Contrasting Proterozoic Basement Complexes Near the Truncated Margin of Laurentia, Northwestern Sonora–Arizona International Border Region

Total Page:16

File Type:pdf, Size:1020Kb

Contrasting Proterozoic Basement Complexes Near the Truncated Margin of Laurentia, Northwestern Sonora–Arizona International Border Region spe393-04 page 123 Geological Society of America Special Paper 393 2005 Contrasting Proterozoic basement complexes near the truncated margin of Laurentia, northwestern Sonora–Arizona international border region Jonathan A. Nourse* Department of Geological Sciences, California State Polytechnic University, Pomona, California 91768, USA Wayne R. Premo United States Geological Survey, Denver Federal Center, Denver, Colorado 80225, USA Alexander Iriondo Centro de Geosciencias, Universidad Nacional Autónoma de México, Campus Juriqilla, Querétaro 76230, Mexico Erin R. Stahl 164 El Camino Way, Claremont, California 91711, USA ABSTRACT We utilize new geological mapping, conventional isotope dilution–thermal ion- ization mass spectrometry (ID-TIMS) and sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon analyses, and whole-rock radiogenic isotope characteristics to distinguish two contrasting Proterozoic basement complexes in the international border region southeast of Yuma, Arizona. Strategically located near the truncated southwest margin of Laurentia, these Proterozoic exposures are separated by a north- west-striking Late Cretaceous batholith. Although both complexes contain strongly deformed Paleoproterozoic granitoids (augen gneisses) intruded into fi ne-grained host rocks, our work demonstrates marked differences in age, host rock composition, and structure between the two areas. The Western Complex reveals a >5-km-thick tilted section of fi nely banded felsic, intermediate, and mafi c orthogneiss interspersed with tabular intrusive bodies of medium-grained leucocratic biotite granite (1696 ± 11 Ma; deepest level), medium- grained hornblende-biotite granodiorite (1722 ± 12 Ma), and coarse-grained porphy- ritic biotite granite (1725 ± 19 Ma; shallowest level). Penetrative ductile deformation has converted the granites to augen gneisses and caused isoclinal folding and trans- position of primary contacts. Exposed in a belt of northwest-trending folds, these rocks preserve southwest-vergent shear fabric annealed during amphibolite facies *[email protected]. Nourse, J.A., Premo, W.R., Iriondo, A., and Stahl, E.R., 2005, Contrasting Proterozoic basement complexes near the truncated margin of Laurentia, northwestern Sonora–Arizona international border region, in Anderson, T.H., Nourse, J.A., McKee, J.W., and Steiner, M.B., eds., The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives: Geological Society of America Special Paper 393, p. 123–182, doi: 10.1130/2005.2393(04). For permission to copy, contact [email protected]. ©2005 Geological Society of America. 123 spe393-04 page 124 124 J.A. Nourse et al. metamorphism, when crystalloblastic textures developed. Deformation and regional metamorphism occurred before emplacement of 1.1 Ga(?) mafi c dikes. Throughout the Eastern Complex, meta-arkose, quartzite, biotite schist, and possible felsic metavolcanic rocks comprise the country rocks of strongly foliated medium- and coarse-grained biotite granite augen gneisses that yield mean 207Pb/206Pb ages of 1646 ± 10 Ma, 1642 ± 19 Ma, and 1639 ± 15 Ma. Detrital zircons from four samples of host sandstone are isotopically disturbed; nevertheless, the data indicate a restricted provenance (ca. 1665 Ma to 1650 Ma), with two older grains (1697 and 1681 Ma). The pervasively recrystallized Paleoproterozoic map units strike parallel to foliation and are repeated in south-trending folds that are locally refolded about easterly hinges. Southeasterly lineation developed in augen gneiss and host strata becomes penetrative in local domains of L-tectonite. Regional metamorphism asso- ciated with this tectonism persisted until ca. 1590 Ma, as recorded by metamorphic growths within some zircon grains. Mesoproterozoic intrusions that crosscut the Paleoproterozoic metasediments and augen