Hardware Assisted Arithmetic Overflow Detection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Automatic Extraction of X86 Formal Semantics from Its Natural Language Description
Automatic extraction of x86 formal semantics from its natural language description NGUYEN, Lam Hoang Yen Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology March, 2018 Master's Thesis Automatic extraction of x86 formal semantics from its natural language description 1610062 NGUYEN, Lam Hoang Yen Supervisor : Professor Mizuhito Ogawa Main Examiner : Professor Mizuhito Ogawa Examiners : Associate Professor Nguyen Minh Le Professor Kazuhiro Ogata Associate Professor Nao Hirokawa Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology [Information Science] February, 2018 Abstract Nowadays, computers have become an essential device of almost every activity for every- body at any age. From personal demands to industrial and business sectors, they are used to improve human life as well as the efficiency and the productivity. The more important they are, the more attractive target they become for being attacked and serving malicious purposes. There are various threats to a computer system. One of the most common manners that penetrates or damages a system with bad impacts to most of the computer users is malware. Malware detection and malware classification are two of the most at- tractive problems in not only industry area but also academic research. The bits-based fingerprint also known as the signature-based pattern recognition is applied popularly in commercial anti-virus software due to its light-weight and fast features. However, it is easily cheated by advanced polymorphic techniques in malware. Therefore, malware analyses based on control flow graph (CFG) have been attracting a lot of attention, e.g., VxClass at Google. -
1 Assembly Language Programming Status Flags the Status Flags Reflect the Outcomes of Arithmetic and Logical Operations Performe
Assembly Language Programming Status Flags The status flags reflect the outcomes of arithmetic and logical operations performed by the CPU. • The carry flag (CF) is set when the result of an unsigned arithmetic operation is too large to fit into the destination. • The overflow flag (OF) is set when the result of a signed arithmetic operation is too large or too small to fit into the destination. • The sign flag (SF) is set when the result of an arithmetic or logical operation generates a negative result. • The zero flag (ZF) is set when the result of an arithmetic or logical operation generates a result of zero. Assembly Programs We are going to run assembly programs from (http://www.kipirvine.com/asm/) using Visual Studio. I have downloaded all of the example programs and placed them in CS430 Pub. Copy them onto your local machine and start up Visual Studio. The first program we are going to run is below. Copy this into the Project_Sample project in the examples folder. Run the program. Let’s talk about what this program does. TITLE Add and Subtract ; This program ; Last update: 06/01/2006 INCLUDE Irvine32.inc .code main PROC mov eax,10000h add eax,40000h sub eax,20000h call DumpRegs exit main ENDP END main 1 What’s the difference between the previous program and this one: TITLE Add and Subtract, Version 2 (AddSub2.asm) ; This program adds and subtracts 32-bit integers ; and stores the sum in a variable. ; Last update: 06/01/2006 INCLUDE Irvine32.inc .data val1 dword 10000h val2 dword 40000h val3 dword 20000h finalVal dword ? .code main PROC mov eax,val1 ; start with 10000h add eax,val2 ; add 40000h sub eax,val3 ; subtract 20000h mov finalVal,eax ; store the result (30000h) call DumpRegs ; display the registers exit main ENDP END main Data Transfer Instructions The MOV instruction copies from a source operand to a destination operand. -
Lecture Notes in Assembly Language
Lecture Notes in Assembly Language Short introduction to low-level programming Piotr Fulmański Łódź, 12 czerwca 2015 Spis treści Spis treści iii 1 Before we begin1 1.1 Simple assembler.................................... 1 1.1.1 Excercise 1 ................................... 2 1.1.2 Excercise 2 ................................... 3 1.1.3 Excercise 3 ................................... 3 1.1.4 Excercise 4 ................................... 5 1.1.5 Excercise 5 ................................... 6 1.2 Improvements, part I: addressing........................... 8 1.2.1 Excercise 6 ................................... 11 1.3 Improvements, part II: indirect addressing...................... 11 1.4 Improvements, part III: labels............................. 18 1.4.1 Excercise 7: find substring in a string .................... 19 1.4.2 Excercise 8: improved polynomial....................... 21 1.5 Improvements, part IV: flag register ......................... 23 1.6 Improvements, part V: the stack ........................... 24 1.6.1 Excercise 12................................... 26 1.7 Improvements, part VI – function stack frame.................... 29 1.8 Finall excercises..................................... 34 1.8.1 Excercise 13................................... 34 1.8.2 Excercise 14................................... 34 1.8.3 Excercise 15................................... 34 1.8.4 Excercise 16................................... 34 iii iv SPIS TREŚCI 1.8.5 Excercise 17................................... 34 2 First program 37 2.1 Compiling, -
