Diptera: Tephritidae) on Ambrosia Spp

Total Page:16

File Type:pdf, Size:1020Kb

Diptera: Tephritidae) on Ambrosia Spp ARTHROPOD BIOLOGY Life History and Description of Immature Stages of Euaresta stigmatica (Diptera: Tephritidae) on Ambrosia spp. (Asteraceae) in Southern California DAVID H. HEADRICK, RICHARD D. GOEDEN, AND JEFFREY A. TEERINK Department of Entomology, University of California, Riverside, CA 92521 Ann. Entomol. Soc. Am. 88(1): 58-71 (1995) ABSTRACT Euaresta stigmatica Coquillett is bivoltine and nearly monophagous on four native ragweeds, Ambrosia spp. (Asteraceae), in the southwestern United States. In southern California, larvae of the spring (F)) generation develop singly in and feed on one or both ovules of young fruiting involucres of Ambrosia ilicifolia (Gray) Payne, with a small proportion infesting the staminate involucres. Adults emerge after «*1 mo, with their reproductive organs immature. The F2 generation develops in the involucres of fall-blooming Ambrosia acanthi- carpa Hooker. The egg is described and illustrated for the first time for any species of Eu- aresta. First, second, and third instars and the puparium are described and illustrated for the first time for E. stigmatica. The posterior spiracular plates of all three instars bear only three interspiracular processes, whereas the larvae and puparia of all other nonfrugivorous tephritids described to date bear four such processes. Adult behaviors described from field and laboratory studies include courtship, copulation, and territoriality. Male courtship displays include three behaviors previously undescribed for Tephritidae: a side-to-side dance, rapid side stepping, and a middle leg abduction. Hymenopterous parasitoids of E. stigmatica include two solitary, primary larval-pupal, endoparasitoids, Eurytoma sp. (Eurytomidae) and Pteromalus sp. (Ptero- malidae). Potential use of E. stigmatica as a biological control agent for ragweeds in Eurasia is discussed. KEY WORDS Euaresta, biology, behavior THE CURRENT STUDY OF Euaresta stigmatica Co- new knowledge of the biology, immature stages, quillett was an outgrowth of faunistic studies of the and reproductive behavior of E. stigmatica derived insect associates of ragweeds (Ambrosia spp.) and from field and laboratory studies on fall- and other Ambrosiinae (Asteraceae) in southern Cali- spring-blooming, native ragweeds in southern Cal- fornia conducted by Goeden & Ricker (1974a, b; ifornia. 1975; 1976a-c; 1986), Hilgendorf & Goeden (1983), and Goeden & Teerink (1993). The genus Materials and Methods Euaresta is native and widespread in North and Preliminary field studies and collections of E. South America (Norrbom 1993). Six of the eight stigmatica were made in 1969-1973 on Ambrosia Nearctic species occur in California (Foote et al. ilicifolia (Gray) Payne and Ambrosia acanthicarpa 1993), where E. stigmatica is common and wide- Hooker at many locations throughout southern spread. California (Goeden & Ricker 1974a, 1976b). More Little is known of the biologies of most Euaresta intensive field studies were conducted in 1991 and spp. Marlatt (1891) briefly described the biology of 1992 at the Edmund C. Jaeger Nature Preserve, Euaresta aequalis (Loew) and Phillips (1946) de- Desert Center, Riverside County, on A. ilicifolia, scribed its larvae and their feeding behavior. Both its spring-blooming host, and on or near the cam- E. aequalis and Euaresta bullans (Wiedemann) pus of the University of California, Riverside, on have been introduced into Australia for biological A. acanthicarpa, its fall-blooming host. Bulk sam- control of Xanthium spp. (Julien 1992). Foote ples of infested ragweed inflorescences were col- (1984) summarized the host-plant associations for lected at these sites and brought to the laboratory North American species of Euaresta that specialize in ice chests in an air-conditioned van and stored on Ambrosia and Xanthium spp. Batra (1979) stud- under refrigeration for subsequent dissection, ied the biology and behavior of E. bella (Loew) and measurement, photography, and description of all Euaresta festiva (Loew) in assessing them as po- life stages. tential agents for the biological control of ragweeds Immature stages were described using scanning accidentally introduced to Eurasia from North electron microscopy of two ova dissected from America (Goeden & Teerink 1993). We provide gravid, field-collected females, as well as four, sev- 0013-8746/95/0058-0071$02.00/0 © 1995 Entomological Society of America January 1995 HEADRICK ET AL.: LIFE HISTORY OF E. stigmatica 59 adults" (Goeden & Ricker 1976a; R.D.G., unpub- lished data). Euaresta names used in this article follow Foote et al. (1993) and Norrbom (1993); nomenclature on larval taxonomy follows Headrick & Goeden (1991); nomenclature for wing displays by adults follows Headrick & Goeden (1991), Green et al. (1993), and Goeden et al. (1994b); ragweed inflo- rescence morphology follows Payne (1963); and plant names follow Munz (1968, 1974). Voucher specimens of reared adults of E. stigmatica and its parasitoids reside in the research collections of R.D.G.; preserved specimens of E. stigmatica lar- vae and puparia are stored in separate collections maintained by J.A.T. and D.H.H. Means ± SEM Fig. 1. A. ilicifolia study plant at the E. Jaeger Pre- are provided throughout diis article. serve. Results and Discussion en, and nine each first, second, and third instars Taxonomy. Euaresta has 14 recognized species and four puparia dissected from fruiting involu- (Norrbom 1993), 6 of which occur in California cres. All specimens for microscopy were fixed in (Foote et al. 1993). The species occurring in Amer- 70% EtOH, dehydrated to absolute EtOH, soni- ica north of Mexico have recently been treated by cated for =1 min in Hexanes (Fisher, Fair Lawn, Foote et al. (1993), and those occurring in Central NJ) to remove accumulated debris, rehydrated to and South America by Norrbom (1993); both treat- distilled water, post fixed in 2% aqueous osmium ments included keys to adult stages. Descriptions tetroxide for 24 h, then dehydrated to absolute of the immature stages of E. stigmatica are provid- EtOH, critical-point dried, mounted on stubs, ed below for the first time. sputter coated with a gold-palladium alloy and ex- Egg. Twenty-five ova, dissected from field-col- amined on a JEOL JSM C35 scanning electron mi- lected females, were white, superficially smooth, croscope in the Department of Nematology, Uni- elongate-ellipsoidal, 0.17 ± 0.004 mm wide versity of California, Riverside. Micrographs were (range, 0.14-0.20) and 0.67 ± 0.01 long (range, prepared on Polaroid P/N 55 film at 15 kV accel- 0.54—0.76), with a rounded, anterior pedicel 0.02 erating voltage. mm long (Fig. 2 A and B), and a sharply tapered Adults were reared from puparia dissected from posterior end measuring 0.09 ± 0.003 mm long fruiting involucres held in individual, glass-shell vi- (range, 0.06-0.12). Examination with light micros- als in humidity chambers at 22-24°C and 76% RH. copy showed the posterior end to be free of em- Newly emerged adults were isolated in clear plastic bryonic tissues. Sixteen eggs dissected from plant cages (850 ml) fitted with screened lids for venti- tissue averaged 0.17 ± 0.007 mm in width (range, lation, basal water reservoirs, and provisioned with 0.14-0.30) and 0.64 ± 0.008 mm in length (range, honey and protein hydrolyzate (Headrick & Goe- 0.58-0.71). den 1993). Five mating trials lasting 2 wk each This is the first description of the egg of any were conducted with virgin adults held in dispos- species of Euaresta. The general size and shape of able, plastic petri dish arenas (10-cm diameter) E. stigmatica eggs are similar to those of Paroxyna (Headrick & Goeden 1993). Mating trials were genalis (Thomson) (Goeden et al. 1994b). How- conducted in the laboratory under artificial lighting ever, the eggs of E. stigmatica are more parallel between 0900 and 1800 hours PST. sided than described for other nonfrugivorous Field observations of reproductive behaviors tephritid species (cf. Goeden & Headrick 1991a, were made for at least 4 h each day on 25 February b; Headrick & Goeden 1993; Goeden et al. 1994b). and 4, 11, 18, and 