Distribution and Habitats of Biomphalaria Pfeifferi, Snail Intermediate Host of Schistosoma Mansoni, in South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Distribution and Habitats of Biomphalaria Pfeifferi, Snail Intermediate Host of Schistosoma Mansoni, in South Africa Distribution and habitats of Biomphalaria pfeifferi, snail intermediate host of Schistosoma mansoni, in South Africa KN de Kock*, CT Wolmarans and M Bornman School of Environmental Sciences and Development, Zoology, Potchefstroom University for Christian Higher Education, Private Bag X6001, Potchefstroom 2520, South Africa Abstract As intermediate host for Schistosoma mansoni, Biomphalaria pfeifferi plays a major role in the transmission of intestinal bilharziasis in the endemic areas of South Africa. This article focuses on the geographical distribution and habitats of this species, as reflected by the 1 639 samples on record in the database of the National Freshwater Snail Collection of South Africa. This snail is well represented in the Northern Province, Mpumalanga and the coastal areas of KwaZulu-Natal, that represent the bilharzia endemic areas of South Africa. Details of each habitat, as well as mean altitude and mean annual temperature and rainfall of each locality, were processed to determine chi-square and effect size values and to construct an integrated decision tree that makes a selection of those variables that could maximally discriminate between this snail and all the other species in the database. The results indicated that temperature and type of water-body are the major factors determining the distribution of B. pfeifferi in South Africa. These findings support the results of demographic studies reported by several authors that led them to the conclusion that B. pfeifferi does best under warm stable conditions. The importance of four isolated and persistent foci occurring further west than the western arm of its range of distribution and far removed from the bilharzia endemic areas, is discussed. Two of these localities are popular holiday resorts and the fact that specimens from both these localities showed a high compatibility with a local strain of S. mansoni is cause for concern. Keywords: geographical distribution, habitat preferences, experimental infection, epidemiology of schistosomiasis, Biomphalaria pfeifferi Introduction included in the analysis. The majority of these samples were collected during surveys conducted by staff of government and Biomphalaria pfeifferi is the most important intermediate host in local health authorities and then sent to the former Snail Research tropical Africa for Schistosoma mansoni, the parasite causing Unit at the Potchefstroom University for identification and to be intestinal bilharzia in man (Brown,1994). It was first described added to the NFSC. Details of the habitats were documented by from specimens collected in the Umgeni Valley, KwaZulu-Natal. collectors during surveys by selecting the relevant options on forms The oldest sample of this species on record in the National compiled by the staff of the Snail Research Unit. The number of loci Freshwater Snail Collection (NFSC) of South Africa, dates back to in which the collection sites were located was distributed in 1952. This report focuses on the geographical distribution and intervals of mean annual rainfall and air temperature, as well as habitats of this snail as reflected by the samples on record in the intervals of mean altitude, and the results tabled to illustrate the NFSC. The ecological implications of the range of values reported frequency of occurrence in specific intervals. Rainfall, temperature by various authors for the demographic parameter r (intrinsic rate and altitude data were obtained from the Computing Centre for of natural increase) are also discussed. Attention is drawn to four Water Research, University of Natal. A temperature index was persistent populations of this species occurring in isolated foci