Hsp90 Activity Modulation by Plant Secondary Metabolites

Total Page:16

File Type:pdf, Size:1020Kb

Hsp90 Activity Modulation by Plant Secondary Metabolites Reviews 1223 Hsp90 Activity Modulation by Plant Secondary Metabolites Authors Fabrizio Dal Piaz1, Stefania Terracciano 1, Nunziatina De Tommasi 1, Alessandra Braca 2 Affiliations 1 Dipartimento di Farmacia, Università di Salerno, Fisciano (SA), Italy 2 Dipartimento di Farmacia, Università di Pisa, Pisa, Italy Key words Abstract Abbreviations l" Hsp90 ! ! l" Hsp90 inhibitors Hsp90 is an evolutionarily conserved adenosine 17-AAG: 17-allylamino-17- l" plant molecules triphosphate-dependent molecular chaperone demethoxygeldanamycin l" client proteins and is one of the most abundant proteins in the AhR: aryl hydrocarbon receptor cells (1–3%). Hsp90 is induced when a cell under- Akt: protein kinase B goes various types of environmental stresses such BBM: berbamine as heat, cold, or oxygen deprivation. It is involved CEP: cepharanthine in the turnover, trafficking, and activity of client CL: celastrol proteins, including apoptotic factors, protein ki- 17-DMAG: 17-dimethylaminoethylamino-17- nases, transcription factors, signaling proteins, demethoxygeldanamycin and a number of oncoproteins. Most of the EGCG: (−)-epigallocatechin-3-gallate Hsp90 client proteins are involved in cell growth, EGFR: epidermal growth factor receptor 1 differentiation, and survival, and include kinases, eNOS: endothelial nitric oxide synthase nuclear hormone receptors, transcription factors, ERα: estrogen receptor α and other proteins associated with almost all the GDA: geldanamycin hallmarks of cancer. Consistent with these diverse Her2: human epidermal growth factor activities, genetic and biochemical studies have receptor 2 demonstrated the implication of Hsp90 in a range HIF-1α: hypoxia-inducible factor-1α of diseases, including cancer, making this chaper- HRI: heme-regulated eIF2α kinase one an interesting target for drug research. HSF1: heat shock factor-1 During the last few decades, plant secondary me- Hsp90: heat shock protein 90 tabolites have been studied as a major source for LPS: lipopolysaccharide lead compounds in drug discovery. Recently, sev- Met: mesenchymal-epithelial received Dec. 30, 2014 eral plant-derived small molecules have been dis- transition factor revised May 13, 2015 covered exhibiting inhibitory activity towards NF-κB: nuclear factor-kappaB accepted May 30, 2015 This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited. Hsp90, such as epigallocatechin gallate, gedunin, NSCLC: non-small cell lung cancer Bibliography lentiginosine, celastrol, and deguelin. In this p-Akt: phosphorylated protein kinase B DOI http://dx.doi.org/ work, an overview of plant secondary metabolites PAH: polycyclic aromatic hydrocarbon 10.1055/s-0035-1546251 interfering with Hsp90 activities is provided. PI3K: phosphotidylinositol-3-kinase Published online July 30, 2015 Raf-1: proto-oncogene serine/threonine- Planta Med 2015; 81: 1223–1239 © Georg Thieme protein kinase Verlag KG Stuttgart · New York · SPR: surface plasmon resonance ISSN 0032‑0943 STAT3: signal transducer and activators of Correspondence transcription 3 Prof. Nunziatina De Tommasi TPH: triterpenes from Patrinia heterophylla Dipartimento di Farmacia VEGF: vascular endothelial growth factor Università di Salerno Via Giovanni Paolo II 132 84084 Fisciano (Salerno) Italy Phone: + 39089969754 Fax: + 390 89969602 [email protected] Dal Piaz F et al. Hsp90 Activity Modulation… Planta Med 2015; 81: 1223–1239 1224 Reviews Introduction inhibitors, such as radicicol, GDA, and 17-DMAG, are derived ! from fungi metabolism and possess the benzoquinone ansamycin Presently, the effective therapeutic interventions in cancer dis- (GA) or the resorcinol scaffold (radicicol). They are currently eases still remain elusive, thus the identification of new possible being evaluated in over 80 ongoing or completed