24 March 1992, at the Jaeger The elongate posterior end of E. stigmatica. eggs Reserve, where A. ilicifolia plants were located in also differs from other nonfrugivorous tephritid a deep, N/S-oriented, dry, sandy wash at an ele- eggs described thus far, and its function remains vation of 850 m. A single plant (^l by 2 m wide unknown. and 1 m tall) located between large granite boul- Third Instar. Third instar superficially smooth, ders was the primary study location (Fig. 1). This barrel-shaped, slightly tapered anteriorly, rounded plant's stems (0.3-0.6 m long) had shorter branch- posteriorly (Fig. 3A); integument white with the es, spiny holly-like leaves, and apical spikes of sta- caudal segment black; thoracic segments with mi- m in ate involucres above the separate, pistillate, nute acanthae dorsally, abdominal intersegmental fruiting involucres. This study area and this same area circumscribed by minute acanthae; gnatho- plant had been noted by R.D.G. 20 yr earlier dur- cephalon conical, laterally flattened, smooth with ing a study of the insect fauna of this native rag- few rugose pads dorsally, broad serrated rugose weed to host "an abundance of E. stigmatica pads laterally along mouth lumen (Fig. 3B, 1 and 60 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 88, no. 1 =0.025 mm long (Fig. 3H, 1), and three interspi- racular processes with two to four branches each, the longest measuring 0.015 mm (Fig. 3H, 2); ste- lex sensilla (Fig. 3G, 2) surrounding margin of cau- dal segment in four-dorsal, six-ventral arrange- ment; caudal segment additionally bearing a pair of verruciform sensilla ventrad of the spiracular plates (Fig. 3G, 3). Euaresta stigmatica belongs to the tribe Tephri- tini, which also includes Dioxyna, Neotephritis, Paroxyna, Tephritis, Trupanea, and many other genera (Foote et al. 1993). The general larval body shape is closer to that of Trupanea and Paroxyna than to Dioxyna, Neotephritis, and Tephritis spe- cies previously examined (Novak & Foote 1968; Goeden & Headrick 1991b; Headrick & Goeden 1991; Goeden et al.
Recommended publications
  • Xanthium Strumarium, on Species Diversity and Composition of Invaded Plant Communities in Borena Zone, Ethiopia
    Biodiversity International Journal Research Article Open Access Impact of invasive alien plant, Xanthium strumarium, on species diversity and composition of invaded plant communities in Borena zone, Ethiopia Abstract Volume 1 Issue 1 - 2017 Biological invasion is considered as the second greatest global threat to biodiversity. Amare Seifu, Nigussie Seboka, Manaye An IAPS, Xanthium strumarium, is widely spread in the agricultural land, roadside, near stagnant water and disturbed land of Borena Zone, Oromia Region. However, its Misganaw, Tesfaye Bekele, Edget Merawi, impact on diversity and floristic composition of the invaded plant communities has not Ashenafi Ayenew, Girum Faris been determined. Therefore, the objective of this study was to determine the impact Genetic Resources Access and Benefit Sharing Directorate, of Xanthium strumarium, on the species diversity and composition of invaded plant Ethiopian Biodiversity Institute, Ethiopia communities in Borena Zone. Accordingly, to examine its effects of invasions on the Correspondence: Amare Seifu, Genetic Resources Access species diversity and composition of invaded communities, ninety six 1m2 quadrats and Benefit Sharing Directorate, Ethiopian Biodiversity Institute, were sampled (48 quadrats for invaded and 48 for non-invaded or control).There were Addis Ababa, Ethiopia, Tel +251916595709, 70 species found in the non-invaded areas as compared to 31 in the invaded areas. Email [email protected] The number of species decreased by 55.71% in Xanthium strumarium invaded area as compared to control. The mean evenness value of the entire invaded sampled study Received: May 26, 2017 | Published: June 30, 2017 sites was 0.27 indicated that 27% of the plant communities had uniform distribution while the mean evenness value of the controls samples was 0.74 indicated that 74% of the plant communities had uniform distribution.
