Olive Oil Polyphenols Can Be Useful to Prevent Aging-Associated Neurodegeneration

Total Page:16

File Type:pdf, Size:1020Kb

Olive Oil Polyphenols Can Be Useful to Prevent Aging-Associated Neurodegeneration Journal of Alzheimer’s Parkinsonism & Dementia Review Article Olive Oil polyphenols can be Useful to Prevent Aging-Associated Neurodegeneration This article was published in the following Scient Open Access Journal: Journal of Alzheimer’s Parkinsonism & Dementia Received June 19, 2017; Accepted July 13, 2017; Published July 28, 2017 Fiorella Casamenti1* and Massimo Stefani2 Introduction to Alzheimer’s Disease 1Department Neuroscience, Psychology, Drug Research and Child Health, Division of Alzheimer’s disease (AD), the most common form of dementia affecting a large Pharmacology and Toxicology, Italy proportion of aged people in the developed countries, is considered a protein misfolding 2Department Clinical and Experimental Biomedical disease, and, as it is the case of other pathologies belonging to this group, at the present Sciences, University of Florence, Florence, Italy lacks effective therapy. The key histopathological sign of AD is the presence, in several of extracellular amyloid deposits (Aß) found in diffuse and senile plaques and around brain areas, of intracellular neurofibrillary tangles (NFT) of hyper phosphorylated tau, cerebral vessels and of dystrophic and degenerating neuritis [1]. Aβ plaque formation characterizeis considered AD relatively are thought specific to resultto AD primarilypathology; from however, the presence NFTs are of found plaque associated deposits with other disorders as well [2]. Functional alterations and behavioral deficits that whose main component is a polymeric fibrillar form of the 42 amino acid peptide (Aβ42) generated by proteolysis of the membrane amyloid precursor protein (APP) [3]. Among the different targets explored to treat AD, anti-Aβ approaches directed toward Aβ clearance and/or decreasing its production have shown promising results in animal models of AD [4]. tissue functional impairment and neuronal death has focused the importance, as the More recently, the interest in deciphering the relation between plaque burden, occurrencemain toxic species and to relieveto neurons, its symptoms of the oligomeric has shifted pre-fibrillar from the development assemblies originating of molecules at the onset of fibril growth [5]. Accordingly, the research of treatments able to delay AD toxic oligomeric intermediates. interfering with fibril growth to that of molecules able to counteract the appearance of Focusing dietary regimens associated with a reduced risk of AD in the aged inpopulation preventing can age-relatedbe useful to dysfunctions,find molecules cancer, exploitable neurodegenerative for AD prevention diseases and therapy. and in attenuatingMounting evidence AD-like pathologysupports andthe cognitivebeneficial deterioration. effects of the In Mediterranean particular, MD appearsdiet (MD) to be effective against mild cognitive impairment and its conversion to AD [6]. Olive Polyphenols and the Mediterranean Diet: Valuable Tools against Neurodegeneration The mediterranean diet provides many health benefits Many available data and population studies suggest that greater adherence to MD is [7],of particularly it enhances remarkable cognitive functionfor its health and benefits;reduces thein particular, risk of developing in addition mild to displaying cognitive ant diabetic, anticancer, antimicrobial, anti-inflammatory and anti-dislipidemic effects to the presence, in the MD, of the extra virgin olive oil (EVOO) and its polyphenols, as impairment and of its conversion to AD [6,8]. These findings have been better related shown by several population studies such as the PREDIMED-NAVARRA study [9-11] and *Corresponding Author: Fiorella Casamenti, by a number of clinical trials. The latter include a study carried out in Australia and New Department Neuroscience, Psychology, Zealand (ACTRN12613000602729), showing that a cause-effect relationship does exist Drug Research and Child Health, Division between MD and aging-dependent impairment of cognition [12]; another study, the of Pharmacology and Toxicology, Italy, Tel: +39552758286, Email: [email protected] Prevention con Dieta Mediterranea Nutrition Intervention Trial (ISRCTN35739639), led to conclude that a MD supplemented with olive oil or nuts is associated with a significant improvement of cognitive behavior in a population of aged people [13]. Volume 2 • Issue 1 • 012 www.scientonline.org J Alzheimers Parkinsonism Dementia