Stratigraphic and Time-Stratigraphic Cross
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geology of the Flathead Formation (Middle Cambrian) on the Perimeter
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 1978 Geology of the Flathead Formation (Middle Cambrian) on the perimeter of the Bighorn Basin, Beartooth Mountains, and Little Belt Mountains in Wyoming and Montana Joel A. Degenstein University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Degenstein, Joel A., "Geology of the Flathead Formation (Middle Cambrian) on the perimeter of the Bighorn Basin, Beartooth Mountains, and Little Belt Mountains in Wyoming and Montana" (1978). Theses and Dissertations. 71. https://commons.und.edu/theses/71 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. GEOLOGY OF THE FLATHEAD FORMATION (MIDDLE CAMBRIAN) ON THE PERIMETER OF THE BIGHORN BASIN, BEARTOOTH MOUNTAINS, AND LITTLE BELT MOUNTAINS IN WYOMING AND MONTANA by Joel A. Degenstein Bachelor of Science in Geology, University of North Dakota, 1976 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota GEOLCGY LIBl(ARY August lJnivenitJ of Ncrtb Dakoll 1978 / . , '"\'';'.ft. ',I l This Thesis submicted by Joel A, Degenstein in partial fulfill ment of the requirements for the Degree of :·Iast:er of Science from ci:te University of ?forth Dakota is hereby app:.-c,·ed by the Faculty Advisory Col!llllittee under whom the work has been done. -
High-Resolution Correlation of the Upper Cretaceous Stratigraphy Between the Book Cliffs and the Western Henry Mountains Syncline, Utah, U.S.A
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences 5-2012 HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A. Drew L. Seymour University of Nebraska, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Geology Commons, Sedimentology Commons, and the Stratigraphy Commons Seymour, Drew L., "HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A." (2012). Dissertations & Theses in Earth and Atmospheric Sciences. 88. http://digitalcommons.unl.edu/geoscidiss/88 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A. By Drew L. Seymour A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Christopher R. Fielding Lincoln, NE May, 2012 HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH. U.S.A. Drew L. Seymour, M.S. -
GEOLOGY of the INTERMOUNTAIN WEST an Open-Access Journal of the Utah Geological Association
GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association Volume 1 2014 The Major Pre-Mississippian Unconformity in Rock Canyon, Central Wasatch Range, Utah David L. Clark1,, Drew Derenthal2, Bart J. Kowallis2, and Scott M. Ritter2 1Department of Geosciences, University of Wisconsin, Madison, WI; [email protected] 2Department of Geological Sciences, Brigham Young University, Provo, UT © 2014 Utah Geological Association. All rights reserved. For permission to copy and distribute, see the following page or visit the UGA website at www.utahgeology.org for information. Email inquiries to [email protected] GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association Volume 1 2014 Editors UGA Board Douglas A. Sprinkel 2014 President Grant Willis [email protected] 801.537.3355 Utah Geological Survey 2014 President-Elect April Abate [email protected] 801.538.5214 801.391.1977 2014 Program Chair Wayne Western [email protected] 801.538.5263 [email protected] 2014 Treasurer Scott Clark [email protected] 2014 Secretary Mike Hylland [email protected] 801.537.3382 2014 Past-President Craig Morgan [email protected] 801.537.3370 Bart J. Kowallis Brigham Young University 801.422.2467 UGA Committees [email protected] Education/Scholarship Loren Morton [email protected] 801.536.4262 Environmental Affairs Craig Eaton [email protected] 801.633.9396 Thomas C. Chidsey, Jr. Geologic Road Sign Terry Massoth [email protected] 801.541.6258 Historian Paul Anderson [email protected] 801.364.6613 Utah Geological Survey Public Education Paul Jewell [email protected] 801.581.6636 801.537.3364 Sandy Eldredge [email protected] 801.537.3325 [email protected] Publications Roger Bon [email protected] 801.942.0533 Publicity Paul Inkenbrandt [email protected] 801.537.3361 Steven Schamel Social/Recreation Roger Bon [email protected] 801.942.0533 GeoX Consulting, Inc. -