    [Show full text]
  • Pima County Plant List (2020) Common Name Exotic? Source
    Pima County Plant List (2020) Common Name Exotic? Source McLaughlin, S. (1992); Van Abies concolor var. concolor White fir Devender, T. R. (2005) McLaughlin, S. (1992); Van Abies lasiocarpa var. arizonica Corkbark fir Devender, T. R. (2005) Abronia villosa Hariy sand verbena McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon abutiloides Shrubby Indian mallow Devender, T. R. (2005) Abutilon berlandieri Berlandier Indian mallow McLaughlin, S. (1992) Abutilon incanum Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon malacum Yellow Indian mallow Devender, T. R. (2005) Abutilon mollicomum Sonoran Indian mallow McLaughlin, S. (1992) Abutilon palmeri Palmer Indian mallow McLaughlin, S. (1992) Abutilon parishii Pima Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon parvulum Dwarf Indian mallow Herbarium; ASU Vascular Plant Herbarium Abutilon pringlei McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon reventum Yellow flower Indian mallow Herbarium; ASU Vascular Plant Herbarium McLaughlin, S. (1992); Van Acacia angustissima Whiteball acacia Devender, T. R. (2005); DBGH McLaughlin, S. (1992); Van Acacia constricta Whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); Van Acacia greggii Catclaw acacia Devender, T. R. (2005) Acacia millefolia Santa Rita acacia McLaughlin, S. (1992) McLaughlin, S. (1992); Van Acacia neovernicosa Chihuahuan whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); UA Acalypha lindheimeri Shrubby copperleaf Herbarium Acalypha neomexicana New Mexico copperleaf McLaughlin, S. (1992); DBGH Acalypha ostryaefolia McLaughlin, S. (1992) Acalypha pringlei McLaughlin, S. (1992) Acamptopappus McLaughlin, S. (1992); UA Rayless goldenhead sphaerocephalus Herbarium Acer glabrum Douglas maple McLaughlin, S. (1992); DBGH Acer grandidentatum Sugar maple McLaughlin, S. (1992); DBGH Acer negundo Ashleaf maple McLaughlin, S.
    [Show full text]
  • Appendix F3 Rare Plant Survey Report
    Appendix F3 Rare Plant Survey Report Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District 626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 213.599.4300 www.esassoc.com Oakland Olympia Petaluma Portland Sacramento San Diego San Francisco Seattle Tampa Woodland Hills D210324 TABLE OF CONTENTS Cadiz Valley Water Conservation, Recovery, and Storage Project: Rare Plant Survey Report Page Summary ............................................................................................................................... 1 Introduction ..........................................................................................................................2 Objective .......................................................................................................................... 2 Project Location and Description .....................................................................................2 Setting ................................................................................................................................... 5 Climate ............................................................................................................................. 5 Topography and Soils ......................................................................................................5
    [Show full text]
  • Restoring Western Ranges and Wildlands
    United States Department of Agriculture Restoring Western Forest Service Rocky Mountain Research Station General Technical Ranges and Wildlands Report RMRS-GTR-136-vol. 3 September 2004 Volume 3 Chapters 24–29, Appendices, Index Abstract ______________________________________ Monsen, Stephen B.; Stevens, Richard; Shaw, Nancy L., comps. 2004. Restoring western ranges and wildlands. Gen. Tech. Rep. RMRS-GTR-136-vol-3. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Pages 699– 884 plus appendices and index. This work, in three volumes, provides background on philosophy, processes, plant materials selection, site preparation, and seed and seeding equipment for revegetating disturbed rangelands, emphasizing use of native species. The 29 chapters include guidelines for planning, conducting, and managing, and contain a compilation of rangeland revegetation research conducted over the last several decades to aid practitioners in reestablishing healthy communities and curbing the spread of invasive species. Volume 3 contains chapters 24-29 plus appendices and index. Keywords: rehabilitation, revegetation, plant ecology, seed, plant communities, wildlife habitat, invasive species, equipment, plant materials, native plants A B A—Hand-harvesting grass seed. B—Certification tag. C—Native plant propagation in greenhouse. D—Brush machine. E—Flail-vac harvesting needle-and thread grass. Restoring Western Ranges and Wildlands Compilers Stephen B. Monsen Volume 3 Richard Stevens Nancy L. Shaw Chapters 24–29, Appendices, Index D C E i The Compilers _____________________________________ Stephen B. Monsen (retired), Botanist, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, Utah Richard Stevens, Project Leader (retired), Utah Division of Wildlife Resources, Great Basin Research Center, Ephraim, Utah Nancy L.
