Functional P53 Is Required for Triptolide-Induced Apoptosis and AP-1 and Nuclear Factor-Κb Activation in Gastric Cancer Cells

Total Page:16

File Type:pdf, Size:1020Kb

Functional P53 Is Required for Triptolide-Induced Apoptosis and AP-1 and Nuclear Factor-Κb Activation in Gastric Cancer Cells Oncogene (2001) 20, 8009 ± 8018 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Functional p53 is required for triptolide-induced apoptosis and AP-1 and nuclear factor-kB activation in gastric cancer cells Xiao-Hua Jiang1,2,5, Benjamin Chun-Yu Wong*,2,5, Marie Chia-Mi Lin3, Geng-Hui Zhu2, Hsiang-Fu Kung3, Shi-Hu Jiang1, Dan Yang4 and Shiu-Kum Lam2 1Department of Gastroenterology, Rui-jin Hospital, Shanghai, Peoples Republic of China; 2Department of Medicine, University of Hong Kong, Hong Kong; 3Institute of Molecular Biology, University of Hong Kong, Hong Kong; 4Department of Chemistry, University of Hong Kong, Hong Kong Triptolide, a major component in the extract of Chinese Introduction herbal plant Tripterygium wilfordii Hook f (TWHf), has potential anti-neoplastic eect. In the present study we Tripterygium wilfordii Hook f (TWHf) has been used investigated the potential therapeutic eects and mechan- in traditional Chinese medicine for centuries. Its crude isms of triptolide against human gastric cancer cells. extracts continue to be used to treat a variety of Four gastric cancer cell lines with dierent p53 status, autoimmune diseases, such as rheumatoid arthritis, AGS and MKN-45 (wild type p53); MKN-28 and SGC- nephritis, and systemic lupus erythematosus (Qin et al., 7901 (mutant p53) were observed as to cell growth 1981; Tao et al., 1989; Jiang et al., 1994). It has been inhibition and induction of apoptosis in response to suggested that the major therapeutic eects of TWHf triptolide treatment. We showed that triptolide inhibited are from ingredients such as triptolide, tripdiolide, cell growth, induced apoptosis and suppressed NK-kB triptonide, and triptophenolide (Zhang et al., 1990). and AP-1 transactivation in AGS cells with wild-type High concentration of triptolide suppressed B and T p53. Triptolide induced apoptosis by stimulating the lymphocyte proliferation in mice and showed immuno- expressions of p53, p21waf1/cip1, bax protein, and increased suppressive eect in skin allograft transplantation (Pu the activity of caspases. In addition, it caused cell cycle et al., 1990; Yang et al., 1992). Interestingly, triptolide arrest in the G0/G1 phase. To examine the role of p53 in also has antineoplastic activity. For example, it has these functions, we showed that suppression of p53 level signi®cant anti-leukemic activity in vivo against L-1210 with antisense oligonucleotide abrogated triptolide-in- and P-388 mouse leukemia and in vitro against cells duced apoptosis and over-expression of dominant derived from human nasopharnygeal carcinomas (Kup- negative p53 abolished the inhibitory eect on NF-kB chan et al., 1972). Furthermore, triptolide signi®cantly activation. Furthermore, we demonstrated that triptolide suppresses the colony formation of breast cancer cell had dierential eects on gastric cancer cells with lines, stomach cancer cell lines and promyelocytic dierent p53 status. We showed that triptolide also leukemia cell lines (Wei et al., 1991). The exact inhibited cell growth and induced apoptosis in MKN-45 mechanism responsible for the anti-neoplastic and with wild-type p53, whereas it had no signi®cant growth- anti-in¯ammatory eect of triptolide is not clearly inhibition and apoptosis induction eects on the MKN-28 understood. One possible explanation is the induction and SGC-7901 cells with mutant p53. Our data suggest of apoptosis. It has been shown that triptolide induces that triptolide exhibits anti-tumor and anti-in¯ammatory apoptosis in T-cell hybridomas and peripheral T cells eects by inhibiting cell proliferation, inducing apoptosis (Yang et al., 1998) and it can sensitize tumor necrosis and inhibiting