Defining the Genetic Basis of Three Hereditary Neurological Conditions in Families from the Indian Subcontinent

Total Page:16

File Type:pdf, Size:1020Kb

Defining the Genetic Basis of Three Hereditary Neurological Conditions in Families from the Indian Subcontinent RETA LILA WESTON INSTITUTE OF NEUROLOGICAL STUDIES INSTITUTE OF NEUROLOGY UNIVERSITY COLLEGE LONDON DEFINING THE GENETIC BASIS OF THREE HEREDITARY NEUROLOGICAL CONDITIONS IN FAMILIES FROM THE INDIAN SUBCONTINENT Dr Vafa Alakbarzade PhD Thesis 2016 1 DEFINING THE GENETIC BASIS OF THREE HEREDITARY NEUROLOGICAL CONDITIONS IN FAMILIES FROM THE INDIAN SUBCONTINENT Submitted by Dr Vafa Alakbarzade, MBBS, MRCP (UK), MSc University College London Student Number: 1028294 to University College London as a thesis for the degree of Doctor of Philosophy, January 2016 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement I confirm that the work presented in this thesis is my own and information derived from other sources has been indicated in the thesis (Signature) …………………………………………………… 2 ACKNOWLEDGEMENTS Foremost I would like to thank the families who took part in these studies. I am sincerely grateful to Professor Tom Warner and Professor Andrew Crosby, without whom I would never have had all the wonderful experiences this PhD brought me. They have always supported and encouraged me in whatever scientific endeavours I have followed. Dr. Barry Chioza and Dr. Sreekantan-Nair Ajith provided invaluable support and advice throughout my PhD; I am hugely appreciative of their guidance and encouragement. None of the work in this thesis would have been possible without guidance of Dr. Barry Chioza. I would specifically like to appreciate contribution of the team of Prof. David Silver and Dr. Kulkarni Abhijit who provided functional follow up of our genetic findings and Dr. Iype Thomas and Dr. Arshia Ahmad who provided clinical information of the families under investigation. David Newman has shaped out my thesis for which I am deeply grateful for. I would also like to thank all the members of the Crosby group for their help. On a personal level I would like to sincerely thank my beloved mother who has always been there for me. 3 ABSTRACT Neurogenetic studies have revolutionised our understanding of the genetic and molecular basis of inherited neurological disorders, primarily as a result of the identification of single disease-causing genes. The incidence of such disorders is increased amongst populations with common shared ancestry or a high rate of consanguinity. Hence, the investigation of inherited neurological conditions in genetic isolates provides a robust opportunity to define the molecular pathogenic basis of these conditions. Neurological and neurodevelopmental disorders present important public health issues in the developing countries in the Indian subcontinent. The global burden of these disorders is worsened by the lack of targeted research funding and relevant in-country research capacity. This project, undertaken as part of a wider research study investigating inherited disorders in the Indian subcontinent, aimed to define the molecular genetic bases of three extended families with distinct neurological and neurodevelopmental disorders. In the first family with multiple individuals affected by a severe autosomal recessive form of neurodevelopmental delay with microcephaly, genetic studies identified mutation in a gene (MFSD2A), not previously associated with inherited disease, which led to a reduction of fatty acid transportation in patients homozygous for the disease-causing mutation. In the second family, genotyping identified a complex chromosomal rearrangement associated with diverse clinical outcomes including Wolf Hirschorn-, 3p deletion-, and 4p duplication syndrome, among ten 4 chromosomally-imbalanced affected individuals. In the third family, a duplication event on chromosome 15q24 encompassing the LINGO1 gene was identified as a likely cause of dystonic tremor in affected individuals. Together these molecular discoveries provide fundamentally important biological insight into the pathogenic basis of abnormal brain growth and control of movement with the potential diagnostic and treatment applications. 5 CONTENTS 1 GENERAL INTRODUCTION ................................................................ 15 1.1 Abnormal brain development: embryological aspects, definitions and underlying causes ............................................................................. 15 1.1.1 Structural development of the brain ................................................... 15 1.1.2 Microcephaly ..................................................................................... 22 1.2 Neurodevelopmental disorders and congenital malformations: definitions .......................................................................................... 