Geology of the Northern Portion of the Fish Lake Plateau, Utah
GEOLOGY OF THE NORTHERN PORTION OF THE FISH LAKE PLATEAU, UTAH DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State - University By DONALD PAUL MCGOOKEY, B.S., M.A* The Ohio State University 1958 Approved by Edmund M." Spieker Adviser Department of Geology CONTENTS Page INTRODUCTION. ................................ 1 Locations and accessibility ........ 2 Physical features ......... _ ................... 5 Previous w o r k ......... 10 Field work and the geologic map ........ 12 Acknowledgements.................... 13 STRATIGRAPHY........................................ 15 General features................................ 15 Jurassic system......................... 16 Arapien shale .............................. 16 Twist Gulch formation...................... 13 Morrison (?) formation...................... 19 Cretaceous system .............................. 20 General character and distribution.......... 20 Indianola group ............................ 21 Mancos shale. ................... 24 Star Point sandstone................ 25 Blackhawk formation ........................ 26 Definition, lithology, and extent .... 26 Stratigraphic relations . ............ 23 Age . .............................. 23 Price River formation...................... 31 Definition, lithology, and extent .... 31 Stratigraphic relations ................ 34 A g e .................................... 37 Cretaceous and Tertiary systems . ............ 37 North Horn formation. .......... -
Exhumation of the North American Cordillera Revealed by Multi-Dating of Upper Jurassic–Upper Cretaceous Foreland Basin Deposits
Exhumation of the North American Cordillera revealed by multi-dating of Upper Jurassic–Upper Cretaceous foreland basin deposits Clayton S. Painter†, Barbara Carrapa, Peter G. DeCelles, George E. Gehrels, and Stuart N. Thomson Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721, USA ABSTRACT AFT and U-Pb) shows that volcanic contami- eroded and later obscured by Basin and Range nation is a signifi cant issue that can, however, extensional tectonics, leaving only the foreland New low-temperature thermochronol- be addressed by double dating. basin deposits as a record of exhumation history. ogy and geochronology data from Upper Despite the great potential of such an approach Jurassic–Upper Cretaceous strata from the INTRODUCTION in North America, to date, no detailed detrital North American Cordilleran foreland ba- thermochronological study had been applied in sin in Utah, Colorado, Wyoming, and South Foreland basin deposits are an impor- the retro arc foreland basin of the North Ameri- Dakota document rapid exhumation rates tant archive of orogenic growth and tectonic can Cordillera. The goal of this study is to deter- of the adjacent Cordilleran orogenic belt to processes (Aubouin, 1965; Dickinson, 1974; mine the timing, pattern, and rates of cooling of the west. Both zircon (U-Th-[Sm])/He (zircon Dickinson and Suczek, 1979; Jordan, 1981; the North American Cordillera in order to better He) and apatite fi ssion track (AFT) thermo- DeCelles and Giles, 1996; DeCelles, 2004; understand the modes of exhumation and con- chronology were applied to proximal and Miall, 2009). Many researchers have used tribute to models of fold- thrust belt and foreland distal synorogenic deposits in order to iden- coarse-grained foreland basin deposits to date basin evolution. -
Stratigraphy of the Wasatch Range Near Salt Lake City, Utah