NF-kB and AP-1 transcriptional activity. factor-a (TNG-a)-resistant tumor cell lines to TNF-a- However, a functional p53 is required for these induced apoptosis (Lee et al., 1999). Another candidate proapoptotic, anti-in¯ammatory and anti-tumor eects. which is involved in the anti-tumor and anti-in¯amma- Oncogene (2001) 20, 8009 ± 8018. tory eect by triptolide is NK-kB. A lot of studies show that triptolide executes its eect by inhibiting the Keywords: apoptosis; NF-kB; AP-1; p53 status; gastric transcriptional activity and/or binding activity of NF- cancer. kB (Lee et al., 1999; Qiu et al., 1999; Zhao et al., 2001). Apoptosis is regulated by gene products, which are conserved from nematodes to mammals (Penninger et al., 1996). Among all apoptosis-related genes, p53 is of particular importance (Lowe et al., 1993). P53 is well *Correspondence: BC-Y Wong, Department of Medicine, University known for suppression of cellular proliferation through of Hong Kong, Queen Mary Hospital, Hong Kong; two mechanisms, each operating in a distinct manner. E-mail: [email protected] In normal ®broblasts, p53 induces G arrest in 5Contributed equally to this work 1 Received 21 February 2001; revised 22 August 2001; accepted 18 response to DNA-damaging agents, presumably allow- September 2001 ing the cells to perform critical repair functions before Functional p53, AP-1 and NF-kB X-H Jiang et al 8010 progressing through the cell cycle (Linke et al., 1997). Induction of apoptosis by triptolide in AGS On the other hand, in abnormally proliferating cells or irradiated thymocytes, induction of p53 leads to AO staining showed that AGS cells treated with triptolide apoptosis (Midgley et al., 1995). Furthermore, wild- (up to 40 nM) underwent morphologic changes of type p53 protein level was increased during apoptosis apoptosis 24 h after treatment dose-dependently (Figure induced by DNA-damaging agents (Zhan et al., 1996). 1b). Analysis of DNA from AGS cells demonstrated that The increased expression of wild-type p53 can induce triptolide (510 nM) caused the generation of nucleoso- apoptosis in myeloid leukemia and colon cancers mal sized ladders of DNA fragments (Figure 1c). (Yonish-Rouach et al., 1991; Shaw et al., 1992). Unfortunately, the p53 gene is inactivated in approxi- Effect of triptolide on the cell cycle phase distribution mately 50% of tumors and p53 alteration has also been held responsible for the failure of most cancers to To further investigate triptolide-mediated dierential respond to radiotherapy and chemotherapy (Lee et al., growth inhibition, we studied the eect of triptolide 1995; MuÈ ller et al., 1996). For example, Vasey et al. treatment on the cell cycle kinetics in AGS cells. Flow (1996) reported that introduction of the dominant cytometry of three independent analysis showed that negative p53 enhanced resistance to irradiation, AGS cells (Figure 1d) were arrested in the G0/G1 phase cisplatin, doxorubicin and cytarabin treatment in after 24 h of 40 nM triptolide treatment (to 68.6+6.5% ovarian cancer cells. from 58.5+2.3% in control), and cells had a typical Nuclear factor-kB (NF-kB) and Activator protein-1 subdiploid peak (to 33.2% from 3.2%) on the DNA (AP-1) are two important transcriptional factors that histogram. may regulate a variety of in¯ammatory, apoptotic and immune responses. Triptolide has previously been Triptolide treatment resulted in enhanced expression of shown to sensitize several solid tumor cell lines to p53, p21waf1/cip1, and bax TNF-a-induced apoptosis through the inhibition of NF-kB (Lee et al., 1999). Furthermore, triptolide alone Time-course experiments were carried out to determine was able to inhibit transcriptional activation of NF-kB the protein levels of p53 after treatment. As shown in in Jurket cell and human bronchial epithelial cells (Qiu Figure 2, there was a signi®cant elevation of the p53 et al., 1999; Zhao et al., 2001). Taken as a whole, these protein level in triptolide (20 