28 1.3 Dystonic tremor ................................................................................. 34 1.3.1 Definitions, classifications and misdiagnosis ..................................... 34 1.3.2 Pathophysiology ................................................................................ 39 1.3.3 Autosomal dominant dystonic tremors .............................................. 41 1.4 Basic principles of neurogenetic studies ........................................... 45 1.4.1 Analysis of structural chromosome variants ...................................... 45 1.4.1.a Structural chromosome variants ............................................................................... 45 1.4.1.b Genetic characterisation of structural variation ......................................................... 50 1.4.2 Systematic elucidation of single gene disorders ................................ 57 1.4.2.a Single gene disorders ................................................................................................ 57 1.4.2.b Linkage mapping and whole exome sequencing ...................................................... 58 1.5 Applying Genomic Technologies to address Clinical Challenges in the Indian subcontinent study .................................................................. 63 1.5.1 Indian subpopulations and founder mutations ................................... 63 1.5.2 ‘Applying Genomic Technologies to address Clinical Challenges in the Indian Subcontinent’ (AGTC-India) .................................................... 66 1.6 Aims .................................................................................................. 68 2 METHODS AND MATERIALS ............................................................. 70 2.1 Subjects and samples ....................................................................... 70 2.2 Molecular methods ............................................................................ 72 2.2.1 RNA and DNA extraction ................................................................... 72 2.2.2 Reverse transcriptase PCR reaction ................................................. 72 2.2.3 Quantitative real-time PCR ................................................................ 73 2.2.4 Genotyping, linkage & CNV analysis ................................................. 74 2.2.5 Whole exome sequencing data analysis ........................................... 76 2.2.6 Primer design .................................................................................... 77 2.2.7 Polymerase chain reaction (PCR) ..................................................... 77 2.2.1 Cycling conditions for PCR ................................................................ 78 2.2.2 Agarose gel electrophoresis .............................................................. 80 6 2.2.3 PCR purification ................................................................................ 80 2.2.4 DNA sequencing and analysis ........................................................... 81 2.2.5 Co-segregation analysis .................................................................... 82 2.2.6 Genomic library preparation .............................................................. 84 2.2.7 MFSD2A p.Ser339Leu mutation analysis .......................................... 84 3 A PARTIALLY INACTIVATING MUTATION IN THE SODIUM- DEPENDENT LYSOPHOSPHATIDYLCHOLINE TRANSPORTER MFSD2A CAUSES A NON-LETHAL MICROCEPHALY SYNDROME 86 3.1 Introduction ........................................................................................ 86 3.2 Results .............................................................................................. 93 3.2.1 Clinical features ................................................................................. 93 3.2.2 330K SNP analysis ............................................................................ 99 3.2.3 Genotyping and whole exome sequencing data analysis ................ 101 3.2.4 MFSD2A 40433304C>T variant ...................................................... 105 3.2.5 p.Ser339Leu functional outcomes ................................................... 108 3.3 Discussion and future work ............................................................. 113 4 A COMPLEX CHROMOSOMAL REARRANGEMENT IN AN INDIAN FAMILY WITH NEURODEVELOPMENTAL DELAY ......................... 121 4.1 Introduction ...................................................................................... 121 4.2 Results ............................................................................................ 124 4.2.1 Clinical report .................................................................................. 124 4.2.2 Microarray and fluorescence in situ hybridization (FISH) analysis .. 133 4.3 Discussion ......................................................................................