Understanding Integer Overflow in C/C++
Appeared in Proceedings of the 34th International Conference on Software Engineering (ICSE), Zurich, Switzerland, June 2012. Understanding Integer Overflow in C/C++ Will Dietz,∗ Peng Li,y John Regehr,y and Vikram Adve∗ ∗Department of Computer Science University of Illinois at Urbana-Champaign fwdietz2,[email protected] ySchool of Computing University of Utah fpeterlee,[email protected] Abstract—Integer overflow bugs in C and C++ programs Detecting integer overflows is relatively straightforward are difficult to track down and may lead to fatal errors or by using a modified compiler to insert runtime checks. exploitable vulnerabilities. Although a number of tools for However, reliable detection of overflow errors is surprisingly finding these bugs exist, the situation is complicated because not all overflows are bugs. Better tools need to be constructed— difficult because overflow behaviors are not always bugs. but a thorough understanding of the issues behind these errors The low-level nature of C and C++ means that bit- and does not yet exist. We developed IOC, a dynamic checking tool byte-level manipulation of objects is commonplace; the line for integer overflows, and used it to conduct the first detailed between mathematical and bit-level operations can often be empirical study of the prevalence and patterns of occurrence quite blurry. Wraparound behavior using unsigned integers of integer overflows in C and C++ code. Our results show that intentional uses of wraparound behaviors are more common is legal and well-defined, and there are code idioms that than is widely believed; for example, there are over 200 deliberately use it. -
ARM Instruction Set
4 ARM Instruction Set This chapter describes the ARM instruction set. 4.1 Instruction Set Summary 4-2 4.2 The Condition Field 4-5 4.3 Branch and Exchange (BX) 4-6 4.4 Branch and Branch with Link (B, BL) 4-8 4.5 Data Processing 4-10 4.6 PSR Transfer (MRS, MSR) 4-17 4.7 Multiply and Multiply-Accumulate (MUL, MLA) 4-22 4.8 Multiply Long and Multiply-Accumulate Long (MULL,MLAL) 4-24 4.9 Single Data Transfer (LDR, STR) 4-26 4.10 Halfword and Signed Data Transfer 4-32 4.11 Block Data Transfer (LDM, STM) 4-37 4.12 Single Data Swap (SWP) 4-43 4.13 Software Interrupt (SWI) 4-45 4.14 Coprocessor Data Operations (CDP) 4-47 4.15 Coprocessor Data Transfers (LDC, STC) 4-49 4.16 Coprocessor Register Transfers (MRC, MCR) 4-53 4.17 Undefined Instruction 4-55 4.18 Instruction Set Examples 4-56 ARM7TDMI-S Data Sheet 4-1 ARM DDI 0084D Final - Open Access ARM Instruction Set 4.1 Instruction Set Summary 4.1.1 Format summary The ARM instruction set formats are shown below. 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 9876543210 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 Cond 0 0 I Opcode S Rn Rd Operand 2 Data Processing / PSR Transfer Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Multiply Cond 0 0 0 0 1 U A S RdHi RdLo Rn 1 0 0 1 Rm Multiply Long Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm Single Data Swap Cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn Branch and Exchange Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm Halfword Data Transfer: register offset Cond 0 0 0 P U 1 W L Rn Rd Offset 1 S H 1 Offset Halfword Data Transfer: immediate offset Cond 0 -
Collecting Vulnerable Source Code from Open-Source Repositories for Dataset Generation
applied sciences Article Collecting Vulnerable Source Code from Open-Source Repositories for Dataset Generation Razvan Raducu * , Gonzalo Esteban , Francisco J. Rodríguez Lera and Camino Fernández Grupo de Robótica, Universidad de León. Avenida Jesuitas, s/n, 24007 León, Spain; [email protected] (G.E.); [email protected] (F.J.R.L.); [email protected] (C.F.) * Correspondence: [email protected] Received:29 December 2019; Accepted: 7 February 2020; Published: 13 February 2020 Abstract: Different Machine Learning techniques to detect software vulnerabilities have emerged in scientific and industrial scenarios. Different actors in these scenarios aim to develop algorithms for predicting security threats without requiring human intervention. However, these algorithms require data-driven engines based on the processing of huge amounts of data, known as datasets. This paper introduces the SonarCloud Vulnerable Code Prospector for C (SVCP4C). This tool aims to collect vulnerable source code from open source repositories linked to SonarCloud, an online tool that performs static analysis and tags the potentially vulnerable code. The tool provides a set of tagged files suitable for extracting features and creating training datasets for Machine Learning algorithms. This study presents a descriptive analysis of these files and overviews current status of C vulnerabilities, specifically buffer overflow, in the reviewed public repositories. Keywords: vulnerability; sonarcloud; bot; source code; repository; buffer overflow 1. Introduction In November 1988 the Internet suffered what is publicly known as “the first successful buffer overflow exploitation”. The exploit took advantage of the absence of buffer range-checking in one of the functions implemented in the fingerd daemon [1,2]. Even though it is considered to be the first exploited buffer overflow, different researchers had been working on buffer overflow for years. -