    [Show full text]
  • Spiny Cocklebur Row Crop (Xanthium Spinosum L.) Gary N
    Spiny cocklebur Row Crop (Xanthium spinosum L.) Gary N. Ervin, Ph.D., Department of Biological Sciences, Mississippi State University John D. Madsen, Ph.D., Geosystems Research Institute, Mississippi State University Ryan M. Wersal, Geosystems Research Institute, Mississippi State University Fig. 1. Spiny cocklebur spreads by seeds Fig. 2. Spiny cocklebur has male and female flowers Fig. 3. Spiny cocklebur plants grow to clinging to animal fur or human clothing. on the same plant. five feet tall. Introduction Problems Created Spiny cocklebur is an annual plant found in highly disturbed habitats and farm areas. The burs (fruits) of this species become tangled in the fur of livestock, increasing costs to the consumers of wool products. It competes with crops and is a nuisance when growing with hand-harvested crops. The seeds and seedlings of spiny cocklebur are poisonous if consumed, and they are particularly toxic to swine and horses. Regulations Spiny cocklebur is listed as a “B” designated quarantine weed in Oregon and a class “C” noxious weed in Washington. In Arkan- sas, the genus Xanthium is listed as noxious weeds, likely more for spiny cocklebur’s congener Xanthium strumarium (rough cocklebur), which has a much wider distribution in the state. Description Vegetative Growth Spiny cocklebur is an annual plant that blooms in summer. It grows to 5’ tall with striate stems that are yellowish or brownish gray. The leaves may be entire or toothed or lobed. The lower surface of the leaves is covered with white hairs, and the upper leaf surface is white-veined. Leaves are 1’’to 3’’ long and have a 3-forked spine at the leaf base, giving this species the common name “spiny” cocklebur.
    [Show full text]
  • Chromosome Numbers in Compositae, XII: Heliantheae
    SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII.
    [Show full text]
  • California Fish and Game “Conservation of Wildlife Through Education”
    Summer 2015 159 CALIFORNIA FISH AND GAME “Conservation of Wildlife Through Education” Volume 101 Summer 2015 Number 3 Published Quarterly by the California Department of Fish and Wildlife 160 CALIFORNIA FISH AND GAME Vol. 101, No. 3 STATE OF CALIFORNIA Jerry Brown, Governor CALIFORNIA NATURAL RESOURCES AGENCY John Laird, Secretary for Natural Resources FISH AND GAME COMMISSION Jack Baylis, President Jim Kellogg, Vice President Jacque Hostler-Carmesin, Member Anthony C. Williams, Member Eric Sklar, Member Sonke Mastrup, Executive Director DEPARTMENT OF FISH AND WILDLIFE Charlton “Chuck” Bonham, Director CALIFORNIA FISH AND GAME EDITORIAL STAFF Vern Bleich ........................................................................................Editor-in-Chief Carol Singleton ........................ Office of Communication, Education and Outreach Jeff Villepique, Steve Parmenter ........................................... Inland Deserts Region Scott Osborn, Laura Patterson, Joel Trumbo ................................... Wildlife Branch Dave Lentz, Kevin Shaffer ............................................................. Fisheries Branch Peter Kalvass, Nina Kogut .................................................................Marine Region James Harrington .......................................Office of Spill Prevention and Response Cherilyn Burton ...................................................................... Native Plant Program Summer 2015 161 VOLUME 101 SUMMER 2015 NUMBER 3 Published Quarterly by STATE OF CALIFORNIA CALIFORNIA
    [Show full text]