Recommended publications
  • Cytogenomic SNP Microarray - Fetal ARUP Test Code 2002366 Maternal Contamination Study Fetal Spec Fetal Cells
    Patient Report |FINAL Client: Example Client ABC123 Patient: Patient, Example 123 Test Drive Salt Lake City, UT 84108 DOB 2/13/1987 UNITED STATES Gender: Female Patient Identifiers: 01234567890ABCD, 012345 Physician: Doctor, Example Visit Number (FIN): 01234567890ABCD Collection Date: 00/00/0000 00:00 Cytogenomic SNP Microarray - Fetal ARUP test code 2002366 Maternal Contamination Study Fetal Spec Fetal Cells Single fetal genotype present; no maternal cells present. Fetal and maternal samples were tested using STR markers to rule out maternal cell contamination. This result has been reviewed and approved by Maternal Specimen Yes Cytogenomic SNP Microarray - Fetal Abnormal * (Ref Interval: Normal) Test Performed: Cytogenomic SNP Microarray- Fetal (ARRAY FE) Specimen Type: Direct (uncultured) villi Indication for Testing: Patient with 46,XX,t(4;13)(p16.3;q12) (Quest: EN935475D) ----------------------------------------------------------------- ----- RESULT SUMMARY Abnormal Microarray Result (Male) Unbalanced Translocation Involving Chromosomes 4 and 13 Classification: Pathogenic 4p Terminal Deletion (Wolf-Hirschhorn syndrome) Copy number change: 4p16.3p16.2 loss Size: 5.1 Mb 13q Proximal Region Deletion Copy number change: 13q11q12.12 loss Size: 6.1 Mb ----------------------------------------------------------------- ----- RESULT DESCRIPTION This analysis showed a terminal deletion (1 copy present) involving chromosome 4 within 4p16.3p16.2 and a proximal interstitial deletion (1 copy present) involving chromosome 13 within 13q11q12.12. This
    [Show full text]
  • Epigenetic Control of Mammalian Centromere Protein Binding: Does DNA Methylation Have a Role?
    Journal of Cell Science 109, 2199-2206 (1996) 2199 Printed in Great Britain © The Company of Biologists Limited 1996 JCS3386 Epigenetic control of mammalian centromere protein binding: does DNA methylation have a role? Arthur R. Mitchell*, Peter Jeppesen, Linda Nicol†, Harris Morrison and David Kipling MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK *Author for correspondence (internet [email protected]) †Present address: MRC Reproductive Biology Unit, Edinburgh, UK SUMMARY Chromosome 1 of the inbred mouse strain DBA/2 has a block of minor satellite DNA sequences on chromosome 1. polymorphism associated with the minor satellite DNA at The binding of the CENP-E protein does not appear to be its centromere. The more terminal block of satellite DNA affected by demethylation of the minor satellite sequences. sequences on this chromosome acts as the centromere as We present a model to explain these observations. This shown by the binding of CREST ACA serum, anti-CENP- model may also indicate the mechanism by which the B and anti-CENP-E polyclonal sera. Demethylation of the CENP-B protein recognises specific sites within the arrays minor satellite DNA sequences accomplished by growing of minor satellite DNA on mouse chromosomes. cells in the presence of the drug 5-aza-2′-deoxycytidine results in a redistribution of the CENP-B protein. This protein now binds to an enlarged area on the more terminal Key words: Centromere satellite DNA, Demethylation, Centromere block and in addition it now binds to the more internal antibody INTRODUCTION A common feature of many mammalian pericentromeric domains is that they contain families of repetitive DNA The centromere of mammalian chromosomes is recognised at sequences (Singer, 1982).