calculated for all mollusc species in the database from their outside the bilharzia endemic areas in South Africa. Details are frequencies of occurrence in the selected temperature intervals and given of snail habitats as described by the collectors at the time of the results used to rank them in order of association with low to high collection and also of the mean altitude and mean annual rainfall climatic temperatures. This was done by allocating numeric values, 1 and mean annual air temperature of the loci ( /16 square degree) in ranging from one for the coolest to five for the warmest, to five which the collections were made. selected temperature intervals. The proportion of the total number of loci of each species falling in a particular temperature interval Materials and method was then multiplied by the value allocated to that specific tempe- rature interval. This was done for each temperature interval in Data pertaining to the geographical distribution and habitats of which the species was recorded and the sum of these scores was then taken as the temperature index for that particular species B. pfeifferi were extracted from the database of the NFSC. Only 5 those samples for which the collection sites could be pinpointed on ( ) and the results presented in a table. This analysis was Iip= ∑ i the 1:250 000 topo-cadastral map series of South Africa, were i=1 recommended by Brown (2002). Chi-square values were calculated to determine the significance of the difference between the frequency of occurrence in, on, or at the different * To whom all correspondence should be addressed. +2718 299 2380; fax: +2718 299 2370; options for each variable, such as type of water-body, type of e-mail: [email protected] substratum and temperature interval. Furthermore, an effect size Received 7 February 2003; accepted in revised form 6 November 2003. was calculated for all the different variables discussed in this paper. Available on website http://www.wrc.org.za ISSN 0378-4738 = Water SA Vol. 30 No. 1 January 2004 29 Figure 1 (left) The geographical distribution of 1 Biomphalaria pfeifferi in /16 square degree loci and mean annual air temperature in South Africa. Loci of the four persistent populations: 1 = source of the Kuruman River, 2 = Blue Pool at Buxton, district of Taung, 3 = source of the Harts River at Lichtenburg and 4 = source of the Molopo River. The effect size is an index which measures the degree of discrep- ancy between the frequency distri- bution of a given species in the set of alternatives of a given variable such as water-bodies, as compared to the frequency distribution of all other mollusc species in the data- base in the set of alternatives of the same variable (Cohen, 1977). Ac- cording to this author values for this index in the order of 0.1 and 0.3 indicate small and medium ef- fects respectively, while values of 0.5 and higher indicate practical significantly large effects (Cohen, 1977). A value for this index in the order of 0.5, calculated for the frequency distribution of a given TABLE 1 mollusc species in the different types of water-body, for instance, Types of water-bodies in which Biomphalaria pfeifferi would indicate that this factor played an important role in determin- was found in 1 639 collection sites recorded during ing the geographical distribution of this particular species as surveys reflected by the data in the database. The data in the database were also adapted and processed to Water-bodies A B C D construct an integrated decision tree (Breiman et al., 1984). This is a statistical model that enables the selection and ranking of those Channel 6 0.4% 169 3.6% variables which can maximally discriminate between the frequency Concrete dam 53 3.2% 221 24.0% of occurrence of a given species under specific conditions as Dam 451 27.5% 8400 5.4% compared to all other species in the database. This was accom- Ditch 21 1.3% 636 3.3% plished by making use of the SAS Enterprise Miner for Windows Irrigation