clinical trials, molecular target(s) becomes crucial. In the last two decades, at- offering a promising approach for the treatment of different can- tention has been focused on the role of Hsp90, an evolutionary cer diseases [12,13]. conserved molecular chaperone involved in the regulation, fold- However, there is still a wide requirement for new Hsp90 inhib- ing, stabilization, activation, and assembly of more than 200 ”cli- itors, and the plant kingdom has been explored in order to find ent” proteins, including apoptosis-related protein kinases, tran- new promising compounds. This review provides a brief excur- scription factors, and signaling proteins, directly associated with sion of plant secondary metabolites interfering with Hsp90 activ- most of the cancer hallmarks [1,2]. Structurally, Hsp90 is a flexi- ities and highlights findings regarding their possible molecular ble homodimer including three distinct domains: an N-terminal mechanism of action. nucleotide-binding domain where the ATPase activity is mainly located, a middle client protein binding/ATP-hydrolysis regulat- ing domain, and a C-terminus domain responsible for dimeriza- Flavonoids tion of the protein [3]. Hsp90 exists in different isoforms: two in ! the cytoplasm, Hsp90α (the heat shock-induced form) and Flavones and flavonols Hsp90β (the constitutively active form), one localized at the en- Apigenin, chemically known as 4′,5,7,-trihydroxyflavone, is a doplasmic reticulum (94KDa glucose-regulated protein, Grp94), common flavone widespread in plants of the Asteraceae family one at the mitochondria (tumor necrosis factor receptor-associ- and in many fruits and vegetables. This flavonoid possesses vari- ated protein 1, TRAP1), and finally the cell surface-bound, cell-re- ous clinically relevant properties, such as antitumor and anti-in- leased and cell-secreted Hsp90 collectively known as “extracellu- flammatory activities [14]. Among its anticancer effects, it has lar Hsp90′′ (eHsp90). Several data reported in the literature sug- been reported to suppress metastasis, to inhibit cancer and cell gest the eukaryotic cytosol Hsp90α to be the major form involved proliferation, and to have antiangiogenic properties mediated by in cancer, also demonstrating that this isoform may have more the alteration of different pathways [15]. Anyway, it has to be diverse action than Hsp90β [4]. In the presence of stressed micro- considered that the metabolic activity of the gut microflora on environments, cancer cells undergo adaptive mutations that lead apigenin is often responsible for the modulation of its biological to an increment of Hsp90 activity. Therefore, in order to obtain a activity as a dietary compound, since itʼs catabolized into smaller simultaneous disruption of multiple signaling pathways impor- phenolic compounds [16,17]. In a study focused on the investiga- tant for the growth and viability of cancer cells, and to induce cel- tion of the antiangiogenic effect of apigenin, it was found that it lular apoptosis and/or necrosis, the inhibition of the Hsp90 pro- suppresses the expression of VEGF in endothelial cells via the tein folding machinery could represent a multifaceted approach degradation of HIF-1α protein mediated by interference with the toward the tumor treatment [5–8]. Hsp90 inhibitors are grouped Hsp90 chaperoning function [18]. Recently, the in vitro therapeu- into numerous classes based on individual modes of inhibition tic potential role of apigenin for the treatment of multiple myelo- which are as follows: i) obstructing the binding of ATP at the ATP- ma has emerged. Different biological techniques reveled that api- ase catalytic site, ii) interference in co-chaperone/Hsp90 interac- genin manifested antiproliferative activity in human multiple tions, iii) blocking the receptor interactions of client/Hsp90 alli- myeloma through CK2-mediated phosphorylation of Cdc37, dis- ances, and iv) intervention in the