gneisses include coarsely porphyritic bio- tite granite (1432 ± 6 Ma) and diabase dikes (1.1 Ga?). Emplacement of the granite was accompanied by secondary high-U overgrowths, dated at 1433 ± 8 Ma, on some of the Paleoproterozoic detrital zircons, and apparently was also responsible for resetting the whole-rock Pb isotopic systematics (1441 ± 39 Ma) within these Eastern Complex augen gneisses. Younger plutons emplaced into both Proterozoic basement complexes include medium-grained quartz diorite (73.4 ± 3.3 Ma and 72.8 ± 1.7 Ma), Late Cretaceous hornblende-biotite granodiorite, and Paleogene leucocratic biotite granite. Neogene sedimentary and volcanic strata overlie basement along unconformities that are tilted to the northeast, southeast, or southwest. A brittle normal fault, dipping gently northeast, juxtaposes Tertiary andesite with Paleoproterozoic metasandstone. These relationships suggest that the area shares a common history of mid-Tertiary extension with south- western Arizona. Later infl uence of the southern San Andreas fault system is implied by multiple dextral offsets of pre-Tertiary units across northwest-trending valleys. Our structural, geochronologic, and isotopic data provide new information to constrain pre–750 Ma Rodinia reconstructions involving southwestern Laurentia. Whole-rock U-Th-Pb and Rb-Sr isotopic systematics in both Paleoproterozoic gneiss complexes are disturbed, however, well-behaved Sm-Nd analyses preserve depleted initial εNd values (+2 to +4) that are distinct from the Mojave crustal province, but overlapping with the Yavapai and Mazatzal Provinces of Arizona. The East- ern Complex has the appropriate age and Nd isotopic signature to be part of the Mazatzal Province, but records major tectonism and metamorphism at ca. 1.6 Ga that postdates the Mazatzal orogeny. Deformed granitoids of the Western Complex have “Yavapai-type” ages and εNd but display structures discordant to the southwest- erly Yavapai trend in central Arizona. The Western Complex lies along-strike with similar-age rocks (1.77 Ga to 1.69 Ga) of the “Caborca block” that have only been studied in detail near Quitovac and south of Caborca. Collectively, these rocks form a northwest-trending strip of basement situated at the truncated edge of Laurentia. The present-day basement geography may refl ect an original oroclinal bend in the Yavapai orogenic belt. Alternatively, the western Proterozoic belt of Sonora may represent displaced fragments of basement juxtaposed against the Yavapai-Mazatzal Provinces along a younger sinistral transform fault (e.g., the Late Jurassic Mojave- Sonora megashear or the Permian Coahuila transform). Crustal blocks with these specifi c petrologic, geochronologic, and isotopic characteristics can be found in south- central and northeastern portions of the Australian Proterozoic basement, further supporting a connection between the two continents prior to breakup of the Rodinian supercontinent. Keywords: Sonora, Proterozoic, Rodinia, SHRIMP, zircon. spe393-04 page 125 Contrasting Proterozoic basement complexes 125 INTRODUCTION (presently obscured by a Cretaceous batholith) represents a Pro- terozoic suture or a younger strike-slip fault, such as the hypo- Precambrian crystalline rocks in the international border thetical Permian-Triassic “Coahuila transform” (Dickinson and region of northwestern Sonora and southwestern Arizona (Fig. 1) Lawton, 2001) or the Late Jurassic “Mojave-Sonora megashear” constitute the southwestward limit of Proterozoic basement (Silver and Anderson, 1974; Anderson and Silver, this volume). along the truncated margin of Laurentia near latitude 32°N. They To underscore the implications of various terrane juxtaposition also crop out near a poorly constrained, possibly disrupted inter- models for the confi guration of southwest Laurentia, we present section between the Mojave, Yavapai, and Mazatzal crustal prov- several alternative paleogeographic reconstructions. inces (Karlstrom and Bowring, 1988; Wooden and Miller, 1990; Wooden and DeWitt, 1991), and the Caborca block (Anderson BASEMENT GEOLOGY AND STRUCTURE and Silver, 1979, 1981; Iriondo