Citation: Fiorella Casamenti, Massimo Stefani (2017). Olive Oil polyphenols can be Useful to Prevent Aging-Associated Neurodegeneration Page 2 of 6 is responsible for the burning sensation occurring in the throat Finally, the PREDIMED-NAVARRA randomized trial indicated that elenolic acid dialdehyde, p-HPEA-EDA, oleocanthal). The latter supporta MD intervention the idea that modulates the MD, theparticularly way genetic the prolongedfactors influence intake verbascoside, the caffeoylrhamnosylglucoside of HT, the lignans ofcognition its polyphenols, [14]. Overall, provide these populationconsistent andstudies effective and clinical protection trials 1-acetoxypinoresinolfollowing EVOO ingestion and pinoresinol. [27]. Other Amongolive polyphenols these polyphenols, include the most represented in olive oil are oleuropein, both in the glycated and in the aglycone forms, its main metabolite, against the risk of aging-associated neurodegeneration [15,16]. hydroxytyrosol, and oleocanthal. symptoms can result, at least in part, from its remarkable content of polyphenolsThe beneficial (sometimes effects of alsothe MDreferred against to theas biophenols) development arising of AD The content of polyphenols in EVOO can vary largely and and extra virgin olive oil. The polyphenols found in these aliments, cultivar, the ripening stage of the fruit, environmental factors, from the daily consumption of two typical components, red wine thecan extractionreach levels conditions, exceeding the 60 systemsmg/100 tog; itseparate depends oil on from the olive pastes and the storage conditions and time. The latter affect besides their known anti-oxidant effect, show several other spontaneous oxidation and the deposition of suspended particles. beneficial properties (see later). These include the ability to interfere positively with protein aggregationp inhibiting self-assembly of Molecular Mechanisms Underlying Protection of misfolded proteins/peptides into toxic amyloid oligomers and Olive Polyphenols against Neurodegeneration fibrils [17-19] and to affect cell roteostasis in several ways, including the modulation of protein degradation by the ubiquitin/ Modulation of the mTOR/AMPK pathways proteasome and/or the autophagic pathways (see later). Actually, plant, notably olive oil, polyphenols have been shown to andpossess of intracellularbeneficial effects tangles against of AD, the whose tau histopathological protein and signaturethe ensuing is the Most beneficial properties of EVOO polyphenols, notably OLE, presence of extracellular amyloid aggregates of the Aβ peptide have been associated, in addition to their well-known antioxidant power, to the modulation of several types of signaling pathways pathologic symptoms [18,20-23]. A possible beneficial effect of olive involving AMP-activated protein kinase (AMPK) and mammalian polyphenols against Parkinson disease has also been proposed [24]. Olive target of rapamycin mTOR, whose inhibition favors longevity and oil polyphenols have also been shown to be effective against insulin reduces inflammatory states [7,28]. As far as AMPK is concerned, resistance and impaired glucose regulation, two main symptoms it is well known its key role in AD pathogenesis [29]. mTOR is a underlying type 2 diabetes. Considering that increasing evidence potentcentral upstreamregulator ofinhibitors cell metabolism of autophagy, that finely and tunesthis inhibition the balance is supports a strong link between the main symptomsboth pathologiesof diabetes between anabolism and catabolism; it is also one of the most (mainlyat similar type molecular 2) and levels. AD-associated neurodegeneration [25,26] it is conceivable that olive polyphenols can interfere with removed following phosphorylation by AMPK [30]. However, the Olive tree polyphenols modulation by OLE of other neuronal signaling pathways, as it is theModulation case of resveratrol of cell proteostasis [31-33], cannot be excluded. characterizedNatural phenolic by the substances presence areof one secondary or more plant aromatic metabolites, rings p a major group of over 8000 plant compounds chemically Polyphenols, including the olive ones, are involved in regulation of belong to the phyto alexins family, including molecules cell roteostasis, including the ubiquitin/proteasome pathwayis andthe synthesizedwith one or moreby plants, hydroxyl often Substituent’s in leaves, [15].to combat Plant polyphenols pathogens majorthe autophagic proteolytic flux, complex, the latter and under increasing the control, evidence among indicates others, of the (bacteria, fungi) or to discourage leaf-eating insects. In the mTOR/AMPK machinery (see above) [34]. The proteasome family of Oleaceae, some polyphenols are highly concentrated that also in fruits before ripening, discouraging animals to eat fruits proteasomal function declines significantly with aging and in before their maturation for seed dispersal. The olive tree (Olea aging-related pathologies [35]. Plant polyphenols, including europaea oleuropein, can increase proteasome activity, with increased life span [36], together with the expression of proteasomal subunits ) produces a specific battery