furrow 5 0.3% 113 4.4% NT Release 4.0, April 19, 2000 programme and Decision Tree Pan 20 1.2% 306 6.5% Modelling Course Notes (Potts, 1999). Pond 63 3.8% 1566 4.0% Quarry 2 0.1% 122 1.6% Results River 445 27.2% 7507 5.9% Spring 8 0.5% 301 2.7% The 1 639 samples of B. pfeifferi which could be pinpointed on our Stream 212 12.9% 7211 2.9% maps, were collected from 251 different loci (Fig. 1). Swamp 32 2.0% 2076 1.5% This species was present in a wide variety of water-bodies, but Vlei 1 0.1% 103 0.8% the highest percentages were recovered from dams (27.5%) and Pool 3 0.2% 225 1.3% rivers (27.2%). The frequency of occurrence in these two water- bodies differed significantly from streams (X2 = 56.3, df = 1; Effect size w = 0.5 (large effect) p < 0.05; X2 = 76.9, df = 1; p < 0.05, respectively), i.e. streams yielded the third highest percentage of samples (12.93%) (Table 1). A Number of times collected in a specific water-body The largest number of samples (71.5%) was collected in habitats B % of the total number of collections (1 639) on record for with perennial water and this differed significantly (X2 = 130.7, thisspecies df = 1; p < 0.05) from the number of samples from habitats with C Number of times any mollusc was collected in a specific seasonal water (Table 2). The highest percentage of samples was water-body recovered from habitats with standing water, clear water and D % occurrence of this species in the total number of freshwater (Table 2) and the chi-square values showed that they collections in a specific water-body differed significantly, in each case, from their respective alternative options. The highest percentage of samples (28.6%) came from 30 ISSN 0378-4738 = Water SA Vol. 30 No. 1 January 2004 Available on website http://www.wrc.org.za TABLE 2 Water conditions in the habitats of Biomphalaria pfeifferi as described by collectors during
Recommended publications
  • List of Reviewers (As Per the Published Articles) Year: 2019
    List of Reviewers (as per the published articles) Year: 2019 South Asian Journal of Research in Microbiology 2019 - Volume 3 [Issue 1] In vitro Antibacterial Efficacy of Bryophyllum pinnatum Leaf Extracts DOI: 10.9734/SAJRM/2019/v3i130075 (1) Oshim, Ifeanyi Onyema, Nnamdi Azikiwe University, Nigeria. (2) Shibabrata Pattanayak, India. Complete Peer review History: http://www.sdiarticle3.com/review-history/46584 Production of Plant Growth Regulators by Some Fungi Isolated under Salt Stress DOI: 10.9734/SAJRM/2019/v3i130076 (1) Toshik Iarley da Silva, Federal University of Viçosa, Brazil. (2) Toungos, Mohammed Dahiru, Adamawa State University Mubi, Nigeria. Complete Peer review History: http://www.sdiarticle3.com/review-history/46911 Biosynthesis and Characterization of Silver Nanoparticles Produced by Plant Extracts and Its Antimicrobial Activity DOI: 10.9734/SAJRM/2019/v3i130077 (1) Nguyen Thi Hieu Trang, Vietnam. (2) Ajoy Kumer, European University of Bangladesh, Bangladesh. (3) Tahmina Monowar, AIMST University, Malaysia. Complete Peer review History: http://www.sdiarticle3.com/review-history/46186 Microbiological and Physiochemical Quality of Freshwater in Isiokpo Community, Rivers State, Nigeria DOI: 10.9734/SAJRM/2019/v3i130078 (1) Yongchun Zhu, Shenyang Normal University, China. (2) Prof. Graciela Pucci, Argentina. Complete Peer review History: http://www.sdiarticle3.com/review-history/47362 Microbiological and Proximate Analyses of Lebanese Bread (Pita) from Akure Metropolis DOI: 10.9734/SAJRM/2019/v3i130079 (1) C. E. Oshoma, University of Benin, Nigeria. (2) H. A. Rathnayake, University of Sri Jayewardenepura, Sri Lanka. (3) P. Saravana Kumari, Rathnavel Subramaniam College of Arts and Science, India. Complete Peer review History: http://www.sdiarticle3.com/review-history/47284 2019 - Volume 3 [Issue 2] Antibacterial Activity of Zingiber officinale (Ginger) against Clinical Bacterial Isolates DOI: 10.9734/SAJRM/2019/v3i230080 (1) Evbuomwan Lucky, University of Benein, Nigeria.