et al., 2004; Anderson and Sil- ver, this volume). These diverse rocks and structures predate General Overview breakup of the Rodinia supercontinent at ca. 750 Ma (Stewart, 1972; Ross et al., 1989; Karlstrom et al., 2000). They occupy a Proterozoic crystalline rocks underlie rugged ranges on both strategic position with regard to paleogeographic reconstructions sides of Highway 2 in northwestern Sonora and compose several of the Rodinian and the Laurentian cratons. Integration of our small mountains or isolated hills north of the international bor- geological mapping, geochronology, and isotopic analyses with der in the Cabeza Prieta region (Fig. 2). These dark-weathering recent work on Proterozoic basement at Quitovac (Iriondo, 2001) exposures contrast markedly with light-pink Late Cretaceous– yields a new data set useful for evaluating which continent, e.g., early Tertiary biotite ± muscovite granite plutons of the Gunnery Antarctica (Moores, 1991), Australia (Karlstrom et al., 1999), Range batholith (Shafi qullah et al., 1980). Conspicuous, tilted Siberia (Sears and Price, 2000), or south China (Li et al., 1995) nonconformities separate the crystalline rocks from overlying was attached to southwestern Laurentia in the controversial Neogene sections and Quaternary basalt fl ows that become Rodinia reconstructions. The data also constrain the confi gura- increasingly abundant from west to east. tion of certain blocks of Proterozoic crust in Sonora (Fig. 1), and The Proterozoic exposures are geographically divided into offer a means to assess possible
Recommended publications
  • Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
    BEST PRACTICES for: Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Cover Photos—Credits for images shown on the cover are noted with the corresponding figures within this document. Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States September 2010 National Energy Technology Laboratory www.netl.doe.gov DOE/NETL-2010/1420 Table of Contents Table of Contents 5 Table of Contents Executive Summary ____________________________________________________________________________ 10 1.0 Introduction and Background
    [Show full text]
  • The Disastrous Impacts of Trump's Border Wall on Wildlife
    a Wall in the Wild The Disastrous Impacts of Trump’s Border Wall on Wildlife Noah Greenwald, Brian Segee, Tierra Curry and Curt Bradley Center for Biological Diversity, May 2017 Saving Life on Earth Executive Summary rump’s border wall will be a deathblow to already endangered animals on both sides of the U.S.-Mexico border. This report examines the impacts of construction of that wall on threatened and endangered species along the entirety of the nearly 2,000 miles of the border between the United States and Mexico. TThe wall and concurrent border-enforcement activities are a serious human-rights disaster, but the wall will also have severe impacts on wildlife and the environment, leading to direct and indirect habitat destruction. A wall will block movement of many wildlife species, precluding genetic exchange, population rescue and movement of species in response to climate change. This may very well lead to the extinction of the jaguar, ocelot, cactus ferruginous pygmy owl and other species in the United States. To assess the impacts of the wall on imperiled species, we identified all species protected as threatened or endangered under the Endangered Species Act, or under consideration for such protection by the U.S. Fish and Wildlife Service (“candidates”), that have ranges near or crossing the border. We also determined whether any of these species have designated “critical habitat” on the border in the United States. Finally, we reviewed available literature on the impacts of the existing border wall. We found that the border wall will have disastrous impacts on our most vulnerable wildlife, including: 93 threatened, endangered and candidate species would potentially be affected by construction of a wall and related infrastructure spanning the entirety of the border, including jaguars, Mexican gray wolves and Quino checkerspot butterflies.