Recommended publications
  • Effect of Processing on Phenolic Composition of Olive Oil Products and Olive Mill By-Products and Possibilities for Enhancement of Sustainable Processes
    processes Review Effect of Processing on Phenolic Composition of Olive Oil Products and Olive Mill By-Products and Possibilities for Enhancement of Sustainable Processes Fereshteh Safarzadeh Markhali CEB—Centre of Biological Engineering, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; [email protected] or [email protected] Abstract: The bio-functional properties of olive oil products and by-products rely greatly on the proportions and types of the endogenous phenolics that may favorably/unfavorably change during various processing conditions. The olive oil industrial activities typically produce (i) olive oils, the main/marketable products, and (ii) olive mill by-products. The mechanical processing of olive oil extraction is making progress in some areas. However, the challenges inherent in the existing system, taking into consideration, the susceptibilities of phenolics and their biosynthetic variations during processing, hamper efforts to ascertain an ideal approach. The proposed innovative means, such as inclusion of emerging technologies in extraction system, show potential for sustainable development of olive oil processing. Another crucial factor, together with the technological advancements of olive oil extraction, is the valorization of olive mill by-products that are presently underused while having great potential for extended/high-value applications. A sustainable re-utilization of these Citation: Safarzadeh Markhali, F. valuable by-products helps contribute to (i) food and nutrition security and (ii) economic and Effect of Processing on Phenolic Composition of Olive Oil Products environmental sustainability. This review discusses typical processing factors responsible for the and Olive Mill By-Products and fate of endogenous phenolics in olive oil products/by-products and provides an overview of the Possibilities for Enhancement of possibilities for the sustainable processing to (i) produce phenolic-rich olive oil and (ii) optimally Sustainable Processes.
    [Show full text]
  • Cytotoxic Activity of Oleocanthal Isolated from Extra-Virgin Olive Oil
    Cytotoxic activity of oleocanthal isolated from virgin olive oil on human melanoma cells Stefano Fogli1,3, Chiara Arena1, Sara Carpi1, Beatrice Polini1, Simone Bertini1, Maria Digiacomo1,3, Francesca Gado1, Alessandro Saba2, Giuseppe Saccomanni1, Maria Cristina Breschi1, Paola Nieri1,3, Clementina Manera1,3, Marco Macchia1,3 1Department of Pharmacy, University of Pisa, Pisa, Italy 2Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy 3Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, Pisa, Italy Corresponding author: Stefano Fogli, PharmD, MD, PhD Department of Pharmacy University of Pisa 56126 Pisa Italy Phone: +39 050 2219520 e-mail: [email protected] 1 Abstract Oleocanthal is one of the phenolic compounds of extra virgin olive oil with important anti- inflammatory properties. Although a potential anticancer activity has been reported, only limited evidence has been provided in cutaneous malignant melanoma. The present study is aimed at investigating the selective in vitro anti-proliferative activity of oleocanthal against human malignant melanoma cells. Since oleocanthal is not commercial available, it was obtained as pure standard by direct extraction and purification from extra virgin olive oil. Cell viability experiments carried out by WST-1 assay demonstrated that oleocanthal had a remarkable and selective activity for human melanoma cells versus normal dermal fibroblasts with IC50s in the low micromolar range of concentrations. Such an effect was paralleled by a significant inhibition of ERK1/2 and AKT phosphorylation and down-regulation of Bcl-2 expression. These findings may suggest that extra virgin olive oil phenolic extract enriched in oleocanthal deserves further investigation in skin cancer.