GEOLOGICAL SURVEY CIRCULAR 296 STRATIGRAPHY OF THE WASATCH RANGE NEAR SALT LAKE CITY, UTAH .. UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director · GEOLOGICAL SURVEY CIRCULAR 296 STRATIGRAPHY OF THE WASATCH RANGE NEAR SALT LAKE CITY, UTAH By Arthur E. Granger Washington, D. C., 1953 Free on application to the Geological Survey, Washington 25, D. C. 113° 112° 111° I D 0 42° 42° C!:) z c H • X E L I c H :g 0 B E R. \ Ogden ...._// l_ ---........ ...... _// ) 0 R G A N _ _,)__~ _f H SUMMIT I J AREA OF REPORT L A K E ').....-= I /~ / I T 0 0 E L E ..r' I I w A \ --~ \ ...___, • \ \ \ I 5 0 20 Miles I H ,, Index map of north-central Utah showing area of report. iv STRATIGRAPHY OF THE WASATCH RANGE NEAR SALT LAKE CITY, UTAH By Arthur E. Granger CONTENTS Page Page Introduction.. 1 Permian system-Continued Pre-Cambrian rocks.......................... 2 Park City formation . 3 Lower pre-Cambrian rocks. 2 Triassic system,. 3 Upper pre-Cambrian rocks............... 2 Woodside shale........................... 3 Cambrian system. 2 Thaynes formation . 4 Brigham quartzite...................... 2 Ankareh shale. 4 Ophir shale. 2 Jurassic system, . 4 Maxfield limestone . • . 2 Nugget sandstone......................... 4 Ordovician system. 2 Twin Creek limestone. 4_ Swan Peak(?) formation... • . 2 Preuss sandstone . 4 Devonian system . 2 Morrison(?) formation.................... 4 Pinyon Peak limestone.................. 2 Cretaceous system. 4 Carboniferous system......................... 2 Kelvin formation .................._....... 4 Mississippian series.................... 2 Frontier formation. 4 Madison limestone. 3 Conglomerate~ ... -. 5 Deseret limestone . 3 Tertiary system . -
Significant New Biostratigraphic Horizons in the Qusaiba Member of the Silurian Qalibah Formation of Central Saudi Arabia, and T
GeoArabia, Vol. 10, No. 1, 2005 Gulf PetroLink, Bahrain Significant new biostratigraphic horizons in the Qusaiba Member of the Silurian Qalibah Formation of central Saudi Arabia, and their sedimentologic expression in a sequence stratigraphic context Merrell A. Miller and John Melvin ABSTRACT Detailed analysis of over 1,000 subsurface Silurian palynology samples from 34 wells has allowed the development of a robust biostratigraphy based on acritarchs, chitinozoans and cryptospores for the Qusaiba Member of the Qalibah Formation, central Saudi Arabia. The new index fossils described herein augment the Arabian Plate Silurian chitinozoan zonation. The high-resolution biostratigraphic zonation consists of nine First Downhole Occurrences (FDOs) from the lower Telychian through Aeronian. In particular, three regionally recognizable palynologic horizons were identified within the lower part of the informally designated Mid-Qusaiba Sandstone (Angochitina hemeri Interval Zone), and above the FDO of Sphaerochitina solutidina. This high level of biostratigraphic resolution provides a framework for the integration of the sedimentology and calibration with global sea level curves, leading to a detailed understanding of the sequence stratigraphic evolution of this part of the Silurian in Saudi Arabia. Sedimentological core studies identify three Depositional Facies Associations (DFAs) within the Mid-Qusaiba Sandstone interval, including: (1) shelfal deposits (DFA-I) characterized by interbedded hummocky cross-stratified sandstones, graded siltstones and bioturbated mudstones; (2) turbiditic deposits (DFA-II); and (3) an association of heavily contorted and re- sedimented sandstones, siltstones and mudstones (DFA-III) that is considered representative of oversteepened slopes upon the Qusaiba shelf. Integration of the newly recognized palynostratigraphic horizons and the sedimentological data facilitates an understanding of the sequence stratigraphic evolution of the Mid-Qusaiba Sandstone interval and its immediate precursors. -
3.2 Geological, Paleontological, and Mineral Resources the Proposed