    [Show full text]
  • Grand-Canyon-South-Rim-Map.Pdf
    North Rim (see enlargement above) KAIBAB PLATEAU Point Imperial KAIBAB PLATEAU 8803ft Grama Point 2683 m Dragon Head North Rim Bright Angel Vista Encantada Point Sublime 7770 ft Point 7459 ft Tiyo Point Widforss Point Visitor Center 8480ft Confucius Temple 2368m 7900 ft 2585 m 2274 m 7766 ft Grand Canyon Lodge 7081 ft Shiva Temple 2367 m 2403 m Obi Point Chuar Butte Buddha Temple 6394ft Colorado River 2159 m 7570 ft 7928 ft Cape Solitude Little 2308m 7204 ft 2417 m Francois Matthes Point WALHALLA PLATEAU 1949m HINDU 2196 m 8020 ft 6144ft 2445 m 1873m AMPHITHEATER N Cape Final Temple of Osiris YO Temple of Ra Isis Temple N 7916ft From 6637 ft CA Temple Butte 6078 ft 7014 ft L 2413 m Lake 1853 m 2023 m 2138 m Hillers Butte GE Walhalla Overlook 5308ft Powell T N Brahma Temple 7998ft Jupiter Temple 1618m ri 5885 ft A ni T 7851ft Thor Temple ty H 2438 m 7081ft GR 1794 m G 2302 m 6741 ft ANIT I 2158 m E C R Cape Royal PALISADES OF GO r B Zoroaster Temple 2055m RG e k 7865 ft E Tower of Set e ee 7129 ft Venus Temple THE DESERT To k r C 2398 m 6257ft Lake 6026 ft Cheops Pyramid l 2173 m N Pha e Freya Castle Espejo Butte g O 1907 m Mead 1837m 5399 ft nto n m A Y t 7299 ft 1646m C N reek gh Sumner Butte Wotans Throne 2225m Apollo Temple i A Br OTTOMAN 5156 ft C 7633 ft 1572 m AMPHITHEATER 2327 m 2546 ft R E Cocopa Point 768 m T Angels Vishnu Temple Comanche Point M S Co TONTO PLATFOR 6800 ft Phantom Ranch Gate 7829 ft 7073ft lor 2073 m A ado O 2386 m 2156m R Yuma Point Riv Hopi ek er O e 6646 ft Z r Pima Mohave Point Maricopa C Krishna Shrine T
    [Show full text]
  • Wild Cats of the Sky Islands: a Summary of Monitoring Efforts Using Noninvasive Techniques
    Wild Cats of the Sky Islands: A Summary of Monitoring Efforts Using Noninvasive Techniques Lisa Haynes, Zoe Hackl, and Melanie Culver School of Renewable Natural Resources, University of Arizona, Tucson, AZ Abstract—A variety of efforts are taking place to detect, inventory, and monitor the wild felids (pumas, bobcats, jaguars, and ocelots) of the Madrean Archipelago. Researchers are using a suite of noninvasive methods, including infrared-triggered photography, DNA analysis of scat and hair (collected from “hair snares”), and old-fashioned tracking and sign searches. These efforts are being conducted by a variety of academic, government, and non-governmental organizations in the United States and Mexico. We briefly outline the various projects including their results to date, discuss threats to native felids in the region, and provide recommendations for further research, monitoring, and conservation. wildlife—all contributed to a recent flurry of activity to gather Introduction information on the wild cats of the Madrean Archipelago. In The region known as the Madrean Archipelago in the this paper we briefly describe the techniques, summarize wild Southwestern United States and Northwestern Mexico is, cat-related projects in the region, and discuss management and in many ways, unique. It crosses the boundary between two conservation implications. We emphasize noninvasive tech- nations and is influenced by two major climatic regimes, niques, since they are more commonly used in these projects; tropical and temperate. It is extraordinarily diverse ecologi- however, we briefly mention standard capture/radio telemetry cally and is home to 4, possibly 5, species of native wild cats. efforts, where applicable. Two felid species, the bobcat (Lynx rufus) and puma (Puma concolor) (also known as cougar, mountain lion, and panther) are relatively common throughout the region.