  • Host Plant Records for North American Ragweed Flies (Diptera: Tephritidae) 1
    Vol. 95, No. 2. March & April 1984 51 HOST PLANT RECORDS FOR NORTH AMERICAN RAGWEED FLIES (DIPTERA: TEPHRITIDAE) 1 B.A. Foote2 ABSTRACT: Information is given on host plants and infestation rates for 7 of the 8 North American species of Euaresta. The host plants are either ragweeds of the genus Ambrosia or cockleburs of the genus Xanthium, 2 genera of the tribe Ambrosieae (Compositae). The genus Euaresta is a relatively small taxon within the family Tephritidae of the acalyptrate Diptera. It includes 8 species from America north of Mexico (Quisenberry, 1950; Foote, 1965), as well as several from south of the United States; however, virtually no host data are available for these latter species and some doubt exists as to whether they actually belong to the genus (R.H. Foote, in litt.). Relatively little is known of the life histories or larval feeding habits of the Nearctic species except that they seem to be associated either with cockleburs of the genus Xanthium or ragweeds of the genus Ambrosia (Compositae: Ambrosieae). Marlatt 1 1 the ( 89 ) discussed natural history of E. aequalis(Loew), a seed predator of cocklebur (X. strumarium L.). Foote (1965) reported that larvae of E. bella(Loew) and E. festiva (Loew) attacked the seeds of common ragweed (A. artemisiifolia L.) and giant ragweed (A. trifida L.), respectively. He also listed host plants for selected species of Euaresta and discussed briefly the life cycles of E. bella and E. festiva. Batra (1979) described in considerable detail the courtship behavior and oviposition habits of these two species. Goeden and Ricker (1974a, 1974b, 1976) recorded host for plants E.
    [Show full text]
  • Knowledge Gaps, Training Needs and Bio-Ecological Studies on Fruit-Infesting Flies (Diptera: Tephritidae) in Northern Ghana
    University of Ghana http://ugspace.ug.edu.gh KNOWLEDGE GAPS, TRAINING NEEDS AND BIO-ECOLOGICAL STUDIES ON FRUIT-INFESTING FLIES (DIPTERA: TEPHRITIDAE) IN NORTHERN GHANA BY BADII KONGYELI BENJAMIN MASTER OF PHILOSOPHY IN ENTOMOLOGY UNIVERSITY OF GHANA, LEGON, GHANA THIS THESIS IS SUBMITTED TO THE UNIVERSITY OF GHANA, LEGON IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF DOCTOR OF PHILOSOPHY CROP SCIENCE (ENTOMOLOGY) DEGREE JULY, 2014 University of Ghana http://ugspace.ug.edu.gh DECLARATION I hereby declare that this thesis is the result of my own original research, and that it has neither in whole nor in part been presented for a degree elsewhere. Works of others which served as sources of information have been duly acknowledged by reference to the authors. Candidate ………………………… Badii Kongyeli Benjamin Principal Supervisor …………………. Co-supervisor ………………….. Prof. Daniel Obeng-Ofori Prof. Kwame Afreh-Nuamah Co-supervisor …………………… Dr. Maxwell Kevin Billah University of Ghana http://ugspace.ug.edu.gh ACKNOWLEDGEMENTS This thesis could not have been accomplished without the guidance of my dear supervisors and academic mentors. My supervisors (Prof. Daniel Obeng-Ofori, Prof. Kwame Afreh-Nuamah and Dr. Maxwell K. Billah) offered me the needed encouragement, support and guidance throughout the study. Also, Prof. Gebriel A. Teye (Pro-Vice Chancellor), Prof. George Nyarko (Dean, Faculty of Agriculture), Dr. Elias N. K. Sowley (Director, Academic Quality Assurance Directorate) and Dr. Isaac K. Addai (Head, Department of Agronomy) all of the University for Development Studies (UDS) approved of my leave of study, supported and encouraged me throughout my study. The Head of Department (Mrs. Dr C.