nM) treated AGS cells, results suggest that the anti-tumor and anti-in¯amma- starting as early as 2 h, reaching a maximal level which tory eects of triptolide are most likely associated with is about 16-fold of control after 8 h treatment. We also the modulation of NF-kB activation. Whether tripto- examined the p21waf1/cip1, bax, bc1-2 and c-myc protein lide has any modulation eect on AP-1 activity, expressions. In AGS cells, the protein levels of p21waf1/ however, has not been tested until now. cip1 and bax increased after 4 and 12 h of treatment, In the present study, we investigate the potential respectively. Triptolide did not alter the expression of therapeutic eects and underlying mechanisms of bc1-2 and c-myc within the time frame of this triptolide in human gastric cancer. We demonstrate that experiment (Figure 2). triptolide executes its anti-in¯ammatory and anti-tumor eect by inducing apoptosis and modulating AP-1 and Apoptosis triggered by triptolide is associated with NF-kB activity. We show that triptolide induces activation of caspase-3 (CPP-32) and cleavage of poly apoptosis in gastric cancer cells through a p53-dependent (ADP-ribose) polymerase (PARP) pathway and caspase-3 is required for triptolide-induced apoptosis. In addition, triptolide inhibited NF-kBand Caspases, especially caspase 3 (CPP-32), have been AP-1 activation in cells with wild-type p53, and forced shown to participate in apoptosis. To see if apoptosis alteration of p53 status suppresses triptolide-induced induced by triptolide was regulated by caspase 3, we apoptosis and modulation of NF-kB. Thus, our results examined several aspects of the caspase 3 activation. In suggest that functional p53 is essential for triptolide- the ®rst experiment, dierent concentrations of tripto- induced apoptosis and modulation of AP-1 and NF-kB lide were added to con¯uent AGS cells for 0, 6, 12, 24 activation in gastric cancer cells. and 48 h. After treatment, caspase protease activity was assessed in cell lysates by measuring hydrolysis of colorimetric caspase substrate DEVD ± rNA. Figure 3a illustrated that after the addition of triptolide (20 nM), Results caspase activity increased to maximal level within 24 h.
Recommended publications
  • Toxic Effects As a Result of Herbal Medicine Intake Toxic Effects As a Result of Herbal Medicine Intake
    ProvisionalChapter chapter 9 Toxic Effects as a Result of Herbal Medicine Intake Toxic Effects as a Result of Herbal Medicine Intake Nudrat Fatima and Naira Nayeem Nudrat Fatima and Naira Nayeem Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/64468 Abstract Concurrent use of herbs with therapeutic drugs increases the potential of herb-drug interactions. The clinical importance of herb-drug interactions is associated with the particular herb, drug, and patient profile. Herbs are potentially potent as they affect body functions. The use herbal medicine and supplements can be risky as they are not subject to review by the FDA. In this chapter, we make an attempt to discuss the possible reasons for toxic effects, types of toxicities, some reported cases of toxicities involving the use of herbal medicine alone, and some herb-drug interactions. In addition to this, possible ways to reduce toxic effects of herbal medicines have also been discussed. Keywords: herbal medicine, toxicity, reported cases, herb-drug interaction 1. Introduction Herbal medicines are advertised to be free from side effects, which is a myth. A large number of people still rely on herbal medicines, and some people take herbal medicines along with routine allopathic medicines especially in cases of diabetes, hypertension, thyroid disease, etc., where the patient is on long-term or lifelong treatment. Many commercial websites are available on Internet, which insist that herbal medicines have no side effects. In underdeveloped and developing countries, there are no specific laws for herbal practitioners and companies marketing herbal products.