routes of post-translational rupting the Hsp90/Cdc37/client complex via the proteasome modification in Hsp90 [9,10]. Regardless of the mechanism, a pathway [19]. Moreover, its modulation of the chaperone Hsp90 hallmark of Hsp90 inhibition is the degradation of its client pro- induced the degradation of many kinase client proteins, includ- teins; the inhibition of this chaperone indeed leads Hsp90 client ing RIP1, Src, Raf-1, Cdk4, and Akt. proteins to adopt an aberrant conformation, which triggers their Chrysin (5,7-dihydroxyflavone) is a naturally occurring flavone ubiquitination, followed by proteasome-dependent degradation. found in the plant kingdom (Passiflora caerulea L. and Passiflora Therefore, compounds able to downregulate the levels of Hsp90 incarnata L., Passifloraceae) [20–22] endowed with many biolog- client proteins are often considered promising Hsp90 inhibitor ical activities, such as anti-inflammatory, anticancer, and antiox- candidates. idant [23,24]. Although chrysin is a promising antitumor agent, Consistent with the notion that small molecules synthesized by little information is known about its molecular mechanism. It This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited. the plant kingdom can be considered evolutionary chosen “priv- was described that chrysin inhibits the expression of HIF-1α and ileged structures” since they have evolved in a natural selection VEGF in human prostate cancer DU145 cells [25]. In this study, it process to achieve optimal interactions with biological macro- was reported that chrysin inhibits the expression of HIF-1α by molecules, natural molecules have shown an extraordinary po- multiple pathways, including Hsp90 modulation. In particular, it tential as modulators of proteins
Recommended publications
  • Effect of Processing on Phenolic Composition of Olive Oil Products and Olive Mill By-Products and Possibilities for Enhancement of Sustainable Processes
    processes Review Effect of Processing on Phenolic Composition of Olive Oil Products and Olive Mill By-Products and Possibilities for Enhancement of Sustainable Processes Fereshteh Safarzadeh Markhali CEB—Centre of Biological Engineering, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; [email protected] or [email protected] Abstract: The bio-functional properties of olive oil products and by-products rely greatly on the proportions and types of the endogenous phenolics that may favorably/unfavorably change during various processing conditions. The olive oil industrial activities typically produce (i) olive oils, the main/marketable products, and (ii) olive mill by-products. The mechanical processing of olive oil extraction is making progress in some areas. However, the challenges inherent in the existing system, taking into consideration, the susceptibilities of phenolics and their biosynthetic variations during processing, hamper efforts to ascertain an ideal approach. The proposed innovative means, such as inclusion of emerging technologies in extraction system, show potential for sustainable development of olive oil processing. Another crucial factor, together with the technological advancements of olive oil extraction, is the valorization of olive mill by-products that are presently underused while having great potential for extended/high-value applications. A sustainable re-utilization of these Citation: Safarzadeh Markhali, F. valuable by-products helps contribute to (i) food and nutrition security and (ii) economic and Effect of Processing on Phenolic Composition of Olive Oil Products environmental sustainability. This review discusses typical processing factors responsible for the and Olive Mill By-Products and fate of endogenous phenolics in olive oil products/by-products and provides an overview of the Possibilities for Enhancement of possibilities for the sustainable processing to (i) produce phenolic-rich olive oil and (ii) optimally Sustainable Processes.