    [Show full text]
  • A Proteomic Approach to Uncover Neuroprotective Mechanisms of Oleocanthal Against Oxidative Stress
    International Journal of Molecular Sciences Article A Proteomic Approach to Uncover Neuroprotective Mechanisms of Oleocanthal against Oxidative Stress Laura Giusti 1,†, Cristina Angeloni 2,†, Maria Cristina Barbalace 3, Serena Lacerenza 4, Federica Ciregia 5, Maurizio Ronci 6 ID , Andrea Urbani 7, Clementina Manera 4, Maria Digiacomo 4 ID , Marco Macchia 4, Maria Rosa Mazzoni 4, Antonio Lucacchini 1 ID and Silvana Hrelia 3,* ID 1 Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; [email protected] (L.G.); [email protected] (A.L.) 2 School of Pharmacy, University of Camerino, 62032 Camerino, Italy; [email protected] 3 Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy; [email protected] 4 Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; [email protected] (S.L.); [email protected] (C.M.); [email protected] (M.D.); [email protected] (M.M.); [email protected] (M.R.M.) 5 Department of Rheumatology, GIGA Research, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège, 4000 Liège, Belgium; [email protected] 6 Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 65127 Pescara, Italy; [email protected] 7 Institute of Biochemistry and Clinical Biochemistry, Catholic University, 00198 Rome, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-051-209-1235 † These authors contributed equally to this work. Received: 3 July 2018; Accepted: 1 August 2018; Published: 8 August 2018 Abstract: Neurodegenerative diseases represent a heterogeneous group of disorders that share common features like abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, impairment of mitochondrial functions, apoptosis, inflammation, and oxidative stress.
    [Show full text]
  • Current Disease-Targets for Oleocanthal As Promising Natural Therapeutic Agent
    International Journal of Molecular Sciences Review Current Disease-Targets for Oleocanthal as Promising Natural Therapeutic Agent Antonio Segura-Carretero 1,2 and Jose Antonio Curiel 2,3,* 1 Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; [email protected] 2 Functional Food Research and Development Center, Health Science Technological Park, 18016 Granada, Spain 3 Torres Morente S.A.U., Bussines Park Metropolitano, 18130 Escúzar, Granada, Spain * Correspondence: [email protected]; Tel.: +34-958-637-206 Received: 5 September 2018; Accepted: 20 September 2018; Published: 24 September 2018 Abstract: The broad number of health benefits which can be obtained from the long-term consumption of olive oil are attributed mainly to its phenolic fraction. Many olive oil phenolics have been studied deeply since their discovery due to their bioactivity properties, such as Hydroxytyrosol. Similarly, in the last decade, the special attention of researchers has been addressed to Oleocanthal (OC). This olive oil phenolic compound has recently emerged as a potential therapeutic agent against a variety of diseases, including cancer, inflammation, and neurodegenerative and cardiovascular diseases. Recently, different underlying mechanisms of OC against these diseases have been explored. This review summarizes the current literature on OC to date, and focuses on its promising bioactivities against different disease-targets. Keywords: Oleocanthal; phenolic compounds; olive oil; therapeutic properties 1. Introduction The Mediterranean diet is characterized by a high consumption of olive oil, which plays a central role in the health benefits of the diet [1,2]. In fact, extra virgin olive oil (EVOO) in the Mediterranean region has long been associated with lower occurrences of certain chronic diseases, such as cancer incidence and cardiovascular mortality [3], as well as neurodegenerative dementias and Alzheimer disease [2–6].