    [Show full text]
  • Note: the Letters 'F' and 'T' Following the Locators Refers to Figures and Tables
    Index Note: The letters ‘f’ and ‘t’ following the locators refers to figures and tables cited in the text. A Acyl-lipid desaturas, 455 AA, see Arachidonic acid (AA) Adenophostin A, 71, 72t aa, see Amino acid (aa) Adenosine 5-diphosphoribose, 65, 789 AACOCF3, see Arachidonyl trifluoromethyl Adlea, 651 ketone (AACOCF3) ADP, 4t, 10, 155, 597, 598f, 599, 602, 669, α1A-adrenoceptor antagonist prazosin, 711t, 814–815, 890 553 ADPKD, see Autosomal dominant polycystic aa 723–928 fragment, 19 kidney disease (ADPKD) aa 839–873 fragment, 17, 19 ADPKD-causing mutations Aβ, see Amyloid β-peptide (Aβ) PKD1 ABC protein, see ATP-binding cassette protein L4224P, 17 (ABC transporter) R4227X, 17 Abeele, F. V., 715 TRPP2 Abbott Laboratories, 645 E837X, 17 ACA, see N-(p-amylcinnamoyl)anthranilic R742X, 17 acid (ACA) R807X, 17 Acetaldehyde, 68t, 69 R872X, 17 Acetic acid-induced nociceptive response, ADPR, see ADP-ribose (ADPR) 50 ADP-ribose (ADPR), 99, 112–113, 113f, Acetylcholine-secreting sympathetic neuron, 380–382, 464, 534–536, 535f, 179 537f, 538, 711t, 712–713, Acetylsalicylic acid, 49t, 55 717, 770, 784, 789, 816–820, Acrolein, 67t, 69, 867, 971–972 885 Acrosome reaction, 125, 130, 301, 325, β-Adrenergic agonists, 740 578, 881–882, 885, 888–889, α2 Adrenoreceptor, 49t, 55, 188 891–895 Adult polycystic kidney disease (ADPKD), Actinopterigy, 223 1023 Activation gate, 485–486 Aframomum daniellii (aframodial), 46t, 52 Leu681, amino acid residue, 485–486 Aframomum melegueta (Melegueta pepper), Tyr671, ion pathway, 486 45t, 51, 70 Acute myeloid leukaemia and myelodysplastic Agelenopsis aperta (American funnel web syndrome (AML/MDS), 949 spider), 48t, 54 Acylated phloroglucinol hyperforin, 71 Agonist-dependent vasorelaxation, 378 Acylation, 96 Ahern, G.
    [Show full text]
  • Recent Applications of HSCCC/HPCPC to Natural Product Isolation from Medicinal Plants and Algae
    1 Table S2 (complete version of Table 12). Recent applications of HSCCC/HPCPC to natural product isolation from medicinal plants and algae Compounds Matrix a Solvent systems (volume ratio) b Mode c MP d Ref. e Flavonoids Flavonoids Ampelopsis grossedentata, leaf Hex–EtOAc–MeOH–water (1:6:1.5:7.5) LP 249 Flavonoids Byrsonima crassa, leaf EtOAc–PrOH–water (14:0.8:8) UP 250 Anthocyanins (sambubiosides) Vaccinium myrtillus, fruit MtBE–BuOH–CH3CN–water–TFA LP 251 (1:4:1:5:0.01) Flavonoids Patrinia villosa Hex–EtOAc–MeOH–water (10:11:11:8) LP 252 Catechin, stilbene derivative Rheum tanguticum, root and rhizome EtOAc–EtOH–water (25:1:25) → (5:1:5) stepwise LP 253 Catechin constituents Camellia sinensis cultivars, leaf Hex–EtOAc–MeOH–water (1:6:1:6), (1:7:1:7), LP 254 (1:5:1:5), (1:6.5:1:6.5) Flavonoids Paeonia suffruticosa, flower EtOAc–EtOH–AcOH–water (4:1:0.25:5) LP 255 Baicalein, wogonin, oroxylin Scutellaria baicalensis, root Hex–EtOAc–BuOH–water (1:1:8:10) stepwise LP 256 A Baicalin, wogonoside Scutellaria baicalensis, root EtOAc–MeOH–1% AcOH (5:0.5:5) LP 257 Flavonoid glycosides Trollius ledebouri, herb EtOAc–BuOH–water (2:1:3) LP 183 Flavonoid glycosides Epimedium koreamum, herb CHCl3–MeOH–water (4:3.5:2) LP 258 C-glycosylflavones Patrinia villosa EtOAC–BuOH-water (2:1:3) LP 259 Flavanone glucoside Carthamus tinctorum, flower EtOAc–MeOH–water (5:1:5) [silica step clean- LP 260 up before HSCCC] Flavonoids Salix alba, bark Hex–EtOAc–MeOH–water (2:2:2:3) LP 261 Flavonoids Oroxylum indicum, seed Hex–EtOAc–MeOH–water (1:1.2:1:1), (1:2:1:1),
    [Show full text]
  • Health Benefits of Herbs and Spices How New Findings Will Disrupt Global Spice Industry?