    [Show full text]
  • Cytotoxic Activity of Oleocanthal Isolated from Extra-Virgin Olive Oil
    Cytotoxic activity of oleocanthal isolated from virgin olive oil on human melanoma cells Stefano Fogli1,3, Chiara Arena1, Sara Carpi1, Beatrice Polini1, Simone Bertini1, Maria Digiacomo1,3, Francesca Gado1, Alessandro Saba2, Giuseppe Saccomanni1, Maria Cristina Breschi1, Paola Nieri1,3, Clementina Manera1,3, Marco Macchia1,3 1Department of Pharmacy, University of Pisa, Pisa, Italy 2Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy 3Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, Pisa, Italy Corresponding author: Stefano Fogli, PharmD, MD, PhD Department of Pharmacy University of Pisa 56126 Pisa Italy Phone: +39 050 2219520 e-mail: [email protected] 1 Abstract Oleocanthal is one of the phenolic compounds of extra virgin olive oil with important anti- inflammatory properties. Although a potential anticancer activity has been reported, only limited evidence has been provided in cutaneous malignant melanoma. The present study is aimed at investigating the selective in vitro anti-proliferative activity of oleocanthal against human malignant melanoma cells. Since oleocanthal is not commercial available, it was obtained as pure standard by direct extraction and purification from extra virgin olive oil. Cell viability experiments carried out by WST-1 assay demonstrated that oleocanthal had a remarkable and selective activity for human melanoma cells versus normal dermal fibroblasts with IC50s in the low micromolar range of concentrations. Such an effect was paralleled by a significant inhibition of ERK1/2 and AKT phosphorylation and down-regulation of Bcl-2 expression. These findings may suggest that extra virgin olive oil phenolic extract enriched in oleocanthal deserves further investigation in skin cancer.
    [Show full text]
  • A Proteomic Approach to Uncover Neuroprotective Mechanisms of Oleocanthal Against Oxidative Stress
    International Journal of Molecular Sciences Article A Proteomic Approach to Uncover Neuroprotective Mechanisms of Oleocanthal against Oxidative Stress Laura Giusti 1,†, Cristina Angeloni 2,†, Maria Cristina Barbalace 3, Serena Lacerenza 4, Federica Ciregia 5, Maurizio Ronci 6 ID , Andrea Urbani 7, Clementina Manera 4, Maria Digiacomo 4 ID , Marco Macchia 4, Maria Rosa Mazzoni 4, Antonio Lucacchini 1 ID and Silvana Hrelia 3,* ID 1 Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; [email protected] (L.G.); [email protected] (A.L.) 2 School of Pharmacy, University of Camerino, 62032 Camerino, Italy; [email protected] 3 Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy; [email protected] 4 Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; [email protected] (S.L.); [email protected] (C.M.); [email protected] (M.D.); [email protected] (M.M.); [email protected] (M.R.M.) 5 Department of Rheumatology, GIGA Research, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège, 4000 Liège, Belgium; [email protected] 6 Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 65127 Pescara, Italy; [email protected] 7 Institute of Biochemistry and Clinical Biochemistry, Catholic University, 00198 Rome, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-051-209-1235 † These authors contributed equally to this work. Received: 3 July 2018; Accepted: 1 August 2018; Published: 8 August 2018 Abstract: Neurodegenerative diseases represent a heterogeneous group of disorders that share common features like abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, impairment of mitochondrial functions, apoptosis, inflammation, and oxidative stress.
    [Show full text]
  • Toxic Effects As a Result of Herbal Medicine Intake Toxic Effects As a Result of Herbal Medicine Intake
    ProvisionalChapter chapter 9 Toxic Effects as a Result of Herbal Medicine Intake Toxic Effects as a Result of Herbal Medicine Intake Nudrat Fatima and Naira Nayeem Nudrat Fatima and Naira Nayeem Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/64468 Abstract Concurrent use of herbs with therapeutic drugs increases the potential of herb-drug interactions. The clinical importance of herb-drug interactions is associated with the particular herb, drug, and patient profile. Herbs are potentially potent as they affect body functions. The use herbal medicine and supplements can be risky as they are not subject to review by the FDA. In this chapter, we make an attempt to discuss the possible reasons for toxic effects, types of toxicities, some reported cases of toxicities involving the use of herbal medicine alone, and some herb-drug interactions. In addition to this, possible ways to reduce toxic effects of herbal medicines have also been discussed. Keywords: herbal medicine, toxicity, reported cases, herb-drug interaction 1. Introduction Herbal medicines are advertised to be free from side effects, which is a myth. A large number of people still rely on herbal medicines, and some people take herbal medicines along with routine allopathic medicines especially in cases of diabetes, hypertension, thyroid disease, etc., where the patient is on long-term or lifelong treatment. Many commercial websites are available on Internet, which insist that herbal medicines have no side effects. In underdeveloped and developing countries, there are no specific laws for herbal practitioners and companies marketing herbal products.