    [Show full text]
  • In Bahia, Brazil
    Volume 52(40):515‑524, 2012 A NEW GENUS AND SPECIES OF CAVERNICOLOUS POMATIOPSIDAE (MOLLUSCA, CAENOGASTROPODA) IN BAHIA, BRAZIL 1 LUIZ RICARDO L. SIMONE ABSTRACT Spiripockia punctata is a new genus and species of Pomatiopsidae found in a cave from Serra Ramalho, SW Bahia, Brazil. The taxon is troglobiont (restricted to subterranean realm), and is characterized by the shell weakly elongated, fragile, translucent, normally sculptured by pus‑ tules with periostracum hair on tip of pustules; peristome highly expanded; umbilicus opened; radular rachidian with 6 apical and 3 pairs of lateral cusps; osphradium short, arched; gill filaments with rounded tip; prostate flattened, with vas deferens inserting subterminally; penis duct narrow and weakly sinuous; pallial oviduct simple anteriorly, possessing convoluted by‑ pass connecting base of bulged portion of transition between visceral and pallial oviducts with base of seminal receptacle; spermathecal duct complete, originated from albumen gland. The description of this endemic species may raise protective environmental actions to that cave and to the Serra Ramalho Karst area. Key-Words: Pomatiopsidae; Spiripockia punctata gen. nov. et sp. nov.; Brazil; Cave; Tro- globiont; Anatomy. INTRODUCTION An enigmatic tiny gastropod has been collected in caves from the Serra Ramalho Kars area, southwestern The family Pomatiopsidae is represented in the Bahia state, Brazil. It has a pretty, fragile, translucent Brazilian region by only two species of the genus Id‑ shell in such preliminary gross anatomy, which already iopyrgus Pilsbry, 1911 (Simone, 2006: 94). However, reveals troglobiont adaptations, i.e., depigmentation, the taxon is much richer in remaining mainland ar- lack of eyes and small size. The sample has been brought eas, with both freshwater and semi-terrestrial habits by Maria Elina Bichuette, who is specialized in subter- (Ponder & Keyzer, 1998; Kameda & Kato, 2011).
    [Show full text]
  • Mitochondrial Genome of Bulinus Truncatus (Gastropoda: Lymnaeoidea): Implications for Snail Systematics and Schistosome Epidemiology
    Journal Pre-proof Mitochondrial genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): implications for snail systematics and schistosome epidemiology Neil D. Young, Liina Kinkar, Andreas J. Stroehlein, Pasi K. Korhonen, J. Russell Stothard, David Rollinson, Robin B. Gasser PII: S2667-114X(21)00011-X DOI: https://doi.org/10.1016/j.crpvbd.2021.100017 Reference: CRPVBD 100017 To appear in: Current Research in Parasitology and Vector-Borne Diseases Received Date: 21 January 2021 Revised Date: 10 February 2021 Accepted Date: 11 February 2021 Please cite this article as: Young ND, Kinkar L, Stroehlein AJ, Korhonen PK, Stothard JR, Rollinson D, Gasser RB, Mitochondrial genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): implications for snail systematics and schistosome epidemiology, CORTEX, https://doi.org/10.1016/ j.crpvbd.2021.100017. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2021 The Author(s). Published by Elsevier B.V. Journal Pre-proof Mitochondrial genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): implications for snail systematics and schistosome epidemiology Neil D. Young a,* , Liina Kinkar a, Andreas J. Stroehlein a, Pasi K. Korhonen a, J.
    [Show full text]
  • Observations on Neritina Turrita (Gmelin 1791) Breeding Behaviour in Laboratory Conditions
    Hristov, K.K. AvailableInd. J. Pure online App. Biosci. at www.ijpab.com (2020) 8(5), 1-10 ISSN: 2582 – 2845 DOI: http://dx.doi.org/10.18782/2582-2845.8319 ISSN: 2582 – 2845 Ind. J. Pure App. Biosci. (2020) 8(5), 1-10 Research Article Peer-Reviewed, Refereed, Open Access Journal Observations on Neritina turrita (Gmelin 1791) Breeding Behaviour in Laboratory Conditions Kroum K. Hristov* Department of Chemistry and Biochemistry, Medical University - Sofia, Sofia - 1431, Bulgaria *Corresponding Author E-mail: [email protected] Received: 15.08.2020 | Revised: 22.09.2020 | Accepted: 24.09.2020 ABSTRACT Neritina turrita (Gmelin 1791) along with other Neritina, Clithon, Septaria, and other fresh- water snails are popular animals in ornamental aquarium trade. The need for laboratory-bred animals, eliminating the potential biohazard risks, for the ornamental aquarium trade and the growing demand for animal model systems for biomedical research reasons the work for optimising a successful breading protocol. The initial results demonstrate N. turrita as tough animals, surviving fluctuations in pH from 5 to 9, and shifts from a fresh-water environment to brackish (2 - 20 ppt), to sea-water (35 ppt) salinities. The females laid over 630 (at salinities 0, 2, 10 ppt and temperatures of 25 - 28oC) white oval 1 by 0.5 mm egg capsules continuously within 2 months after collecting semen from several males. Depositions of egg capsules are set apart 6 +/-3 days, and consist on average of 53 (range 3 to 192) egg capsules. Production of viable veligers was recorded under laboratory conditions. Keywords: Neritina turrita, Sea-water, Temperatures, Environment INTRODUCTION supposably different genera forming hybrids Neritininae are found in the coastal swamps of with each other, suggesting their close relation.