    Health Benefits of Herbs and Spices How new findings will disrupt global spice industry? Bharat B. Aggarwal, Ph.D. Inflammation Research Center, San Diego, California; USA Retired Professor & Chief, Cytokine Research, Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas Former Senior Scientist, Genentech Inc., South San Francisco, California PDF, University of California, San Francisco; Ph.D., University of California, Berkeley Hosted by Gerhard Weber & Anders Mattsson ESA (European Spice Association) esa-spices.org May 31st- June 1st, 2017, Annual Meeting General Assembly, Bordeaux, France. Talk: Wednesday, May 31st, 2017: 4:00 to 5:00 PM Goa: Land of Vasco de Gama http://www.isncd.com Cochin: The Land of Spices Healing with Spices Julie Chugh Global Cancer Incidence Foods to Fight Cancer Denis Gingras, Richard Béliveau: 2005 Cancer incidence is less in spice consuming countries 183 Comparison of Cancer Incidence in USA and India Cancer USA India Cases Deaths Cases Deaths Breast 660 160 79 41 Prostate 690 130 20 9 Colon/Rectum 530 220 30 18 Lung 660 580 38 37 Head & Neck SCC 140 44 153 103 Liver 41 44 12 13 Pancreas 108 103 8 8 Stomach 81 50 33 30 Melanoma 145 27 1.8 1 Testis 21 1 3 1 Bladder 202 43 15 11 Kidney 115 44 6 4 Brain, Nervous system 65 47 19 14 Thyroid 55 5 12 3 Endometrial Cancers 163 41 132 72 Ovary 76 50 20 2 Multiple myeloma 50 40 6 5 Leukemia 100 70 19 17 Non-Hodgkin lymphoma 180 90 17 15 Hodgkin's disease 20 5 7 4 Showing cases per 1 million persons calculated on the basis of current consensus: Endometrial cancers include Cervix uteri and Corpus uteri.
    [Show full text]
  • Cochrane Library
    Cochrane Library Cochrane Database of Systematic Reviews Herbal therapy for treating rheumatoid arthritis (Review) Cameron M, Gagnier JJ, Chrubasik S Cameron M, Gagnier JJ, Chrubasik S. Herbal therapy for treating rheumatoid arthritis. Cochrane Database of Systematic Reviews 2011, Issue 2. Art. No.: CD002948. DOI: 10.1002/14651858.CD002948.pub2. www.cochranelibrary.com Herbal therapy for treating rheumatoid arthritis (Review) Copyright © 2011 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. Cochrane Trusted evidence. Informed decisions. Library Better health. Cochrane Database of Systematic Reviews T A B L E O F C O N T E N T S HEADER......................................................................................................................................................................................................... 1 ABSTRACT..................................................................................................................................................................................................... 1 PLAIN LANGUAGE SUMMARY....................................................................................................................................................................... 2 SUMMARY OF FINDINGS.............................................................................................................................................................................. 3 BACKGROUND.............................................................................................................................................................................................