RICH: Automatically Protecting Against Integer-Based Vulnerabilities
RICH: Automatically Protecting Against Integer-Based Vulnerabilities David Brumley, Tzi-cker Chiueh, Robert Johnson [email protected], [email protected], [email protected] Huijia Lin, Dawn Song [email protected], [email protected] Abstract against integer-based attacks. Integer bugs appear because programmers do not antici- We present the design and implementation of RICH pate the semantics of C operations. The C99 standard [16] (Run-time Integer CHecking), a tool for efficiently detecting defines about a dozen rules governinghow integer types can integer-based attacks against C programs at run time. C be cast or promoted. The standard allows several common integer bugs, a popular avenue of attack and frequent pro- cases, such as many types of down-casting, to be compiler- gramming error [1–15], occur when a variable value goes implementation specific. In addition, the written rules are out of the range of the machine word used to materialize it, not accompanied by an unambiguous set of formal rules, e.g. when assigning a large 32-bit int to a 16-bit short. making it difficult for a programmer to verify that he un- We show that safe and unsafe integer operations in C can derstands C99 correctly. Integer bugs are not exclusive to be captured by well-known sub-typing theory. The RICH C. Similar languages such as C++, and even type-safe lan- compiler extension compiles C programs to object code that guages such as Java and OCaml, do not raise exceptions on monitors its own execution to detect integer-based attacks. -
Multiplication and Division Instructions
MultiplicationMultiplication andand DivisionDivision InstructionsInstructions • MUL Instruction • IMUL Instruction • DIV Instruction • Signed Integer Division • Implementing Arithmetic Expressions Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 1 MULMUL InstructionInstruction • The MUL (unsigned multiply) instruction multiplies an 8-, 16-, or 32-bit operand by either AL, AX, or EAX. • The instruction formats are: MUL r/m8 MUL r/m16 MUL r/m32 Implied operands: Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 2 MULMUL ExamplesExamples 100h * 2000h, using 16-bit operands: .data val1 WORD 2000h The Carry flag indicates whether or val2 WORD 100h not the upper half of .code the product contains mov ax,val1 significant digits. mul val2 ; DX:AX = 00200000h, CF=1 12345h * 1000h, using 32-bit operands: mov eax,12345h mov ebx,1000h mul ebx ; EDX:EAX = 0000000012345000h, CF=0 Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 3 YourYour turnturn .. .. .. What will be the hexadecimal values of DX, AX, and the Carry flag after the following instructions execute? mov ax,1234h mov bx,100h mul bx DX = 0012h, AX = 3400h, CF = 1 Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 4 YourYour turnturn .. .. .. What will be the hexadecimal values of EDX, EAX, and the Carry flag after the following instructions execute? mov eax,00128765h mov ecx,10000h mul ecx EDX = 00000012h, EAX = 87650000h, CF = 1 Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 5 IMULIMUL InstructionInstruction • IMUL (signed integer multiply ) multiplies an 8-, 16-, or 32-bit signed operand by either AL, AX, or EAX • Preserves the sign of the product by sign-extending it into the upper half of the destination register Example: multiply 48 * 4, using 8-bit operands: mov al,48 mov bl,4 imul bl ; AX = 00C0h, OF=1 OF=1 because AH is not a sign extension of AL. -
Overview of IA-32 Assembly Programming
Overview of IA-32 assembly programming Lars Ailo Bongo University of Tromsø Contents 1 Introduction ...................................................................................................................... 2 2 IA-32 assembly programming.......................................................................................... 3 2.1 Assembly Language Statements................................................................................ 3 2.1 Modes........................................................................................................................4 2.2 Registers....................................................................................................................4 2.2.3 Data Registers .................................................................................................... 4 2.2.4 Pointer and Index Registers................................................................................ 4 2.2.5 Control Registers................................................................................................ 5 2.2.6 Segment registers ............................................................................................... 7 2.3 Addressing................................................................................................................. 7 2.3.1 Bit and Byte Order ............................................................................................. 7 2.3.2 Data Types......................................................................................................... -