    [Show full text]
  • 4P Duplications
    4p Duplications rarechromo.org Sources 4p duplications The information A 4p duplication is a rare chromosome disorder in which in this leaflet some of the material in one of the body’s 46 chromosomes comes from the is duplicated. Like most other chromosome disorders, this medical is associated to a variable extent with birth defects, literature and developmental delay and learning difficulties. from Unique’s 38 Chromosomes come in different sizes, each with a short members with (p) and a long (q) arm. They are numbered from largest to 4p duplications, smallest according to their size, from number 1 to number 15 of them with 22, in addition to the sex chromosomes, X and Y. We a simple have two copies of each of the chromosomes (23 pairs), duplication of 4p one inherited from our father and one inherited from our that did not mother. People with a chromosome 4p duplication have a involve any other repeat of some of the material on the short arm of one of chromosome, their chromosomes 4. The other chromosome 4 is the who were usual size. 4p duplications are sometimes also called surveyed in Trisomy 4p. 2004/5. Unique is This leaflet explains some of the features that are the same extremely or similar between people with a duplication of 4p. grateful to the People with different breakpoints have different features, families who but those with a duplication that covers at least two thirds took part in the of the uppermost part of the short arm share certain core survey. features. References When chromosomes are examined, they are stained with a dye that gives a characteristic pattern of dark and light The text bands.
    [Show full text]
  • The Recognition and Mobility of DNA Double-Strand Breaks
    The Recognition and Mobility of DNA Double-Strand Breaks by Jonathan Strecker A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Molecular Genetics University of Toronto © Copyright by Jonathan Strecker 2016 The Recognition and Mobility of DNA Double-Strand Breaks Jonathan Strecker Doctor of Philosophy Graduate Department of Molecular Genetics University of Toronto 2016 Abstract DNA double-strand breaks (DSBs) pose a threat to cell survival and genomic integrity, and remarkable mechanisms exist to deal with these breaks. A single DSB activates a signalling response that profoundly impacts cell physiology, not least through the engagement of DSB repair pathways and the arrest of cell division. Here I study these processes in the budding yeast Saccharomyces cerevisiae and investigate two central themes to this response. First, I examine how the natural ends of chromosomes, telomeres, are differentiated from DSBs by generating DNA ends with increasing telomeric character. I discover a striking transition in the activity of the telomerase inhibitor Pif1 at these ends and propose that this is the dividing line between DSBs and telomeres. Second, I investigate a phenomenon whereby a DSB increases the mobility of chromosomes within the nucleus. This increase in mobility is dependent on the Mec1 kinase and is proposed to promote repair by homologous recombination. I identify that the Mec1-dependent phosphorylation of Cep3, a kinetochore component, is required to stimulate chromatin mobility following DNA breakage and provide a new model for how a DSB affects the constraints on chromosomes. Unexpectedly, I find that increased mobility is not required for DSB repair and instead propose that Cep3 helps arrest the cell cycle in response to a DSB.
    [Show full text]
  • Microcephaly Genes and Risk of Late-Onset Alzheimer Disease
    ORIGINAL ARTICLE Microcephaly Genes and Risk of Late-onset Alzheimer Disease Deniz Erten-Lyons, MD,*w Beth Wilmot, PhD,zy Pavana Anur, BS,z Shannon McWeeney, PhD,zyJ Shawn K. Westaway, PhD,w Lisa Silbert, MD,w Patricia Kramer, PhD,w and Jeffrey Kaye, MD*w Alzheimer’s Disease Neuroimaging Initiative ratio=3.41; confidence interval, 1.77-6.57). However, this associa- Abstract: Brain development in the early stages of life has been tion was not replicated using another case-control sample research suggested to be one of the factors that may influence an individual’s participants from the Alzheimer Disease Neuroimaging Initiative. risk of Alzheimer disease (AD) later in life. Four microcephaly We conclude that the common variations we measured in the 4 genes, which regulate brain development in utero and have been microcephaly genes do not affect the risk of AD or that their effect suggested to play a role in the evolution of the human brain, were size is small. selected as candidate genes that may modulate the risk of AD. We examined the association between single nucleotide polymorphisms Key Words: Alzheimer disease, microcephaly genes, cognitive tagging common sequence variations in these genes and risk of AD reserve in two case-control samples. We found that the G allele of (Alzheimer Dis Assoc Disord 2011;25:276–282) rs2442607 in microcephalin 1 was associated with an increased risk of AD (under an additive genetic model, P=0.01; odds Received for publication June 2, 2010; accepted December 2, 2010. enetics has been suggested to play a role in variations From the *Portland Veterans Affairs Medical Center; wDepartment of Gin cognitive function in late life.1 One way in which Neurology; zOregon Clinical and Translational Research Center; genes may play a role in cognitive function in late life is yDivision of Bioinformatics and Computational Biology, Depart- through providing an “initial endowment” that is more ment of Medical Informatics and Clinical Epidemiology; and JDivision of Biostatistics, Department of Public Health and resistant to age-related changes.