    [Show full text]
  • Download File
    STRUCTURAL AND FUNCTIONAL STUDIES OF TRPML1 AND TRPP2 Nicole Marie Benvin Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2017 © 2017 Nicole Marie Benvin All Rights Reserved ABSTRACT Structural and Functional Studies of TRPML1 and TRPP2 Nicole Marie Benvin In recent years, the determination of several high-resolution structures of transient receptor potential (TRP) channels has led to significant progress within this field. The primary focus of this dissertation is to elucidate the structural characterization of TRPML1 and TRPP2. Mutations in TRPML1 cause mucolipidosis type IV (MLIV), a rare neurodegenerative lysosomal storage disorder. We determined the first high-resolution crystal structures of the human TRPML1 I-II linker domain using X-ray crystallography at pH 4.5, pH 6.0, and pH 7.5. These structures revealed a tetramer with a highly electronegative central pore which plays a role in the dual Ca2+/pH regulation of TRPML1. Notably, these physiologically relevant structures of the I-II linker domain harbor three MLIV-causing mutations. Our findings suggest that these pathogenic mutations destabilize not only the tetrameric structure of the I-II linker, but also the overall architecture of full-length TRPML1. In addition, TRPML1 proteins containing MLIV- causing mutations mislocalized in the cell when imaged by confocal fluorescence microscopy. Mutations in TRPP2 cause autosomal dominant polycystic kidney disease (ADPKD). Since novel technological advances in single-particle cryo-electron microscopy have now enabled the determination of high-resolution membrane protein structures, we set out to solve the structure of TRPP2 using this technique.
    [Show full text]
  • India's Clinical Trial Regulatory Changes, Indian Researcher's
    Review Paper Perspective of Plant Medicine in Therapy of Rheumatoid Arthritis R. K. GAUTAM, K. ROY1, GAYATRI THAPA1, DISHA ARORA2, SMRITI PARASHAR3, BHUMIKA GURUNG4, L. DEB4* Department of Pharmacology, MM School of Pharmacy, Maharishi Markandeshwar University, Sadopur, Ambala, Haryana-134007, India, 1Department of Pharmacology, Himalayan Pharmacy Institute, Majhitar, Rangpo, Sikkim-737136, India, 2Himalayan Institute of Pharmacy, Kala Amb, Himachal Pradesh-173030, India, 3Bioresources and Sustainable Development (IBSD) – Sikkim Centre (An autonomous Institute of Department of Biotechnology, Government of India), Tadong, Gangtok, Sikkim-795001, India Gautam et al.: Plant Medicine in Therapy of Rheumatoid Arthritis Rheumatoid Arthritis is a systemic autoimmune disease characterized by chronic, inflammatory condition. The adverse effects of long-term use of presently available anti-arthritic or non-steroidal anti-inflammatory drugs are gastrointestinal symptoms, cardiovascular complications, renal impairment, myelosuppression etc. and this requires continuous monitoring and eventually increasing the cost of treatment. Thus complementary and alternative medicines may fulfill the demand for patients suffering from this disease. Moreover, herbal therapy has been safe and effective enough to treat rheumatoid arthritis. With these backgrounds, the present review includes different 37 plants reported for anti-arthritic or anti-inflammatory effect. Also enlisted 37 bioactive principals reported for anti-arthritic effect with their source, mechanism of action and commercial herbal products available in the market for treatment of rheumatoid arthritis. The compiled information regarding plants and their role in the treatment of rheumatoid arthritis will help to justify the use of plant-derived medicine in the therapy of rheumatoid arthritis in future. Key words: Rheumatoid arthritis, anti-arthritic plants, herbal products, mechanism of action, medicinal plants, bioactive compounds Out of 7 billion people in the world, World Health arthritis[4].