    [Show full text]
  • Functional P53 Is Required for Triptolide-Induced Apoptosis and AP-1 and Nuclear Factor-Κb Activation in Gastric Cancer Cells
    Oncogene (2001) 20, 8009 ± 8018 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Functional p53 is required for triptolide-induced apoptosis and AP-1 and nuclear factor-kB activation in gastric cancer cells Xiao-Hua Jiang1,2,5, Benjamin Chun-Yu Wong*,2,5, Marie Chia-Mi Lin3, Geng-Hui Zhu2, Hsiang-Fu Kung3, Shi-Hu Jiang1, Dan Yang4 and Shiu-Kum Lam2 1Department of Gastroenterology, Rui-jin Hospital, Shanghai, Peoples Republic of China; 2Department of Medicine, University of Hong Kong, Hong Kong; 3Institute of Molecular Biology, University of Hong Kong, Hong Kong; 4Department of Chemistry, University of Hong Kong, Hong Kong Triptolide, a major component in the extract of Chinese Introduction herbal plant Tripterygium wilfordii Hook f (TWHf), has potential anti-neoplastic eect. In the present study we Tripterygium wilfordii Hook f (TWHf) has been used investigated the potential therapeutic eects and mechan- in traditional Chinese medicine for centuries. Its crude isms of triptolide against human gastric cancer cells. extracts continue to be used to treat a variety of Four gastric cancer cell lines with dierent p53 status, autoimmune diseases, such as rheumatoid arthritis, AGS and MKN-45 (wild type p53); MKN-28 and SGC- nephritis, and systemic lupus erythematosus (Qin et al., 7901 (mutant p53) were observed as to cell growth 1981; Tao et al., 1989; Jiang et al., 1994). It has been inhibition and induction of apoptosis in response to suggested that the major therapeutic eects of TWHf triptolide treatment. We showed that triptolide inhibited are from ingredients such as triptolide, tripdiolide, cell growth, induced apoptosis and suppressed NK-kB triptonide, and triptophenolide (Zhang et al., 1990).
    [Show full text]
  • Note: the Letters 'F' and 'T' Following the Locators Refers to Figures and Tables
    Index Note: The letters ‘f’ and ‘t’ following the locators refers to figures and tables cited in the text. A Acyl-lipid desaturas, 455 AA, see Arachidonic acid (AA) Adenophostin A, 71, 72t aa, see Amino acid (aa) Adenosine 5-diphosphoribose, 65, 789 AACOCF3, see Arachidonyl trifluoromethyl Adlea, 651 ketone (AACOCF3) ADP, 4t, 10, 155, 597, 598f, 599, 602, 669, α1A-adrenoceptor antagonist prazosin, 711t, 814–815, 890 553 ADPKD, see Autosomal dominant polycystic aa 723–928 fragment, 19 kidney disease (ADPKD) aa 839–873 fragment, 17, 19 ADPKD-causing mutations Aβ, see Amyloid β-peptide (Aβ) PKD1 ABC protein, see ATP-binding cassette protein L4224P, 17 (ABC transporter) R4227X, 17 Abeele, F. V., 715 TRPP2 Abbott Laboratories, 645 E837X, 17 ACA, see N-(p-amylcinnamoyl)anthranilic R742X, 17 acid (ACA) R807X, 17 Acetaldehyde, 68t, 69 R872X, 17 Acetic acid-induced nociceptive response, ADPR, see ADP-ribose (ADPR) 50 ADP-ribose (ADPR), 99, 112–113, 113f, Acetylcholine-secreting sympathetic neuron, 380–382, 464, 534–536, 535f, 179 537f, 538, 711t, 712–713, Acetylsalicylic acid, 49t, 55 717, 770, 784, 789, 816–820, Acrolein, 67t, 69, 867, 971–972 885 Acrosome reaction, 125, 130, 301, 325, β-Adrenergic agonists, 740 578, 881–882, 885, 888–889, α2 Adrenoreceptor, 49t, 55, 188 891–895 Adult polycystic kidney disease (ADPKD), Actinopterigy, 223 1023 Activation gate, 485–486 Aframomum daniellii (aframodial), 46t, 52 Leu681, amino acid residue, 485–486 Aframomum melegueta (Melegueta pepper), Tyr671, ion pathway, 486 45t, 51, 70 Acute myeloid leukaemia and myelodysplastic Agelenopsis aperta (American funnel web syndrome (AML/MDS), 949 spider), 48t, 54 Acylated phloroglucinol hyperforin, 71 Agonist-dependent vasorelaxation, 378 Acylation, 96 Ahern, G.