    [Show full text]
  • ANALYSIS of CHROMOSOME 4 in DROSOPHZLA MELANOGASTER. 11: ETHYL METHANESULFONATE INDUCED Lethalsl’
    ANALYSIS OF CHROMOSOME 4 IN DROSOPHZLA MELANOGASTER. 11: ETHYL METHANESULFONATE INDUCED LETHALSl’ BENJAMIN HOCHMAN Department of Zoology, The University of Tennessee, Knoxville, Tenn. 37916 Received October 30, 1970 OUTSIDE the realm of the prokaryotes, it may appear unlikely that a com- plete inventory of the genetic material contained in the individual vehicles of hereditary transmission, the chromosomes, can be obtained. The chromosomes of higher plants and animals are either too large or the methods required for such an analysis are lacking. However, an approach to the problem is possible with the smallest autosome (number 4) in Drosophila melanogaster. In this genetically best-known diploid organism appropriate methods are available and the size of chromosome 4 (0.2-0.3 p at oogonial metaphase) suggests that the number of loci might be a relatively small, workable figure. An attempt is being made to uncover all of the major loci on chromosome 4, i.e., those loci capable of mutating to either a recessive lethal, semilethal, sterile, or visible state. In the first paper of this series (HOCHMAN,GLOOR and GREEN 1964), we reported that a study of some 50 spontaneous and X-ray-induced lethals had revealed a minimum of 22 vital loci on the fourth chromosome. Subsequently, two brief communications (HOCHMAN1967a,b) noted that the use of chemical mutagens had substantially increased the number of lethal chro- mosomes recovered and raised the number of loci detected. This paper contains an account of approximately 100 chromosome 4 mutations induced by chemical means (primarily recessive lethals which occurred follow- ing treatments with ethyl methanesulfonate) .
    [Show full text]
  • Atypical Centromeres in Plants—What They Can Tell Us Cuacos, Maria; H
    University of Birmingham Atypical centromeres in plants—what they can tell us Cuacos, Maria; H. Franklin, F. Chris; Heckmann, Stefan DOI: 10.3389/fpls.2015.00913 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Cuacos, M, H. Franklin, FC & Heckmann, S 2015, 'Atypical centromeres in plants—what they can tell us', Frontiers in Plant Science, vol. 6, 913. https://doi.org/10.3389/fpls.2015.00913 Link to publication on Research at Birmingham portal Publisher Rights Statement: Eligibility for repository : checked 18/11/2015 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
    [Show full text]
  • TET2 Binding to Enhancers Facilitates Transcription Factor Recruitment in Hematopoietic Cells
    Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press 1 2 TET2 binding to enhancers facilitates 3 transcription factor recruitment in hematopoietic cells 4 5 Kasper D. Rasmussen1,2,7,8*, Ivan Berest3,8, Sandra Keβler1,2,6, Koutarou Nishimura1,4, 6 Lucía Simón-Carrasco1,2, George S. Vassiliou5, Marianne T. Pedersen1,2, 7 Jesper Christensen1,2, Judith B. Zaugg3* and Kristian Helin1,2,4*. 8 9 1Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of 10 Copenhagen, 2200 Copenhagen, Denmark. 2The Novo Nordisk Foundation Center for Stem Cell Biology 11 (Danstem), Faculty or Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, 12 Denmark. 3European Molecular Biology Institute, Structural and Computational Unit. 4Cell Biology Program, 13 Memorial Sloan Kettering Cancer Center, New York, NY, USA. 5Wellcome Trust Sanger Institute, Wellcome 14 Trust Genome Campus, Cambridge, United Kingdom and Department of Haematology, Cambridge 15 University Hospitals NHS Trust, Cambridge, United Kingdom. 6Present address: Friedrich Miescher Institute 16 for Biomedical Research (FMI), CH-4058 Basel, Switzerland. 7Present address: Centre for Gene Regulation 17 and Expression (GRE), School of Life Sciences, University of Dundee, Dundee, UK. 8These authors 18 contributed equally. 19 20 *Correspondence: [email protected], [email protected], [email protected] 21 22 Running title: TET2 and TF binding in enhancers 23 24 Keywords: Acute Myeloid Leukemia; Chromatin; DNA binding; DNA methylation; Epigenetics; 25 Hematopoiesis; TET2; Transcription Factor Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Rasmussen et al.