    [Show full text]
  • Dos Cabezas Mountains Proposed LWC Is Affected Primarily by the Forces of Nature and Appears Natural to the Average Visitor
    DOS CABEZAS MOUNTAINS LANDS WITH WILDERNESS CHARACTERISTICS PUBLIC LANDS CONTIGUOUS TO THE BLM’S DOS CABEZAS MOUNTAINS WILDERNESS IN THE NORTHERN CHIRICAHUA MOUNTAINS, ARIZONA A proposal report to the Bureau of Land Management, Safford Field Office, Arizona APRIL, 2016 Prepared by: Joseph M. Trudeau, Amber R. Fields, & Shannon Maitland Dos Cabezas Mountains Wilderness Contiguous Proposed LWC TABLE OF CONTENTS PREFACE: This Proposal was developed according to BLM Manual 6310 page 3 METHODS: The research approach to developing this citizens’ proposal page 5 Section 1: Overview of the Proposed Lands with Wilderness Characteristics Unit Introduction: Overview map showing unit location and boundaries page 8 • provides a brief description and labels for the units’ boundary Previous Wilderness Inventories: Map of former WSA’s or inventory unit’s page 9 • provides comparison between this and past wilderness inventories, and highlights new information Section 2: Documentation of Wilderness Characteristics The proposed LWC meets the minimum size criteria for roadless lands page 11 The proposed LWC is affected primarily by the forces of nature page 12 The proposed LWC provides outstanding opportunities for solitude and/or primitive and unconfined recreation page 16 A Sky Island Adventure: an essay and photographs by Steve Till page 20 MAP: Hiking Routes in the Dos Cabezas Mountains discussed in this report page 22 The proposed LWC has supplemental values that enhance the wilderness experience & deserve protection page 23 Conclusion: The proposed
    [Show full text]
  • Map: Basement-Cover Relationships
    Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 • BASEMENT-COVER RELATIONSHIPS Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 BASEMENT-COVER RELATIONSHIPS FLINN ET AL~g~ JOHNSTONE ET AL RATHBONE ~ HARRIS~'~ RAMSAY & STURT SANDERSi I & VAN BREEMEN BREWER ET AL" 0 km 100 I I WATSON & DUNNING- GENERAL REVIEW KENNAN ET AL-- PARATECTONIC IRELAND BAMFORD-- SEISMIC CONSTRAINTS Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 The Caledonides of the British Isles--reviewed. 1979. Geological Society of London. Basement-cover relations in the British Caledonides Janet Watson & F. W. Dunning CONTENTS 1. Introduction 67 2. The Metamorphic Caledonides 68 a The Lewisian complex and related rocks 68 b Pre-Caledonian cover units 70 c Other possible basement units 72 d The Caledonian orogenic front 73 e Grenville activity in the northern Caledonian province 74 3. The Non-metamorphic Caledonides 76 a Basic facts relating to the belt in general 76 b The Midland Valley Transition Zone 77 c The Southern Uplands-Longford-Down-Clare Inliers Belt 83 d The Iapetus Suture 84 e The Lake District-Isle of Man-Leinster Belt 84 f The Irish Sea Horst 85 g The Welsh Basin and its eastern borders 85 h Eastern England 86 j The Midland Craton 86 4. Conclusions 87 5. Acknowledgements 88 6. References 88 1. Introduction underlying the Metamorphic Caledonides (which Although the conventional regional subdivi- consists mainly of gneisses) and that underlying sion of the British and Irish
    [Show full text]
  • Basement Characteristic Western Part of Java, Indonesia