    [Show full text]
  • Edible Seeds and Grains of California Tribes
    National Plant Data Team August 2012 Edible Seeds and Grains of California Tribes and the Klamath Tribe of Oregon in the Phoebe Apperson Hearst Museum of Anthropology Collections, University of California, Berkeley August 2012 Cover photos: Left: Maidu woman harvesting tarweed seeds. Courtesy, The Field Museum, CSA1835 Right: Thick patch of elegant madia (Madia elegans) in a blue oak woodland in the Sierra foothills The U.S. Department of Agriculture (USDA) prohibits discrimination in all its pro- grams and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sex- ual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW., Washington, DC 20250–9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Acknowledgments This report was authored by M. Kat Anderson, ethnoecologist, U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS) and Jim Effenberger, Don Joley, and Deborah J. Lionakis Meyer, senior seed bota- nists, California Department of Food and Agriculture Plant Pest Diagnostics Center. Special thanks to the Phoebe Apperson Hearst Museum staff, especially Joan Knudsen, Natasha Johnson, Ira Jacknis, and Thusa Chu for approving the project, helping to locate catalogue cards, and lending us seed samples from their collections.
    [Show full text]
  • Flies) Benjamin Kongyeli Badii
    Chapter Phylogeny and Functional Morphology of Diptera (Flies) Benjamin Kongyeli Badii Abstract The order Diptera includes all true flies. Members of this order are the most ecologically diverse and probably have a greater economic impact on humans than any other group of insects. The application of explicit methods of phylogenetic and morphological analysis has revealed weaknesses in the traditional classification of dipteran insects, but little progress has been made to achieve a robust, stable clas- sification that reflects evolutionary relationships and morphological adaptations for a more precise understanding of their developmental biology and behavioral ecol- ogy. The current status of Diptera phylogenetics is reviewed in this chapter. Also, key aspects of the morphology of the different life stages of the flies, particularly characters useful for taxonomic purposes and for an understanding of the group’s biology have been described with an emphasis on newer contributions and progress in understanding this important group of insects. Keywords: Tephritoidea, Diptera flies, Nematocera, Brachycera metamorphosis, larva 1. Introduction Phylogeny refers to the evolutionary history of a taxonomic group of organisms. Phylogeny is essential in understanding the biodiversity, genetics, evolution, and ecology among groups of organisms [1, 2]. Functional morphology involves the study of the relationships between the structure of an organism and the function of the various parts of an organism. The old adage “form follows function” is a guiding principle of functional morphology. It helps in understanding the ways in which body structures can be used to produce a wide variety of different behaviors, including moving, feeding, fighting, and reproducing. It thus, integrates concepts from physiology, evolution, anatomy and development, and synthesizes the diverse ways that biological and physical factors interact in the lives of organisms [3].
    [Show full text]
  • SAN DIEGO COUNTY NATIVE PLANTS in the 1830S
    SAN DIEGO COUNTY NATIVE PLANTS IN THE 1830s The Collections of Thomas Coulter, Thomas Nuttall, and H.M.S. Sulphur with George Barclay and Richard Hinds James Lightner San Diego Flora San Diego, California 2013 SAN DIEGO COUNTY NATIVE PLANTS IN THE 1830s Preface The Collections of Thomas Coulter, Thomas Nuttall, and Our knowledge of the natural environment of the San Diego region H.M.S. Sulphur with George Barclay and Richard Hinds in the first half of the 19th century is understandably vague. Referenc- es in historical sources are limited and anecdotal. As prosperity peaked Copyright © 2013 James Lightner around 1830, probably no more than 200 inhabitants in the region could read and write. At most one or two were trained in natural sciences or All rights reserved medicine. The best insights we have into the landscape come from nar- No part of this document may be reproduced or transmitted in any form ratives of travelers and the periodic reports of the missions’ lands. They without permission in writing from the publisher. provide some idea of the extent of agriculture and the general vegeta- tion covering surrounding land. ISBN: 978-0-9749981-4-5 The stories of the visits of United Kingdom naturalists who came in Library of Congress Control Number: 2013907489 the 1830s illuminate the subject. They were educated men who came to the territory intentionally to examine the flora. They took notes and col- Cover photograph: lected specimens as botanists do today. Reviewing their contributions Matilija Poppy (Romneya trichocalyx), Barrett Lake, San Diego County now, we can imagine what they saw as they discovered plants we know.
    [Show full text]