Assembly Language: IA-X86
Assembly Language for x86 Processors X86 Processor Architecture CS 271 Computer Architecture Purdue University Fort Wayne 1 Outline Basic IA Computer Organization IA-32 Registers Instruction Execution Cycle Basic IA Computer Organization Since the 1940's, the Von Neumann computers contains three key components: Processor, called also the CPU (Central Processing Unit) Memory and Storage Devices I/O Devices Interconnected with one or more buses Data Bus Address Bus data bus Control Bus registers Processor I/O I/O IA: Intel Architecture Memory Device Device (CPU) #1 #2 32-bit (or i386) ALU CU clock control bus address bus Processor The processor consists of Datapath ALU Registers Control unit ALU (Arithmetic logic unit) Performs arithmetic and logic operations Control unit (CU) Generates the control signals required to execute instructions Memory Address Space Address Space is the set of memory locations (bytes) that are addressable Next ... Basic Computer Organization IA-32 Registers Instruction Execution Cycle Registers Registers are high speed memory inside the CPU Eight 32-bit general-purpose registers Six 16-bit segment registers Processor Status Flags (EFLAGS) and Instruction Pointer (EIP) 32-bit General-Purpose Registers EAX EBP EBX ESP ECX ESI EDX EDI 16-bit Segment Registers EFLAGS CS ES SS FS EIP DS GS General-Purpose Registers Used primarily for arithmetic and data movement mov eax 10 ;move constant integer 10 into register eax Specialized uses of Registers eax – Accumulator register Automatically -
Secure Coding Frameworks for the Development of Safe, Secure and Reliable Code
Building Cybersecurity from the Ground Up Secure Coding Frameworks For the Development of Safe, Secure and Reliable Code Tim Kertis October 2015 The 27 th Annual IEEE Software Technology Conference Copyright © 2015 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a registered trademark of Raytheon Company. Who Am I? Tim Kertis, Software Engineer/Software Architect Chief Software Architect, Raytheon IIS, Indianapolis Master of Science, Computer & Information Science, Purdue Software Architecture Professional through the Software Engineering Institute (SEI), Carnegie-Mellon University (CMU) 30 years of diverse Software Engineering Experience Advocate for Secure Coding Frameworks (SCFs) Author of the JAVA Secure Coding Framework (JSCF) Inventor of Cybersecurity thru Lexical And Symbolic Proxy (CLaSP) technology (patent pending) Secure Coding Frameworks 10/22/2015 2 Top 5 Cybersecurity Concerns … 1 - Application According to the 2015 ISC(2) Vulnerabilities Global Information Security 2 - Malware Workforce Study (Paresh 3 - Configuration Mistakes Rathod) 4 - Mobile Devices 5 - Hackers Secure Coding Frameworks 10/22/2015 3 Worldwide Market Indicators 2014 … Number of Software Total Cost of Cyber Crime: Developers: $500B (McCafee) 18,000,000+ (www.infoq.com) Cost of Cyber Incidents: Number of Java Software Low $1.6M Developers: Average $12.7M 9,000,000+ (www.infoq.com) High $61.0M (Ponemon Institute) Software with Vulnerabilities: 96% (www.cenzic.com) Secure Coding Frameworks 10/22/2015 4 Research -
17Computerarchitectu
Computer Architecture and Assembly Language Prof. David August COS 217 1 Goals of Today’s Lecture • Computer architecture o Central processing unit (CPU) o Fetch-decode-execute cycle o Memory hierarchy, and other optimization • Assembly language o Machine vs. assembly vs. high-level languages o Motivation for learning assembly language o Intel Architecture (IA32) assembly language 2 Levels of Languages • Machine language o What the computer sees and deals with o Every command is a sequence of one or more numbers • Assembly language o Command numbers replaced by letter sequences that are easier to read o Still have to work with the specifics of the machine itself • High-level language o Make programming easier by describing operations in a natural language o A single command replaces a group of low-level assembly language commands 3 Why Learn Assembly Language? • Understand how things work underneath o Learn the basic organization of the underlying machine o Learn how the computer actually runs a program o Design better computers in the future • Write faster code (even in high-level language) o By understanding which high-level constructs are better o … in terms of how efficient they are at the machine level • Some software is still written in assembly language o Code that really needs to run quickly o Code for embedded systems, network processors, etc. 4 A Typical Computer CPU . CPU Memory Chipset I/O bus ROM Network 5 Von Neumann Architecture • Central Processing Unit CPU o Control unit Control – Fetch, decode, and execute Unit o Arithmetic