    [Show full text]
  • Numerical Chromosome 1, 7, 9, and 11 Aberrations in Bladder Cancer Detected by in Situ Hybridization1
    [CANCER RESEARCH 51, 644-651, January 15. 1991] Numerical Chromosome 1, 7, 9, and 11 Aberrations in Bladder Cancer Detected by in Situ Hybridization1 Anton H. N. Hopman,2 Olof Moesker, A. Wim G. B. Smeets, Ruud P. E. Pauwels, G. Peter Vooijs, and Frans C. S. Ramaekers Department of Pathology, L'niversity //ospitai Nijmegen, fieert Grooteplein Zulu 24, 6525 (iA, .\ijmegen ¡A.H. N. H., O. .\t., C. P. ('./.' Stickling Ziekenkuisapotkeek en Klinisch Laboratorium l'enray [A. H'. G. B. S.J; Department of Urology, Hospital I enlo-1 'enray [R. P. K. P.], and Department of Molecular Cell Biology, L'nirersity ofLimhurg, Maastricht ¡A.H. N. H., F. C. S. R.], The Netherlands. ABSTRACT studies we demonstrated that this approach enables a routine screening of large tumor cell populations in, for example, Forty transitional cell carcinomas of the human urinary bladder (TCCs) TCCs4 (5, 10). Furthermore, ISH enables the detection of minor were examined for numerical aberrations of chromosomes 1, 7, 9, and 11 by in situ hybridization using chromosome-specific probes. Our inter- cell populations or imbalance in chromosome copy number phase cytogenetic study of 24 low-grade, noninvasive TCCs, which were within one tumor. near-diploid by flow cytometry, showed a numerical aberration for at By means of conventional karyotyping nonrandom chromo least I of these chromosomes in 14 of these cases. Most strikingly, a some aberrations involving chromosomes 1, 7, 9, and 11 have monosomy for chromosome 9 was found in 9 of 24 low-grade TCCs. A been detected in bladder cancer.
    [Show full text]
  • Large-Scale Chromosomal Changes 1
    Large-Scale Chromosomal Changes 1. MM N OO would be classified as 2n–1; MM NN OO would be classified as 2n; and MMM NN PP would be classified as 2n+1. 2. It would more likely be an autopolyploid. To make sure it was polyploid, you would need to microscopically examine stained chromosomes from mitotically dividing cells and count the chromosome number. 3. Aneuploid. Trisomic refers to three copies of one chromosome. Triploid refers to three copies of all chromosomes. 5. No. Amphidiploid means “doubled diploid.” Because cauliflower has n = 9 chromosome, it could not have arose in this fashion. It has, however, contributed to other amphidiploid species. 9. Cells destined to become pollen grains can be induced by cold treatment to grow into embryoids. These embryoids can then be grown on agar to form monoploid plantlets. 11. Yes. You would expect that one-sixth of the gametes would be a. Also, two-sixths would be A, two-sixths would be Aa, and one-sixth would be AA. 12. Both XXY and XXX would be fertile. XO (Turner) and XXY (Klinefelter) are both sterile. 13. Older mothers have an elevated risk of having a child with Down syndrome and other non-disjunctional events. 14. No. The DNA backbone has strict 5´ to 3´ polarity, and 5´ ends can only be joined to 3´ ends. 15. A crossover within a paracentric inversion heterozygote results in a dicentric bridge (and an acentric fragment). 16. An acentric fragment cannot be aligned or moved during meiosis (or mitosis) and consequently is lost. 20.
