biosynthesis Pyruvate is converted to acetyl-CoA and introduced in the Krebs cycle (citric acid cycle). Vitamine B1 (thiamine) plays a crucial role in the pyruvate decarboxylation Only synthesized by bacteria, fungi and plants; animals must obtain thiamine in their diet Rsponsible for: glucose breakdown and carbohydrate Vitamine B1 metabolism; production of neurotransmitters (Thiamine) Lack of thiamine: Korsakoff syndrome (neurological disorder with memory loss and apathy), optic neuropathy, beriberi (occurs only in individuals with serious malnutrition; apathy, memory loss, impairment of sensory, motor and reflex functions) Mechanistic explanation of thiamine-catalyzed decarboxylation of pyruvate – part 1 Mechanistic explanation of thiamine-catalyzed decarboxylation of pyruvate – part 2 Several important reactions employ persistent carbenes and follow similar mechanistic pathways.
    [Show full text]
  • Download This Article PDF Format
    Volume 50 Number 14 21 July 2021 Pages 7883–8346 Chem Soc Rev Chemical Society Reviews rsc.li/chem-soc-rev ISSN 0306-0012 REVIEW ARTICLE Uwe T. Bornscheuer et al . Recent trends in biocatalysis Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Recent trends in biocatalysis Cite this: Chem. Soc. Rev., 2021, Dong Yi, † Thomas Bayer, † Christoffel P. S. Badenhorst, † Shuke Wu, † 50, 8003 Mark Doerr, † Matthias Ho¨hne † and Uwe T. Bornscheuer * Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the Received 19th December 2020 discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually comple- DOI: 10.1039/d0cs01575j ments the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent rsc.li/chem-soc-rev manufacturing and enzymatic total synthesis. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction a completely new research field: biocatalysis.1 Over the next hundred years, this research field had developed rapidly and More than a century ago, Rosenthaler synthesised (R)-mandelo- experienced three distinct waves,2 advancing from the use of nitrile from benzaldehyde and hydrogen cyanide using a plant crude extract to purified enzymes and then to recombinant extract containing a hydroxynitrile lyase and opened the door to enzyme systems.
    [Show full text]
  • Bioinformatics and Biological Databases
    Bioinformatics and Biological Databases 1) Sigma-54 Promoter Database – A database of sigma-54 promoters covering a wide range of bacterial genomes 2) ClusterMine360 – A database of PKS/NRPS biosynthesis by Kyle Conway A thesis presented to the University of Ottawa in fulfillment of the thesis requirement for the degree of Masters in Chemistry © Kyle Conway, Ottawa, Canada, 2013 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-86124-0 Our file Notre référence ISBN: 978-0-494-86124-0 NOTICE: AVIS: The author has granted a non- L'auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distrbute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Engineering Actinomycetes for Biosynthesis of Macrolactone Polyketides Dipesh Dhakal1, Jae Kyung Sohng1,2* and Ramesh Prasad Pandey1,2*
    Dhakal et al. Microb Cell Fact (2019) 18:137 https://doi.org/10.1186/s12934-019-1184-z Microbial Cell Factories REVIEW Open Access Engineering actinomycetes for biosynthesis of macrolactone polyketides Dipesh Dhakal1, Jae Kyung Sohng1,2* and Ramesh Prasad Pandey1,2* Abstract Actinobacteria are characterized as the most prominent producer of natural products (NPs) with pharmaceutical importance. The production of NPs from these actinobacteria is associated with particular biosynthetic gene clusters (BGCs) in these microorganisms. The majority of these BGCs include polyketide synthase (PKS) or non-ribosomal pep- tide synthase (NRPS) or a combination of both PKS and NRPS. Macrolides compounds contain a core macro-lactone ring (aglycone) decorated with diverse functional groups in their chemical structures. The aglycon is generated by megaenzyme polyketide synthases (PKSs) from diverse acyl-CoA as precursor substrates. Further, post-PKS enzymes are responsible for allocating the structural diversity and functional characteristics for their biological activities. Mac- rolides are biologically important for their uses in therapeutics as antibiotics, anti-tumor agents, immunosuppressants, anti-parasites and many more. Thus, precise genetic/metabolic engineering of actinobacteria along with the applica- tion of various chemical/biological approaches have made it plausible for production of macrolides in industrial scale or generation of their novel derivatives with more efective biological properties. In this review, we have discussed versatile
    [Show full text]
  • Copyright by Svetlana Alekseyevna Borisova 2004
    Copyright by Svetlana Alekseyevna Borisova 2004 The Dissertation Committee for Svetlana Alekseyevna Borisova certifies that this is the approved version of the following dissertation: Genetic and Biochemical Studies of the Biosynthesis and Attachment of D-Desosamine, the Deoxy Sugar Component of Macrolide Antibiotics Produced by Streptomyces venezuelae Committee: Hung-wen Liu, Supervisor David W. Hoffman Brent L. Iverson Stephen F. Martin Christian P. Whitman Genetic and Biochemical Studies of the Biosynthesis and Attachment of D-Desosamine, the Deoxy Sugar Component of Macrolide Antibiotics Produced by Streptomyces venezuelae by Svetlana Alekseyevna Borisova, B.S.; M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2004 Dedication To Yuri Acknowledgements I have been very lucky to be working in the Liu lab for all these years. When I was choosing the lab to work in back in Minnesota, a friend of mine advised me to join Ben’s (Hung-wen Liu’s) lab. He said that I may never be the best student in this lab, but I will learn from the best. He was right. Working with Ben and his team was certainly the best way to get the maximum out of my time in the Graduate School. I would like to thank Ben for his supervision and support. Not only did I learn from him a great deal about biochemistry in general and enzymes in particular, but also he was very supportive during my academic endeavors.
    [Show full text]