    [Show full text]
  • ZM82 525-536 Appleton.Indd
    The occurrence, bionomics and potential impacts of the invasive freshwater snail Tarebia granifera (Lamarck, 1822) (Gastropoda: Thiaridae) in South Africa C.C. Appleton, A.T. Forbes & N.T. Demetriades Appleton, C.C., A.T. Forbes & N.T. Demetriades. The occurrence, bionomics and potential impacts of the invasive freshwater snail Tarebia granifera (Lamarck, 1822) (Gastropoda: Thiaridae) in South Africa. Zool. Med. Leiden 83 (4), 9.vii.2009: 525-536, fi gs 1-5, map, tables 1-2.— ISSN 0024-0672. C.C. Appleton, School of Biological & Conservation Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa ([email protected]). A.T. Forbes, Marine & Estuarine Research, P.O. Box 417, Hyper-by-the-Sea, Durban 4053, South Africa ([email protected]). N.T. Demetriades, Marine & Estuarine Research, P.O. Box 417, Hyper-by-the-Sea, Durban 4053, South Africa ([email protected]). Key words: Tarebia granifera, South Africa, invasion, bionomics. The Asian prosobranch snail Tarebia granifera was reported from South Africa (and Africa) for the fi rst time in 1999 in northern KwaZulu-Natal though it was probably introduced sometime prior to 1996. In the 10 years since its discovery it has spread rapidly, particularly northwards, into Mpumalanga prov- ince, the Kruger National Park and Swaziland. The snail has colonized diff erent types of habitat, from rivers, lakes and irrigation canals to concrete lined reservoirs and ornamental ponds. It reaches very high densities, up to 21 000 m-2, and is likely to impact on the entire indigenous benthos of the natural waterbodies of the region – more so than any other invasive freshwater invertebrate known from the country.
    [Show full text]
  • REVEALING BIOTIC DIVERSITY: HOW DO COMPLEX ENVIRONMENTS INFLUENCE HUMAN SCHISTOSOMIASIS in a HYPERENDEMIC AREA Martina R
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations Spring 5-9-2018 REVEALING BIOTIC DIVERSITY: HOW DO COMPLEX ENVIRONMENTS INFLUENCE HUMAN SCHISTOSOMIASIS IN A HYPERENDEMIC AREA Martina R. Laidemitt Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Laidemitt, Martina R.. "REVEALING BIOTIC DIVERSITY: HOW DO COMPLEX ENVIRONMENTS INFLUENCE HUMAN SCHISTOSOMIASIS IN A HYPERENDEMIC AREA." (2018). https://digitalrepository.unm.edu/biol_etds/279 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Martina Rose Laidemitt Candidate Department of Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Eric S. Loker, Chairperson Dr. Jennifer A. Rudgers Dr. Stephen A. Stricker Dr. Michelle L. Steinauer Dr. William E. Secor i REVEALING BIOTIC DIVERSITY: HOW DO COMPLEX ENVIRONMENTS INFLUENCE HUMAN SCHISTOSOMIASIS IN A HYPERENDEMIC AREA By Martina R. Laidemitt B.S. Biology, University of Wisconsin- La Crosse, 2011 DISSERT ATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico July 2018 ii ACKNOWLEDGEMENTS I thank my major advisor, Dr. Eric Samuel Loker who has provided me unlimited support over the past six years. His knowledge and pursuit of parasitology is something I will always admire. I would like to thank my coauthors for all their support and hard work, particularly Dr.