    [Show full text]
  • Medicinal Herbs Effective Against Atherosclerosis: Classification According to Mechanism of Action
    Review Biomol Ther 27(3), 254-264 (2019) Medicinal Herbs Effective Against Atherosclerosis: Classification According to Mechanism of Action Jae-Yong Kim and Sang Hee Shim* Colleage of Pharmacy, Duksung Woman’s University, Seoul 01369, Republic of Korea Abstract Atherosclerosis is a widespread and chronic progressive arterial disease that has been regarded as one of the major causes of death worldwide. It is caused by the deposition of cholesterol, fats, and other substances in the tunica intima which leads to narrowing of the blood vessels, loss of elasticity, and arterial wall thickening, thus causing difficulty in blood flow. Natural products have been used as one of the most important strategies for the treatment and prevention of cardiovascular diseases for a long time. In recent decades, as interests in natural products including medicinal herbs have increased, many studies regarding natural compounds that are effective against atherosclerosis have been conducted. The purpose of this review is to provide a brief over- view of the natural compounds that have been used for the treatment and prevention of atherosclerosis, and their mechanisms of action based on recent research. Key Words: Atherosclerosis, Medicinal herb, Mechanism of action, Cholesterol INTRODUCTION studies regarding natural products, and more specifically me- dicinal herbs, were sorted and described according to their Atherosclerosis, the underlying cause of cardiac ischemia, MOAs against atherosclerosis to increasing our understand- heart failure, heart attack, stroke, and peripheral vascular dis- ing of these plants. ease, is known to be one of the major causes of death and morbidity worldwide. Endothelial cell injury, damage, and dys- function in the heart are characteristic properties of athero- BLOOD LIPID-LOWERING EFFECTS OF MEDICINAL sclerosis.
    [Show full text]
  • Review Article the Use of Omic Technologies Applied to Traditional Chinese Medicine Research
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2017, Article ID 6359730, 19 pages http://dx.doi.org/10.1155/2017/6359730 Review Article The Use of Omic Technologies Applied to Traditional Chinese Medicine Research Dalinda Isabel Sánchez-Vidaña,1 Rahim Rajwani,2 and Man-Sau Wong3 1 Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 2Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 3Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Correspondence should be addressed to Man-Sau Wong; [email protected] Received 28 July 2016; Revised 23 October 2016; Accepted 24 October 2016; Published 31 January 2017 Academic Editor: Fabio Firenzuoli Copyright © 2017 Dalinda Isabel Sanchez-Vida´ na˜ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Natural products represent one of the most important reservoirs of structural and chemical diversity for the generation of leads in the drug development process. A growing number of researchers have shown interest in the development of drugs based on Chinese herbs. In this review, the use and potential of omic technologies as powerful tools in the modernization of traditional Chinese medicine are discussed. The analytical combination from each omic approach is crucial for understanding the working mechanisms of cells, tissues, organs, and organisms as well as the mechanisms of disease.
    [Show full text]
  • Role of Anti-Fertility Medicinal Plants on Male & Female Reproduction
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ZENODO Journal of Complementary and Alternative Medical Research 3(2): 1-22, 2017; Article no.JOCAMR.34632 ISSN: 2456-6276 Role of Anti-fertility Medicinal Plants on Male & Female Reproduction Afsar Shaik 1* , Prasanna Raju Yalavarthi 2 and Chandrasekhar Kothapalli Bannoth 3 1Department of Pharmacology, Narayana Pharmacy College, Chinthareddypalem, Nellore-524002, Andhra Pradesh, India. 2Department of Pharmaceutics, Sri Padmavathi School of Pharmacy, Tirchanoor, Tirupati- 517503, Andhra Pradesh, India. 3Department of Chemistry, Oil Thechnological and Pharmaceutical Research Institute, JNTUA, Ananthapuramu-515002, Andhra Pradesh, India. Authors’ contributions This work was carried out in collaboration between all authors. Author AS designed the study, collected required literature, wrote the protocol and wrote the first draft of the manuscript. Author PRY helped in literature searches and designing final draft copy of manuscript and author CKB managed for the final outcome of manuscript without grammatical errors. All authors read and approved the final manuscript. Article Information DOI: 10.9734/JOCAMR/2017/34632 Editor(s): (1) Sabyasachi Chatterjee, Burdwan University, India. Reviewers: (1) Mostafa Abbas Shalaby, Cairo University, Egypt. (2) Dinithi Peiris, University of Sri Jayewardenepura, Sri Lanka. (3) Remya, Aarupadai Veedu Istitute of Technology, Chennai, India. Complete Peer review History: http://www.sciencedomain.org/review-history/19980 Received 2nd June 2017 Accepted 4th July 2017 Review Article th Published 10 July 2017 ABSTRACT Aim and Objective : The aim of this review was to provide a detailed concept to the researchers on antifertility activity of several plants inhibiting male and female fertility and may be developed into contraceptives.