    [Show full text]
  • Current Disease-Targets for Oleocanthal As Promising Natural Therapeutic Agent
    International Journal of Molecular Sciences Review Current Disease-Targets for Oleocanthal as Promising Natural Therapeutic Agent Antonio Segura-Carretero 1,2 and Jose Antonio Curiel 2,3,* 1 Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; [email protected] 2 Functional Food Research and Development Center, Health Science Technological Park, 18016 Granada, Spain 3 Torres Morente S.A.U., Bussines Park Metropolitano, 18130 Escúzar, Granada, Spain * Correspondence: [email protected]; Tel.: +34-958-637-206 Received: 5 September 2018; Accepted: 20 September 2018; Published: 24 September 2018 Abstract: The broad number of health benefits which can be obtained from the long-term consumption of olive oil are attributed mainly to its phenolic fraction. Many olive oil phenolics have been studied deeply since their discovery due to their bioactivity properties, such as Hydroxytyrosol. Similarly, in the last decade, the special attention of researchers has been addressed to Oleocanthal (OC). This olive oil phenolic compound has recently emerged as a potential therapeutic agent against a variety of diseases, including cancer, inflammation, and neurodegenerative and cardiovascular diseases. Recently, different underlying mechanisms of OC against these diseases have been explored. This review summarizes the current literature on OC to date, and focuses on its promising bioactivities against different disease-targets. Keywords: Oleocanthal; phenolic compounds; olive oil; therapeutic properties 1. Introduction The Mediterranean diet is characterized by a high consumption of olive oil, which plays a central role in the health benefits of the diet [1,2]. In fact, extra virgin olive oil (EVOO) in the Mediterranean region has long been associated with lower occurrences of certain chronic diseases, such as cancer incidence and cardiovascular mortality [3], as well as neurodegenerative dementias and Alzheimer disease [2–6].
    [Show full text]
  • Nutrition and Prevention of Alzheimer's Dementia Arun Swaminathan University of Kentucky, [email protected]
    University of Kentucky UKnowledge Neurology Faculty Publications Neurology 10-20-2014 Nutrition and Prevention of Alzheimer's Dementia Arun Swaminathan University of Kentucky, [email protected] Gregory A. Jicha University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/neurology_facpub Part of the Neurology Commons Repository Citation Swaminathan, Arun and Jicha, Gregory A., "Nutrition and Prevention of Alzheimer's Dementia" (2014). Neurology Faculty Publications. 8. https://uknowledge.uky.edu/neurology_facpub/8 This Review is brought to you for free and open access by the Neurology at UKnowledge. It has been accepted for inclusion in Neurology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Nutrition and Prevention of Alzheimer's Dementia Notes/Citation Information Published in Frontiers in Aging Neuroscience, v. 6, article 282, p. 1-13. © 2014 Swaminathan and Jicha. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Digital Object Identifier (DOI) http://dx.doi.org/10.3389/fnagi.2014.00282 This review is available at UKnowledge: https://uknowledge.uky.edu/neurology_facpub/8 REVIEW ARTICLE published: 20 October 2014 doi: 10.3389/fnagi.2014.00282 Nutrition and prevention of Alzheimer’s dementia Arun Swaminathan and Gregory A.