TransWest Express EIS Section 3.2 – Geological, Paleontological, and Mineral Resources 3.2-1 3.2 Geological, Paleontological, and Mineral Resources The proposed project covers several physiographic provinces including the Wyoming Basins, Colorado Plateau, Middle Rocky Mountains, and Basin and Range provinces. The proposed routes cross a variety of bedrock and surficial deposits that also include geologic hazards. Mineral resources in the areas crossed by the proposed Project include oil and natural gas, coal, aggregate and industrial minerals. 3.2.1 Regulatory Background 3.2.1.1 Geological Resources Regulations pertaining to geological resources are concerned with the preservation of unique geological features. The National Registry of Natural Landmarks (16 USC 461-467) set up the National Natural Landmarks (NNL) program in 1962 and is administered under the Historic Sites Act of 1935. Implementing regulations were first published in 1980 under 36 CFR 1212 and the program was re-designated as 36 CFR 62 in 1981. A National Natural Landmark is defined as: • An area designated by the Secretary of the Interior as being of national significance to the United States because it is an outstanding example(s) of major biological and geological features found within the boundaries of the United States or its Territories or on the Outer Continental Shelf (36 CFR 62.2). • An area designated as one of the best examples of a biological community or geological feature within a natural region of the United States, including terrestrial communities, landforms, geological features and processes, habitats of native plant and animal species, or fossil evidence of the development of life (36 CFR 62.2). -
The Geology of the Kamas-Coalville Region, Summit County, Utah, and Its Relation to Ground-Water Conditions
WRB 29 Cover 2/13/02 9:12 AM Page 1 H.A. Hurlow THETHE GEOLOGYGEOLOGY OFOF THETHE KAMAS-COALVILLEKAMAS-COALVILLE REGION,REGION, SUMMITSUMMIT COUNTY,COUNTY, UTAH,UTAH, ANDAND ITSITS RELATIONRELATION TOTO GROUND-WATERGROUND-WATER CONDITIONSCONDITIONS by Hugh A. Hurlow Utah Geological Survey Geology ofKamas-CoalvilleRegion View to the northeast of northern Kamas Valley, from the West Hills. UGS WRB29 ISBN 1-55791-656-X WATER RESOURCE BULLETIN 29 Utah Geological Survey !7IB5F7-jbgfgd! a division of 2002 Utah Department of Natural Resources UTAH GEOLOGICAL SURVEY THE GEOLOGY OF THE KAMAS-COALVILLE REGION, SUMMIT COUNTY, UTAH, AND ITS RELATION TO GROUND-WATER CONDITIONS by Hugh A. Hurlow Utah Geological Survey ISBN 1-55791-656-X WATER RESOURCE BULLETIN 29 UTAH GEOLOGICAL SURVEY a division of 2002 Utah Department of Natural Resources STATE OF UTAH Michael O. Leavitt, Governor DEPARTMENT OF NATURAL RESOURCES Kathleen Clarke, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director UGS Board Member Representing Robert Robison (Chairman) ...................................................................................................... Minerals (Industrial) Geoffrey Bedell.............................................................................................................................. Minerals (Metals) Stephen Church .................................................................................................................... Minerals (Oil and Gas) E.H. Deedee O’Brien ....................................................................................................................... -
Exhumed Paleochannels in the Lower Cretaceous Cedar Mountain Formation Near Green River, Utah
BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part I Preble Formation, a Cambrian Outer Continental Shelf Deposit in Nevada ........................................... M. N. Rees and A. J. Rowel1 The Fitchville Formation: A Study of the Biostratigraphy and Depositional Environments in West Central Utah County, Utah ......................................................................................................................Brian R. Greenhalgh Sandstone and Conglomerate-Breccia Pipes and Dikes of the Kodachrome Basin Area, Kane County, Utah ........... Cheryl Hannum Exhumed Paleochannels in the Lower Cretaceous Cedar Mountain Formation near Green River, Utah .................. Daniel R. Harris The Stratigraphy and Structure of the Cedar Hills, Sanpete County, Utah ............................................................Ralph