    Vol.8 (2018) No. 5 ISSN: 2088-5334 Basement Characteristic Western Part of Java, Indonesia; Case Study in Bayah Area, Banten Province Aton Patonah# , Haryadi Permana* #Faculty of Geological Engineering, Padjadjaran University, Sumedang KM 21. Jatinangor, 45363, West Java, Indonesia E-mail: [email protected] *Research Center for Geotechnology LIPI, Jl Sangkuriang Bandung 40135, West Java, Indonesia E-mail: [email protected] Abstract — Recent study reveals that in Bayah Complex, 20 km west of Ciletuh Melange Complex, discovered a metamorphic rock that interpreted as the basement of Java. This research aims to know the characteristic of metamorphic in Bayah areas. The result shows that the metamorphic rocks of Bayah Geological Complex are dominated by mica schist group, i.e., muscovite schist, muscovite-biotite schist, garnet biotite schist and chlorite schist associated with Pelitic - Psammitic protolith. The amphibolite, epidote amphibolite and actinolite schist found were metamorphosed of mafic rock protolith. All of them have been deformed and altered. Based on mineral assemblage, mica schist group included lower greenschist - epidote-amphibolite facies, whereas actinolite schist, epidote amphibolite schist, and hornblende schist included greenschist facies, epidote-amphibolite facies, and amphibolite facies respectively. Based on the data, these metamorphic rocks are associated with the orogenic style. The metamorphic rocks exposed to the surface through a complex process since Late Cretaceous. Metamorphic rocks have been deformed, folded and faulted since its formation. Its possible this rock was uplifted to the surface due to the intrusion of Cihara Granodiorite. Keywords — Bayah Geological Complex; greenschist facies; amphibolite facies; orogenic style; uplifted. [12]. According to [11], metamorphic rocks that exposed in I.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Stratigraphy and Fusulinids of Naco Group in Chiricahua and Dos Cabezas Mountains, Arizona Sabins, Floyd F., Jr
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/16 Stratigraphy and fusulinids of Naco Group in Chiricahua and Dos Cabezas mountains, Arizona Sabins, Floyd F., Jr. and Charles A. Ross, 1965, pp. 148-157 in: Southwestern New Mexico II, Fitzsimmons, J. P.; Balk, C. L.; [eds.], New Mexico Geological Society 16th Annual Fall Field Conference Guidebook, 244 p. This is one of many related papers that were included in the 1965 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Pan-African Orogeny 1
    Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny 1 Contents Pan-African Orogeny North African Phanerozoic Rift Valley Within the Pan-African domains, two broad types of Pan-African Orogeny orogenic or mobile belts can be distinguished. One type consists predominantly of Neoproterozoic supracrustal and magmatic assemblages, many of juvenile (mantle- A Kröner, Universität Mainz, Mainz, Germany R J Stern, University of Texas-Dallas, Richardson derived) origin, with structural and metamorphic his- TX, USA tories that are similar to those in Phanerozoic collision and accretion belts. These belts expose upper to middle O 2005, Elsevier Ltd. All Rights Reserved. crustal levels and contain diagnostic features such as ophiolites, subduction- or collision-related granitoids, lntroduction island-arc or passive continental margin assemblages as well as exotic terranes that permit reconstruction of The term 'Pan-African' was coined by WQ Kennedy in their evolution in Phanerozoic-style plate tectonic scen- 1964 on the basis of an assessment of available Rb-Sr arios. Such belts include the Arabian-Nubian shield of and K-Ar ages in Africa. The Pan-African was inter- Arabia and north-east Africa (Figure 2), the Damara- preted as a tectono-thermal event, some 500 Ma ago, Kaoko-Gariep Belt and Lufilian Arc of south-central during which a number of mobile belts formed, sur- and south-western Africa, the West Congo Belt of rounding older cratons. The concept was then extended Angola and Congo Republic, the Trans-Sahara Belt of to the Gondwana continents (Figure 1) although West Africa, and the Rokelide and Mauretanian belts regional names were proposed such as Brasiliano along the western Part of the West African Craton for South America, Adelaidean for Australia, and (Figure 1).