    [Show full text]
  • Nutrition and Prevention of Alzheimer's Dementia Arun Swaminathan University of Kentucky, [email protected]
    University of Kentucky UKnowledge Neurology Faculty Publications Neurology 10-20-2014 Nutrition and Prevention of Alzheimer's Dementia Arun Swaminathan University of Kentucky, [email protected] Gregory A. Jicha University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/neurology_facpub Part of the Neurology Commons Repository Citation Swaminathan, Arun and Jicha, Gregory A., "Nutrition and Prevention of Alzheimer's Dementia" (2014). Neurology Faculty Publications. 8. https://uknowledge.uky.edu/neurology_facpub/8 This Review is brought to you for free and open access by the Neurology at UKnowledge. It has been accepted for inclusion in Neurology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Nutrition and Prevention of Alzheimer's Dementia Notes/Citation Information Published in Frontiers in Aging Neuroscience, v. 6, article 282, p. 1-13. © 2014 Swaminathan and Jicha. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Digital Object Identifier (DOI) http://dx.doi.org/10.3389/fnagi.2014.00282 This review is available at UKnowledge: https://uknowledge.uky.edu/neurology_facpub/8 REVIEW ARTICLE published: 20 October 2014 doi: 10.3389/fnagi.2014.00282 Nutrition and prevention of Alzheimer’s dementia Arun Swaminathan and Gregory A.
    [Show full text]
  • Changes in Glutathione, Ascorbate and Antioxidant Enzymes During
    1 Changes in glutathione, ascorbate and antioxidant enzymes during 2 olive fruit ripening 3 4 Eduardo López-Huertas1, * and José M. Palma 5 6 1Group of Antioxidants and Free Radicals in Biotechnology, Food and Agriculture. 7 Estación Experimental Zaidín, Consejo Superior de Investigaciones Científicas (CSIC); 8 1, Profesor Albareda, Granada 18008, Spain 9 10 *To whom correspondence should be addressed: 11 Eduardo Lopez-Huertas. Group of Antioxidants and Free Radicals in Biotechnology, 12 Food and Agriculture. Estación Experimental del Zaidín, Consejo Superior de 13 Investigaciones Científicas (CSIC), Profesor Albareda 1, Granada 18008, Spain. 14 Tel.: +34 958 181600 (Ext 181); Fax: +34 958 181609. 15 E-mail: [email protected] 16 17 1 18 ABSTRACT 19 The content of glutathione, ascorbate (ASC) and the enzymatic antioxidants superoxide 20 dismutase, catalase and components of the ascorbate-glutathione cycle were investigated 21 in olive fruit (cv. Picual) selected at the green, turning and mature ripening stages. The 22 changes observed in total and reduced glutathione (GSH), oxidised glutathione (GSSG), 23 the ratio GSH/GSSG, ASC and antioxidant enzymes (mainly superoxide dismutase, 24 catalase, ascorbate peroxidase and glutathione reductase) indicate a shift to a moderate 25 cellular oxidative status during ripening and suggest a role for antioxidants in the process. 26 The antioxidant composition of olive oils obtained from the olive fruits of the study was 27 investigated. A model is proposed for the recycling of antioxidant polyphenols mediated 28 by endogenous molecular antioxidants in olive fruit. 29 30 31 32 33 Keywords: Antioxidant, olive (Olea europaea), ripening. 2 34 INTRODUCTION 35 The generation of reactive oxygen species (ROS) is a consequence of aerobic .- 36 metabolism in plant and animal cells.