    [Show full text]
  • Identification of Differentially Expressed Genes in Human Bladder Cancer Through Genome-Wide Gene Expression Profiling
    521-531 24/7/06 18:28 Page 521 ONCOLOGY REPORTS 16: 521-531, 2006 521 Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling KAZUMORI KAWAKAMI1,3, HIDEKI ENOKIDA1, TOKUSHI TACHIWADA1, TAKENARI GOTANDA1, KENGO TSUNEYOSHI1, HIROYUKI KUBO1, KENRYU NISHIYAMA1, MASAKI TAKIGUCHI2, MASAYUKI NAKAGAWA1 and NAOHIKO SEKI3 1Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Departments of 2Biochemistry and Genetics, and 3Functional Genomics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan Received February 15, 2006; Accepted April 27, 2006 Abstract. Large-scale gene expression profiling is an effective CKS2 gene not only as a potential biomarker for diagnosing, strategy for understanding the progression of bladder cancer but also for staging human BC. This is the first report (BC). The aim of this study was to identify genes that are demonstrating that CKS2 expression is strongly correlated expressed differently in the course of BC progression and to with the progression of human BC. establish new biomarkers for BC. Specimens from 21 patients with pathologically confirmed superficial (n=10) or Introduction invasive (n=11) BC and 4 normal bladder samples were studied; samples from 14 of the 21 BC samples were subjected Bladder cancer (BC) is among the 5 most common to microarray analysis. The validity of the microarray results malignancies worldwide, and the 2nd most common tumor of was verified by real-time RT-PCR. Of the 136 up-regulated the genitourinary tract and the 2nd most common cause of genes we detected, 21 were present in all 14 BCs examined death in patients with cancer of the urinary tract (1-7).
    [Show full text]
  • The Force for Poleward Chromosome Motion in Haemanthus Cells Acts
    The Force for Poleward Chromosome Motion in Haemanthus Cells Acts along the Length of the Chromosome during Metaphase but Only at the Kinetochore during Anaphase Alexey Khodjakov,* Richard W. Cole,* Andrew S. Bajer, ~ and Conly L. Rieder** *Laboratory of Cell Regulation, Wadsworth Center for Laboratories and Research, Albany, New York 12201-0509; ~Department of Biomedical Sciences, State University of New York, Albany, New York 12222; and§Department of Biology, University of Oregon, Eugene, Oregon 97403 Abstract. The force for poleward chromosome motion other force that now transported the fragments to the during mitosis is thought to act, in all higher organisms, spindle equator at 1.5-2.0 tzm/min. These fragments exclusively through the kinetochore. We have used then remained near the spindle midzone until phrag- time-lapse, video-enhanced, differential interference moplast development, at which time they were again contrast light microscopy to determine the behavior of transported randomly poleward but now at ~3/xm/min. kinetochore-free "acentric" chromosome fragments This behavior of acentric chromosome fragments on and "monocentric" chromosomes containing one kine- anastral plant spindles differs from that reported for tochore, created at various stages of mitosis in living the astral spindles of vertebrate cells, and demonstrates higher plant (Haemanthus) cells by laser microsurgery. that in forming plant spindles, a force for poleward Acentric fragments and monocentric chromosomes chromosome motion is generated independent of the generated during spindle formation and metaphase kinetochore. The data further suggest that the three both moved towards the closest spindle pole at a rate stages of non-kinetochore chromosome transport we (~1.0 txm/min) similar to the poleward motion of observed are all mediated by the spindle microtubules.
    [Show full text]