    [Show full text]
  • Changes in Glutathione, Ascorbate and Antioxidant Enzymes During
    1 Changes in glutathione, ascorbate and antioxidant enzymes during 2 olive fruit ripening 3 4 Eduardo López-Huertas1, * and José M. Palma 5 6 1Group of Antioxidants and Free Radicals in Biotechnology, Food and Agriculture. 7 Estación Experimental Zaidín, Consejo Superior de Investigaciones Científicas (CSIC); 8 1, Profesor Albareda, Granada 18008, Spain 9 10 *To whom correspondence should be addressed: 11 Eduardo Lopez-Huertas. Group of Antioxidants and Free Radicals in Biotechnology, 12 Food and Agriculture. Estación Experimental del Zaidín, Consejo Superior de 13 Investigaciones Científicas (CSIC), Profesor Albareda 1, Granada 18008, Spain. 14 Tel.: +34 958 181600 (Ext 181); Fax: +34 958 181609. 15 E-mail: [email protected] 16 17 1 18 ABSTRACT 19 The content of glutathione, ascorbate (ASC) and the enzymatic antioxidants superoxide 20 dismutase, catalase and components of the ascorbate-glutathione cycle were investigated 21 in olive fruit (cv. Picual) selected at the green, turning and mature ripening stages. The 22 changes observed in total and reduced glutathione (GSH), oxidised glutathione (GSSG), 23 the ratio GSH/GSSG, ASC and antioxidant enzymes (mainly superoxide dismutase, 24 catalase, ascorbate peroxidase and glutathione reductase) indicate a shift to a moderate 25 cellular oxidative status during ripening and suggest a role for antioxidants in the process. 26 The antioxidant composition of olive oils obtained from the olive fruits of the study was 27 investigated. A model is proposed for the recycling of antioxidant polyphenols mediated 28 by endogenous molecular antioxidants in olive fruit. 29 30 31 32 33 Keywords: Antioxidant, olive (Olea europaea), ripening. 2 34 INTRODUCTION 35 The generation of reactive oxygen species (ROS) is a consequence of aerobic .- 36 metabolism in plant and animal cells.
    [Show full text]
  • Thyroid-Modulating Activities of Olive and Its Polyphenols: a Systematic Review
    nutrients Review Thyroid-Modulating Activities of Olive and Its Polyphenols: A Systematic Review Kok-Lun Pang 1,† , Johanna Nathania Lumintang 2,† and Kok-Yong Chin 1,* 1 Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; [email protected] 2 Faculty of Applied Sciences, UCSI University Kuala Lumpur Campus, Jalan Menara Gading, Taman Connaught, Cheras 56000, Kuala Lumpur, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +60-3-91459573 † These authors contributed equally to this work. Abstract: Olive oil, which is commonly used in the Mediterranean diet, is known for its health benefits related to the reduction of the risks of cancer, coronary heart disease, hypertension, and neurodegenerative disease. These unique properties are attributed to the phytochemicals with potent antioxidant activities in olive oil. Olive leaf also harbours similar bioactive compounds. Several studies have reported the effects of olive phenolics, olive oil, and leaf extract in the modulation of thyroid activities. A systematic review of the literature was conducted to identify relevant studies on the effects of olive derivatives on thyroid function. A comprehensive search was conducted in October 2020 using the PubMed, Scopus, and Web of Science databases. Cellular, animal, and human studies reporting the effects of olive derivatives, including olive phenolics, olive oil, and leaf extracts on thyroid function were considered. The literature search found 445 articles on this topic, but only nine articles were included based on the inclusion and exclusion criteria. All included articles were animal studies involving the administration of olive oil, olive leaf extract, or olive pomace residues orally.