    [Show full text]
  • Thyroid-Modulating Activities of Olive and Its Polyphenols: a Systematic Review
    nutrients Review Thyroid-Modulating Activities of Olive and Its Polyphenols: A Systematic Review Kok-Lun Pang 1,† , Johanna Nathania Lumintang 2,† and Kok-Yong Chin 1,* 1 Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; [email protected] 2 Faculty of Applied Sciences, UCSI University Kuala Lumpur Campus, Jalan Menara Gading, Taman Connaught, Cheras 56000, Kuala Lumpur, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +60-3-91459573 † These authors contributed equally to this work. Abstract: Olive oil, which is commonly used in the Mediterranean diet, is known for its health benefits related to the reduction of the risks of cancer, coronary heart disease, hypertension, and neurodegenerative disease. These unique properties are attributed to the phytochemicals with potent antioxidant activities in olive oil. Olive leaf also harbours similar bioactive compounds. Several studies have reported the effects of olive phenolics, olive oil, and leaf extract in the modulation of thyroid activities. A systematic review of the literature was conducted to identify relevant studies on the effects of olive derivatives on thyroid function. A comprehensive search was conducted in October 2020 using the PubMed, Scopus, and Web of Science databases. Cellular, animal, and human studies reporting the effects of olive derivatives, including olive phenolics, olive oil, and leaf extracts on thyroid function were considered. The literature search found 445 articles on this topic, but only nine articles were included based on the inclusion and exclusion criteria. All included articles were animal studies involving the administration of olive oil, olive leaf extract, or olive pomace residues orally.
    [Show full text]
  • Olive Oil and the Hallmarks of Aging
    molecules Review Olive Oil and the Hallmarks of Aging Lucía Fernández del Río 1,†, Elena Gutiérrez-Casado 1,†, Alfonso Varela-López 2,† and José M. Villalba 1,* 1 Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Campus Rabanales, Severo Ochoa Building, 14014 Córdoba, Spain; [email protected] (L.F.R.); [email protected] (E.G.-C.) 2 Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, 18100 Granada, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-957-218-595 † These authors contributed equally to this work and must be considered as first authors. Academic Editors: Maurizio Battino, Etsuo Niki and José L. Quiles Received: 15 December 2015 ; Accepted: 22 January 2016 ; Published: 29 January 2016 Abstract: Aging is a multifactorial and tissue-specific process involving diverse alterations regarded as the “hallmarks of aging”, which include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intracellular communication. Virtually all these hallmarks are targeted by dietary olive oil, particularly by virgin olive oil, since many of its beneficial effects can be accounted not only for the monounsaturated nature of its predominant fatty acid (oleic acid), but also for the bioactivity of its minor compounds, which can act on cells though both direct and indirect mechanisms due to their ability to modulate gene expression. Among the minor constituents of virgin olive oil, secoiridoids stand out for their capacity to modulate many pathways that are relevant for the aging process.
    [Show full text]
  • Tissue Distribution of Oleocanthal and Its Metabolites After Oral Ingestion in Rats
    antioxidants Article Tissue Distribution of Oleocanthal and Its Metabolites after Oral Ingestion in Rats Anallely López-Yerena 1 , Anna Vallverdú-Queralt 1,2 , Olga Jáuregui 3 , Xavier Garcia-Sala 4 , Rosa M. Lamuela-Raventós 1,2 and Elvira Escribano-Ferrer 2,4,5,* 1 Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; [email protected] (A.L.-Y.); [email protected] (A.V.-Q.); [email protected] (R.M.L.-R.) 2 CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain 3 Scientific and Technological Center of University of Barcelona (CCiTUB), 08028 Barcelona, Spain; [email protected] 4 Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; [email protected] 5 Pharmaceutical Nanotechnology Group I+D+I Associated Unit to CSIC, University of Barcelona, 08028 Barcelona, Spain * Correspondence: [email protected]; Fax: +34-9340-35937 Abstract: Claims for the potential health benefits of oleocanthal (OLC), a dietary phenolic compound found in olive oil, are based mainly on in vitro studies. Little is known about the tissue availability Citation: López-Yerena, A.; of OLC, which is rapidly metabolized after ingestion. In this study, the distribution of OLC and its Vallverdú-Queralt, A.; Jáuregui, O.; metabolites in rat plasma and tissues (stomach, intestine, liver, kidney, spleen, lungs, heart, brain, Garcia-Sala, X.; Lamuela-Raventós, thyroid and skin) at 1, 2 and 4.5 h after the acute intake of a refined olive oil containing 0.3 mg/mL R.M.; Escribano-Ferrer, E.