    [Show full text]
  • Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus
    International Journal of Molecular Sciences Review Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus Bahare Salehi 1,2 ID , Nanjangud V. Anil Kumar 3 ID , Bilge ¸Sener 4, Mehdi Sharifi-Rad 5,*, Mehtap Kılıç 4, Gail B. Mahady 6, Sanja Vlaisavljevic 7, Marcello Iriti 8,* ID , Farzad Kobarfard 9,10, William N. Setzer 11,*, Seyed Abdulmajid Ayatollahi 9,12,13, Athar Ata 13 and Javad Sharifi-Rad 9,13,* ID 1 Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, 88777539 Tehran, Iran; [email protected] 2 Student Research Committee, Shahid Beheshti University of Medical Sciences, 22439789 Tehran, Iran 3 Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576104, India; [email protected] 4 Department of Pharmacognosy, Gazi University, Faculty of Pharmacy, 06330 Ankara, Turkey; [email protected] (B.¸S.);[email protected] (M.K.) 5 Department of Medical Parasitology, Zabol University of Medical Sciences, 61663-335 Zabol, Iran 6 PAHO/WHO Collaborating Centre for Traditional Medicine, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612, USA; [email protected] 7 Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia; [email protected] 8 Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy 9 Phytochemistry Research Center, Shahid Beheshti University of
    [Show full text]
  • Lupus Erythematosus and Nutrition: a Review of the Literature
    LUPUS ERYTHEMATOSUS AND NUTRITION: A REVIEW OF THE LITERATURE Author: ã 2004 Amy C. Brown, PhD, RD Department of Human Nutrition, Food, & Animal Sciences University of Hawaii @ Manoa 1955 East-West Road, Rm 216 Honolulu, HI 96822 808/956-3846 ¨ 808/956-4883 (fax) [email protected] Lupus Erythematosus and Nutrition: A Review of the Literature Amy C. Brown, PhD, RD* The purpose of this paper was to search the scientific literature for dietary compounds that alleviate or exacerbate symptoms of lupus erythematosus (LE) in both animal and human models. A detailed literature review was undertaken to find articles showing a relationship between LE and nutrition by using MEDLINE/INDEX MEDICUS (1950 - March 2000) for English-language articles, followed by cross-referencing. Aggravating substances appear to include excess calories, excess protein, high fat (especially saturated and omega-6 polyunsaturated fatty acids), zinc, iron, and L- canavanine found in alfalfa tablets. Possible beneficial dietary compounds include vitamin E, vitamin A (beta-carotene), selenium, fish oils (omega-3 polyunsaturated fatty acids), evening primrose oil, flaxseed, a plant herb (Tripterygium wilfordii), DHEA (dehydroepiandrosterone), and calcium plus vitamin D (if taking corticosteroids). Some people with systemic LE placed on food allergy elimination diets reported improvement in their LE symptoms, however, this may be related to a decrease of other substances in the diet. Also, although no direct evidence was reported on the beneficial effects of either bromelain or a vegetarian diet (possibly allowing fish), it is suggested that they might be beneficial. Limitations to this research are that the findings are based on relatively few studies, many of which were without control groups or extrapolated from animal models.
    [Show full text]