L. Hawks, Jr. Paleoenvironments of the Lower Triassic Thaynes Formation, near Diamond Fork in Spanish Fork Canyon, Utah County, Utah .......................................................................................................................................................Bruce H. James A Gravity Study of the Nampa-Caldwell Area, Canyon County, Idaho ..........................................................................J. Roger Olsen Geology of the Sterling Quadrangle, Sanpete County, Utah ..............................................................................James Michael Taylor Publications and Maps of the Geology Department Cover: Aertalphorograph rhowing exhumed rtream paleochannelr -
Geology of the West Tintic Mining District and Vicinity, Juab County, Utah
GEOLOGYGEOLOGY OOFP THETHE WESTWEST TINTICTINTIC MININGMINING DISTRICTDISTRICT ANDAND VICINITYVICINITY JUABJUAB COUNTY,COUNTY, UTAHUTAH BByy WestonWeston CliveClive GardnerGardner A thesisthesis submittedsubmitted toto thethe facultyfaculty ofof thethe UniversityUniversity ofof utahUtah inin partiapartiall fulfillmentfulfillment ofof thethe requirementsrequirements forfor thethe degreedegree ofof MASTERMASTER OFOP SCIENCESCIENCE DepartmentDepartment ofof GeologyGeology UniversitUniversityy ofof UtahUtah June,June, 19541954 Approved:Approved: 355 Chairman, Supervisory Committee-7 Reader,Reader, Supervisorvisoryy CommitteeCommitt ACKNOWLEDGMENTSACKNOWLEDGMENTS TheThe authorauthor isis deeplydeeply indebtedindebted toto Dr.Dr. NormaNormann C.C. Williams,Williams, whowho suggestedsuggested thethe thesithesiss problemproblem andand guidedguided itit ttoo conclusion.conclusion. HisHis adviceadvice onon specialspecial problemproblemss enen counteredcountered inin thethe fieldfield andand inIn preparatiopreparationn ofof thethe manumanu scriptscript waswas anan importantimportant factorfactor inin ththee completioncompletion ofof thethe reportreport.• TheThe writewriterr wouldwould alsoalso likelike ttoo expresexpresss hishis gratitudegratitude toto Dr.Dr. WW.. L.L. StokesStokes foforr hihiss identificationsidentifications ofof fossilfossil collectionscollections andand stratigraphicstratigraphic advice;advice; andand toto DrDr.. F.F. W.W. ChristiansenChristiansen andand ProfessorProfessor MaMaxx EricksonErickson ofof thethe thesisthesis -
Coal—A Complex Natural Resource
U.S. Department of the Interior U.S. Geological Survey Coal—A Complex Natural Resource An overview of factors affecting coal quality and use in the United States With a contribution on coal quality and public health Schweinfurth—COAL—A COMPLEX NATURAL RESOURCE U.S.Geological Survey Circular 1143 Schweinfurth—COAL—A COMPLEX NATURAL U.S. GEOLOGICAL SURVEY CIRCULAR 1143 Cover: Chunk of Texas subbituminous coal in the field. Pen for scale. Note the very thin, light-colored lam- inations that indicate bedding. Top-left enlargement is an example of a scanning photomicrograph show- ing minerals in coal. The bright-white, oval-shaped fragment is a pyrite framboid; the bright-white triangu- lar fragment is zircon; each fragment is about 10 microns wide. The light-colored, equant blebs are quartz grains. They are set in a light-gray matrix consisting of coal macerals and a variety of clay minerals. Top- right enlargement is an example of a transmitted-light photomicrograph showing various coal macerals (organic components) such as vitrinite (dark reddish orange); liptinite (yellow and light orange); and fusi- nite, inertinite, and minerals (black). View is about 200 micrometers wide. U.S. Department of the Interior U.S. Geological Survey Coal—A Complex Natural Resource An overview of factors affecting coal quality and use in the United States By Stanley P. Schweinfurth With a contribution on coal quality and public health by Robert B. Finkelman U.S. GEOLOGICAL SURVEY CIRCULAR 1143 A primer on the origins and quality of coal with a brief examination of how quality affects coal use, and a separate section on coal and public health U.S.