    [Show full text]
  • The Biological Activities of Oleocanthal from a Molecular Perspective
    nutrients Review The Biological Activities of Oleocanthal from a Molecular Perspective Kok-Lun Pang 1 and Kok-Yong Chin 2,* 1 Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; [email protected] 2 Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Malaysia * Correspondence: [email protected]; Tel.: +60-16-708-2900 Received: 10 April 2018; Accepted: 3 May 2018; Published: 6 May 2018 Abstract: Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.
    [Show full text]
  • Olive Oil Contains Oleocanthal, a Natural Anti-Inflammatory
    WONDER 1 OLIVE OIL CONTAINS OLEOCANTHAL, A NATURAL ANTI-INFLAmmATORY Scientists discovered that extra-virgin olive oil contains oleocanthal, which mimics the activity of ibuprofen. Oleocanthal, like ibuprofen, may also be able to help reduce arthritis. Natural, safe extra-virgin olive oil can easily be incorporated into a daily diet, say researchers who have set up the Oleocanthal International Society. hen the American scientist Dr. Gary Beauchamp accepted Wan invitation to an olive oil symposium of newly pressed olive oil in Sicily, he had no idea it would change his life and the rest of the olive oil world. The sensory chemist was employed at the time at Monell Chemical Senses Center in Philadelphia, working specifically on a project relating to the medication ibuprofen. The anti-inflammatory drug stings as it goes down the throat; his job was to investigate why and to improve the taste. Along with other scientists, food specialists, and chefs, he fol- lowed the precise and somewhat complicated instructions of how to taste olive oil. He cradled the cup, sipped, and slurped as he was told and promptly experienced a déjà vu moment: a burn in his throat, one that he recognized instantly as similar to liquid ibuprofen. The 36 THE 7 WONDERS OF OLIVE OIL discovery in Italy was totally unexpected. Here were two unrelated compounds showing the same effects. Delighted with his accidental scientific find, Dr. Beauchamp trav- eled back to Philadelphia, taking some of the precious oil with him. There, he and biologist Dr. Paul Breslin began investigating the prop- erties of the pungent oil with their team.
    [Show full text]
  • Combined Treatment with Three Natural Antioxidants Enhances Neuroprotection in a SH-SY5Y 3D Culture Model
    antioxidants Article Combined Treatment with Three Natural Antioxidants Enhances Neuroprotection in a SH-SY5Y 3D Culture Model Pasquale Marrazzo 1 , Cristina Angeloni 2,* and Silvana Hrelia 2 1 Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy; [email protected] 2 School of Pharmacy, University of Camerino, 62032 Camerino, Italy; [email protected] * Correspondence: [email protected] Received: 19 August 2019; Accepted: 18 September 2019; Published: 20 September 2019 Abstract: Currently, the majority of cell-based studies on neurodegeneration are carried out on two-dimensional cultured cells that do not represent the cells residing in the complex microenvironment of the brain. Recent evidence has suggested that three-dimensional (3D) in vitro microenvironments may better model key features of brain tissues in order to study molecular mechanisms at the base of neurodegeneration. So far, no drugs have been discovered to prevent or halt the progression of neurodegenerative disorders. New therapeutic interventions can come from phytochemicals that have a broad spectrum of biological activities. On this basis, we evaluated the neuroprotective effect of three phytochemicals (sulforaphane, epigallocatechin gallate, and plumbagin) alone or in combination, focusing on their ability to counteract oxidative stress. The combined treatment was found to be more effective than the single treatments. In particular, the combined treatment increased cell viability and reduced glutathione (GSH) levels, upregulated antioxidant enzymes and insulin-degrading enzymes, and downregulated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 and 2 in respect to peroxide-treated cells. Our data suggest that a combination of different phytochemicals could be more effective than a single compound in counteracting neurodegeneration, probably thanks to a pleiotropic mechanism of action.
    [Show full text]