    [Show full text]
  • Study on the Ethiopian Freshwater Molluscs, Especially on Identification, Distribution and Ecology of Vector Snails of Human Schistosomiasis
    Jap. J. Trop. Med. Hyg., Vol. 3, No. 2, 1975, pp. 107-134 107 STUDY ON THE ETHIOPIAN FRESHWATER MOLLUSCS, ESPECIALLY ON IDENTIFICATION, DISTRIBUTION AND ECOLOGY OF VECTOR SNAILS OF HUMAN SCHISTOSOMIASIS HIROSHI ITAGAKI1, NORIJI SUZUKI2, YOICHI ITO2, TAKAAKI HARA3 AND TEFERRA WONDE4 Received for publication 17 February 1975 Abstract: Many surveys were carried out in Ethiopia from January 1969 to January 1971 to study freshwater molluscs, especially the intermediate and potential host snails of Schistosoma mansoni and S. haematobium, to collect their ecological data, and to clarify the distribution of the snails in the country. The gastropods collected consisted of two orders, the Prosobranchia and Pulmonata. The former order contained three families (Thiaridae, Viviparidae and Valvatidae) and the latter four families (Planorbidae, Physidae, Lymnaeidae and Ancylidae). The pelecypods contained four families : the Unionidae, Mutelidae, Corbiculidae and Sphaeriidae. Biomphalaria pfeifferi rueppellii and Bulinus (Physopsis)abyssinicus are the most important hosts of S. mansoniand S. haematobium respectively. The freshwater snail species could be grouped into two distibution patterns, one of which is ubiquitous and the other sporadic. B. pfeifferirueppellii and Bulinus sericinus belong to the former pattern and Biomphalaria sudanica and the members of the subgenus Physopsis to the latter. Pictorial keys were prepared for field workers of schistosomiasis to identify freshwater molluscs in Ethiopia. Habitats of bulinid and biomphalarian snails were ecologically surveyed in connection with the epidemiology of human schistosomiasis. Rain falls and nutritional conditions of habitat appear to influence the abundance and distribution of freshwater snails more seriously than do temperature and pH, but water current affects the distribution frequently.
    [Show full text]
  • Loads of Trematodes: Discovering Hidden Diversity of Paramphistomoids in Kenyan Ruminants
    131 Loads of trematodes: discovering hidden diversity of paramphistomoids in Kenyan ruminants MARTINA R. LAIDEMITT1*, EVA T. ZAWADZKI1, SARA V. BRANT1, MARTIN W. MUTUKU2, GERALD M. MKOJI2 and ERIC S. LOKER1 1 Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, 167 Castetter MSCO3 2020 Albuquerque, New Mexico 87131, USA 2 Center for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O. Box 54840- 00200, Nairobi, Kenya (Received 23 May 2016; revised 24 August 2016; accepted 7 September 2016; first published online 20 October 2016) SUMMARY Paramphistomoids are ubiquitous and widespread digeneans that infect a diverse range of definitive hosts, being particu- larly speciose in ruminants. We collected adult worms from cattle, goats and sheep from slaughterhouses, and cercariae from freshwater snails from ten localities in Central and West Kenya. We sequenced cox1 (690 bp) and internal transcribed region 2 (ITS2) (385 bp) genes from a small piece of 79 different adult worms and stained and mounted the remaining worm bodies for comparisons with available descriptions. We also sequenced cox1 and ITS2 from 41 cercariae/rediae samples collected from four different genera of planorbid snails. Combining morphological observations, host use infor- mation, genetic distance values and phylogenetic methods, we delineated 16 distinct clades of paramphistomoids. For four of the 16 clades, sequences from adult worms and cercariae/rediae matched, providing an independent assessment for their life cycles. Much work is yet to be done to resolve fully the relationships among paramphistomoids, but some correspond- ence between sequence- and anatomically based classifications were noted.