    [Show full text]
  • Recent Applications of HSCCC/HPCPC to Natural Product Isolation from Medicinal Plants and Algae
    1 Table S2 (complete version of Table 12). Recent applications of HSCCC/HPCPC to natural product isolation from medicinal plants and algae Compounds Matrix a Solvent systems (volume ratio) b Mode c MP d Ref. e Flavonoids Flavonoids Ampelopsis grossedentata, leaf Hex–EtOAc–MeOH–water (1:6:1.5:7.5) LP 249 Flavonoids Byrsonima crassa, leaf EtOAc–PrOH–water (14:0.8:8) UP 250 Anthocyanins (sambubiosides) Vaccinium myrtillus, fruit MtBE–BuOH–CH3CN–water–TFA LP 251 (1:4:1:5:0.01) Flavonoids Patrinia villosa Hex–EtOAc–MeOH–water (10:11:11:8) LP 252 Catechin, stilbene derivative Rheum tanguticum, root and rhizome EtOAc–EtOH–water (25:1:25) → (5:1:5) stepwise LP 253 Catechin constituents Camellia sinensis cultivars, leaf Hex–EtOAc–MeOH–water (1:6:1:6), (1:7:1:7), LP 254 (1:5:1:5), (1:6.5:1:6.5) Flavonoids Paeonia suffruticosa, flower EtOAc–EtOH–AcOH–water (4:1:0.25:5) LP 255 Baicalein, wogonin, oroxylin Scutellaria baicalensis, root Hex–EtOAc–BuOH–water (1:1:8:10) stepwise LP 256 A Baicalin, wogonoside Scutellaria baicalensis, root EtOAc–MeOH–1% AcOH (5:0.5:5) LP 257 Flavonoid glycosides Trollius ledebouri, herb EtOAc–BuOH–water (2:1:3) LP 183 Flavonoid glycosides Epimedium koreamum, herb CHCl3–MeOH–water (4:3.5:2) LP 258 C-glycosylflavones Patrinia villosa EtOAC–BuOH-water (2:1:3) LP 259 Flavanone glucoside Carthamus tinctorum, flower EtOAc–MeOH–water (5:1:5) [silica step clean- LP 260 up before HSCCC] Flavonoids Salix alba, bark Hex–EtOAc–MeOH–water (2:2:2:3) LP 261 Flavonoids Oroxylum indicum, seed Hex–EtOAc–MeOH–water (1:1.2:1:1), (1:2:1:1),
    [Show full text]
  • Health Benefits of Herbs and Spices How New Findings Will Disrupt Global Spice Industry?
    Health Benefits of Herbs and Spices How new findings will disrupt global spice industry? Bharat B. Aggarwal, Ph.D. Inflammation Research Center, San Diego, California; USA Retired Professor & Chief, Cytokine Research, Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas Former Senior Scientist, Genentech Inc., South San Francisco, California PDF, University of California, San Francisco; Ph.D., University of California, Berkeley Hosted by Gerhard Weber & Anders Mattsson ESA (European Spice Association) esa-spices.org May 31st- June 1st, 2017, Annual Meeting General Assembly, Bordeaux, France. Talk: Wednesday, May 31st, 2017: 4:00 to 5:00 PM Goa: Land of Vasco de Gama http://www.isncd.com Cochin: The Land of Spices Healing with Spices Julie Chugh Global Cancer Incidence Foods to Fight Cancer Denis Gingras, Richard Béliveau: 2005 Cancer incidence is less in spice consuming countries 183 Comparison of Cancer Incidence in USA and India Cancer USA India Cases Deaths Cases Deaths Breast 660 160 79 41 Prostate 690 130 20 9 Colon/Rectum 530 220 30 18 Lung 660 580 38 37 Head & Neck SCC 140 44 153 103 Liver 41 44 12 13 Pancreas 108 103 8 8 Stomach 81 50 33 30 Melanoma 145 27 1.8 1 Testis 21 1 3 1 Bladder 202 43 15 11 Kidney 115 44 6 4 Brain, Nervous system 65 47 19 14 Thyroid 55 5 12 3 Endometrial Cancers 163 41 132 72 Ovary 76 50 20 2 Multiple myeloma 50 40 6 5 Leukemia 100 70 19 17 Non-Hodgkin lymphoma 180 90 17 15 Hodgkin's disease 20 5 7 4 Showing cases per 1 million persons calculated on the basis of current consensus: Endometrial cancers include Cervix uteri and Corpus uteri.
    [Show full text]