    [Show full text]
  • Precambrian Basement Terrane of South Dakota
    BULLETIN 41 Precambrian Basement Terrane of South Dakota KELLI A. MCCORMICK Department of Environment and Natural Resources Geological Survey Program Akeley-Lawrence Science Center University of South Dakota Vermillion, South Dakota 2010 GEOLOGICAL SURVEY PROGRAM DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES AKELEY-LAWRENCE SCIENCE CENTER, USD 414 EAST CLARK STREET VERMILLION, SOUTH DAKOTA 57069-2390 (605) 677-5227 Derric L. Iles, M.S., C.P.G. State Geologist Sarah A. Chadima, M.S., C.P.G. Senior Geologist Daniel E. Costello, M.S. Geologist Timothy C. Cowman, M.S. Natural Resources Administrator Brian A. Fagnan, M.S. Senior Geologist Dragan Filipovic, M.S. Senior Hydrologist Ann R. Jensen, B.S. Senior Geologist Darren J. Johnson, M.S. Geologist Matthew T. Noonan, B.S. Hydrologist Thomas B. Rich, M.S. Senior Hydrologist Layne D. Schulz, B.S. Senior Geologist Dennis D. Iverson Civil Engineering Technician Scott W. Jensen Civil Engineering Technician Ted R. Miller, B.S. Civil Engineering Technician Colleen K. Odenbrett Word Processing Supervisor Jeffrey J. Puthoff, B.A. Natural Resources Technician Lori L. Roinstad Cartographer Priscilla E. Young, B.S. Senior Secretary RAPID CITY REGIONAL OFFICE 2050 WEST MAIN, SUITE 1 RAPID CITY, SOUTH DAKOTA 57702-2493 (605) 394-2229 Mark D. Fahrenbach, Ph.D. Senior Geologist Kelli A. McCormick, Ph.D. Senior Geologist Joanne M. Noyes, M.S., P.E. Senior Hydrologist STATE OF SOUTH DAKOTA M. Michael Rounds, Governor DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES Steven M. Pirner, Secretary DIVISION OF FINANCIAL AND TECHNICAL ASSISTANCE David Templeton, Director GEOLOGICAL SURVEY PROGRAM Derric L. Iles, State Geologist BULLETIN 41 PRECAMBRIAN BASEMENT TERRANE OF SOUTH DAKOTA KELLI A.
    [Show full text]
  • Field Trip - Alps 2013
    Student paper Field trip - Alps 2013 Evolution of the Penninic nappes - geometry & P-T-t history Kevin Urhahn Abstract Continental collision during alpine orogeny entailed a thrust and fold belt system. The Penninic nappes are one of the major thrust sheet systems in the internal Alps. Extensive seismic researches (NFP20,...) and geological windows (Tauern-window, Engadin-window, Rechnitz-window), as well as a range of outcrops lead to an improved understanding about the nappe architecture of the Penninic system. This paper deals with the shape, structure and composition of the Penninic nappes. Furthermore, the P-T-t history1 of the Penninic nappes during the alpine orogeny, from the Cretaceous until the Oligocene, will be discussed. 1 The P-T-t history of the Penninic nappes is not completely covered in this paper. The second part, of the last evolution of the Alpine orogeny, from Oligocene until today is covered by Daniel Finken. 1. Introduction The Penninic can be subdivided into three partitions which are distinguishable by their depositional environment (PFIFFNER 2010). The depositional environments are situated between the continental margin of Europe and the Adriatic continent (MAXELON et al. 2005). The Sediments of the Valais-trough (mostly Bündnerschists) where deposited onto a thin continental crust and are summarized to the Lower Penninic nappes (PFIFFNER 2010). The Middle Penninic nappes are comprised of sediments of the Briançon-micro-continent. The rock compositions of the Lower- (Simano-, Adula- and Antigori-nappe) and Middle- Penninic nappes (Klippen-nappe) encompass Mesozoic to Cenozoic sediments, which are sheared off from their crystalline basement. Additionally crystalline basement form separate nappe stacks (PFIFFNER 2010).
    [Show full text]