    [Show full text]
  • Biology and Conservation of the Unique and Diverse Halophilic Macroinvertebrates of Australian Salt Lakes
    CSIRO PUBLISHING Marine and Freshwater Research Corrigendum https://doi.org/10.1071/MF21088_CO Biology and conservation of the unique and diverse halophilic macroinvertebrates of Australian salt lakes Angus D’Arcy Lawrie, Jennifer Chaplin and Adrian Pinder Marine and Freshwater Research. [Published online 2 July 2021]. https://doi.org/10.1071/MF21088 The authors of the above-mentioned paper regret to inform readers that there were errors published in the systematics of one of the taxa in the manuscript. The list of groups in the Cladocera section (on p. F) was published as below: The bulk of Cladocera that occur in inland waters in Australia are restricted to fresh water, but three groups have representatives in salt lakes. These groups comprise: (1) six species of Daphniopsis (or Daphnia; see below); (2) two species of Daphnia (Daphnia salinifera Hebert and Daphnia neosalinifera Hebert) from the Daphnia carinata (King) subgenus; and (3) three species of chydorid: Moina baylyi Forro´, Moina mongolica Daday and Extremalona timmsi Sinev & Shiel. This text should have been as below (changes underlined): The bulk of Cladocera that occur in inland waters in Australia are restricted to fresh water, but four groups have representatives in salt lakes. These groups comprise: (1) six species of Daphniopsis (or Daphnia; see below); (2) two species of Daphnia (Daphnia salinifera Hebert and Daphnia neosalinifera Hebert) from the Daphnia carinata (King) subgenus; (3) two Moina species (Moina baylyi Forro´ and Moina mongolica Daday); and (4) one species of chydorid (Extremalona timmsi Sinev & Shiel). Furthermore, the title of the Chydorids section should have been titled Moinids and chydorids.
    [Show full text]
  • Oreohelix Strigosa) Bridget Chalifour1* and Jingchun Li1,2
    Chalifour and Li Animal Microbiome (2021) 3:49 Animal Microbiome https://doi.org/10.1186/s42523-021-00111-6 RESEARCH ARTICLE Open Access Characterization of the gut microbiome in wild rocky mountainsnails (Oreohelix strigosa) Bridget Chalifour1* and Jingchun Li1,2 Abstract Background: The Rocky Mountainsnail (Oreohelix strigosa) is a terrestrial gastropod of ecological importance in the Rocky Mountains of western United States and Canada. Across the animal kingdom, including in gastropods, gut microbiomes have profound effects on the health of the host. Current knowledge regarding snail gut microbiomes, particularly throughout various life history stages, is limited. Understanding snail gut microbiome composition and dynamics can provide an initial step toward better conservation and management of this species. Results: In this study, we employed 16S rRNA gene amplicon sequencing to examine gut bacteria communities in wild-caught O. strigosa populations from the Front Range of Colorado. These included three treatment groups: (1) adult and (2) fetal snails, as well as (3) sub-populations of adult snails that were starved prior to ethanol fixation. Overall, O. strigosa harbors a high diversity of bacteria. We sequenced the V4 region of the 16S rRNA gene on an Illumina MiSeq and obtained 2,714,330 total reads. We identified a total of 7056 unique operational taxonomic units (OTUs) belonging to 36 phyla. The core gut microbiome of four unique OTUs accounts for roughly half of all sequencing reads returned and may aid the snails’ digestive processes. Significant differences in microbial composition, as well as richness, evenness, and Shannon Indices were found across the three treatment groups.
