A&A 577, A112 (2015) Astronomy DOI: 10.1051/0004-6361/201322630 & c ESO 2015 Astrophysics On the cosmic evolution of the specific star formation rate M. D. Lehnert1, W. van Driel2, L. Le Tiran2;3, P. Di Matteo2, and M. Haywood2 1 Institut d’Astrophysique de Paris, UMR 7095, CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris, France e-mail:
[email protected] 2 GEPI, Observatoire de Paris, UMR 8111, CNRS, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon, France 3 Departamento de Astronomia, IAG/USP, rua do Matão 1226, 05508-090, Cidade Universitária, 1280 São Paulo, SP, Brazil Received 9 September 2013 / Accepted 3 February 2015 ABSTRACT The apparent correlation between the specific star formation rate (sSFR) and total stellar mass (M?) of galaxies is a fundamental relationship indicating how they formed their stellar populations. To attempt to understand this relation, we hypothesize that the relation and its evolution is regulated by the increase in the stellar and gas mass surface density in galaxies with redshift, which is itself governed by the angular momentum of the accreted gas, the amount of available gas, and by self-regulation of star formation. With our model, we can reproduce the specific SFR− M? relations at z ∼ 1–2 by assuming gas fractions and gas mass surface densities similar to those observed for z = 1–2 galaxies. We further argue that it is the increasing angular momentum with cosmic time that causes a decrease in the surface density of accreted gas. The gas mass surface densities in galaxies are controlled by the centrifugal 3 support (i.e., angular momentum), and the sSFR is predicted to increase as, sSFR(z) = (1 + z) =tH0, as observed (where tH0 is the Hubble time and no free parameters are necessary).