    [Show full text]
  • Hybridism Between Biomphalaria Cousini and Biomphalaria Amazonica and Its Susceptibility to Schistosoma Mansoni
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 106(7): 851-855, November 2011 851 Hybridism between Biomphalaria cousini and Biomphalaria amazonica and its susceptibility to Schistosoma mansoni Tatiana Maria Teodoro1/+, Liana Konovaloff Jannotti-Passos2, Omar dos Santos Carvalho1, Mario J Grijalva3,4, Esteban Guilhermo Baús4, Roberta Lima Caldeira1 1Laboratório de Helmintologia e Malacologia Médica 2Moluscário Lobato Paraense, Instituto de Pesquisas René Rachou-Fiocruz, Av. Augusto de Lima 1715, 30190-001 Belo Horizonte, MG, Brasil 3Biomedical Sciences Department, Tropical Disease Institute, College of Osteopathic Medicine, Ohio University, Athens, OH, USA 4Center for Infectious Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador Molecular techniques can aid in the classification of Biomphalaria species because morphological differentia- tion between these species is difficult. Previous studies using phylogeny, morphological and molecular taxonomy showed that some populations studied were Biomphalaria cousini instead of Biomphalaria amazonica. Three differ- ent molecular profiles were observed that enabled the separation of B. amazonica from B. cousini. The third profile showed an association between the two and suggested the possibility of hybrids between them. Therefore, the aim of this work was to investigate the hybridism between B. cousini and B. amazonica and to verify if the hybrids are susceptible to Schistosoma mansoni. Crosses using the albinism factor as a genetic marker were performed, with pigmented B. cousini and albino B. amazonica snails identified by polymerase chain reaction-restriction fragment length polymorphism. This procedure was conducted using B. cousini and B. amazonica of the type locality accord- ingly to Paraense, 1966. In addition, susceptibility studies were performed using snails obtained from the crosses (hybrids) and three S.
    [Show full text]
  • A New Genus and Species of Cavernicolous Pomatiopsidae (Mollusca, Caenogastropoda) in Bahia, Brazil
    Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Sem comunidade Scielo 2012 A new genus and species of cavernicolous Pomatiopsidae (Mollusca, Caenogastropoda) in Bahia, Brazil Pap. Avulsos Zool. (São Paulo),v.52,n.40,p.515-524,2012 http://www.producao.usp.br/handle/BDPI/38182 Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo Volume 52(40):515‑524, 2012 A NEW GENUS AND SPECIES OF CAVERNICOLOUS POMATIOPSIDAE (MOLLUSCA, CAENOGASTROPODA) IN BAHIA, BRAZIL 1 LUIZ RICARDO L. SIMONE ABSTRACT Spiripockia punctata is a new genus and species of Pomatiopsidae found in a cave from Serra Ramalho, SW Bahia, Brazil. The taxon is troglobiont (restricted to subterranean realm), and is characterized by the shell weakly elongated, fragile, translucent, normally sculptured by pus‑ tules with periostracum hair on tip of pustules; peristome highly expanded; umbilicus opened; radular rachidian with 6 apical and 3 pairs of lateral cusps; osphradium short, arched; gill filaments with rounded tip; prostate flattened, with vas deferens inserting subterminally; penis duct narrow and weakly sinuous; pallial oviduct simple anteriorly, possessing convoluted by‑ pass connecting base of bulged portion of transition between visceral and pallial oviducts with base of seminal receptacle; spermathecal duct complete, originated from albumen gland. The description of this endemic species may raise protective environmental actions to that cave and to the Serra Ramalho Karst area. Key-Words: Pomatiopsidae; Spiripockia punctata gen. nov. et sp. nov.; Brazil; Cave; Tro- globiont; Anatomy. INTRODUCTION An enigmatic tiny gastropod has been collected in caves from the Serra Ramalho Kars area, southwestern The family Pomatiopsidae is represented in the Bahia state, Brazil.
    [Show full text]