Electronic Engineering - Telecommunications Meng

Total Page:16

File Type:pdf, Size:1020Kb

Electronic Engineering - Telecommunications Meng Electronic Engineering - Telecommunications MEng COURSE FACTS Faculty Computing, Engineering and the Built Environment School Computing, Telecommunications and Networks Application Apply through UCAS, Institution code B25, Course code H600 Location City Centre Campus (Millennium Point) Duration Full-time four years, part-time seven years, sandwich five years KEY FACTS • Accreditation by the Institute of Engineering and Technology • This course combines theory and practice in embedded will help you to become an Incorporated or Chartered Engineer systems, analogue electronics, digital electronics, after graduation, increasing your professional status. telecommunications and digital signal processing to develop • Placement opportunities exist in a wide range of companies, or the skills that your future employer will highly value. During you can work with academics as part of the University’s award- the third and fourth year of this programme, you will focus winning Student-Academic Partnership scheme, and engage on telecommunication modules. The fourth year offers with the local and national STEM initiatives to develop your CV optional modules such as RF and microwave engineering, and job prospects. MEng students will have the opportunity applied DSP and network security allowing you to match your to work on active research projects alongside MPhil and PhD course to your requirements and interests. The course offers students. breadth with such modules as professional development and technology entrepreneurship. WHY CHOOSE US? • We have dedicated labs for Electronics, Microprocessor, our links with companies such as Cisco Systems, Festo, Electronic Computer-Aided Design (ECAD), Communications, Landrover, Aero Engine Controls, Roll Royce, Morgan, UTC Networking, Programming and Project work. There are Aerospace, Sorion and the Communications division of Army suites of open-access PCs for general use by all students. Reserves.We have a large database of companies for whom we We have rapid prototyping, laser-cutting, and CNC machining provide R&D expertise, many of which provide employment for capabilities for project work. We have site-wide wi-fi for our students. laptops, smart-phones, and tablet PC connectivity. • We actively support STEM and encourage students to become • You will undertake a final-year project in electronic and/ STEM ambassadors. We run national and international or communication systems design. Examples of project competitions in robotics and computer games (e.g. RoboFest, areas include: digital signal processing, embedded systems, TechFest and Global Game Jam) for Schools/Universities/ robotics, image processing, audio processing, home professionals and hobbyists. We encourage students to help us automation, haptic systems and many other topics. to run these events and to design and build their own creations • Our MEng Electronic Engineering course has full-time routes as project work or club activities, adding fun and invaluable with placement opportunities, providing a very flexible way to practical experience to the challenges of the academic manage your degree course. We are continually expanding programme. COURSE OVERVIEW The aims of this programme are to provide: • encouragement to develop transferable and key skills • a stimulating and rewarding learning experience which applicable to employment and continuing professional develops knowledge of technology allied to design and build development; experience, problem solving skills, and team-working ability, • a route to postgraduate study and research; pertinent to careers involving electronics; • a qualification that satisfies the academic requirements for • an understanding of commercial, legal, ethical and the Institute of Engineering and Technology (IET). CEng status environmental factors associated with electronic engineering; which is an internationally recognised professional body. www.bcu.ac.uk/ctn COURSE STRUCTURE YEAR 1 Professional Engineering Electronic Programming for Mathematics for Electrical Principles Development Practice Fundamentals Engineers Electronics and 15 Credits 15 Credits 30 Credits 30 Credits 15 Credits Telecommunications 15 Credits YEAR 2 Signals and Electrical Machines Electronics Embedded Engineering Data Analogue Digital Circuit Systems and Energy Conversion Project Systems Mathematics Networks Circuit Design Design 15 Credits 15 Credits 15 Credits 15 Credits 15 Credits 15 Credits 15 Credits 15 Credits YEAR 3 Individual Project Management Digital Signal Telecommunications Network Optical Project and Professional Processing 15 Credits Management Communications 45 Credits Practice 15 Credits 15 Credits 15 Credits 15 Credits YEAR 4 Group Technology Advanced Digital Advanced IP OPTION OPTION OPTION Project Entrepreneurship Telecommunications Networks MODULE MODULE MODULE 30 Credits 15 Credits 15 Credits 15 Credits 15 Credits 15 Credits 15 Credits Module options include: The course demonstrates the depth and breadth of • RF and Microwave Engineering experience that the academic staff will bring to bear in guiding students to successful completion of the MEng • Applied DSP programme. The pathways and option modules allow • Network Security students to have control over the direction of their study. • Micro Systems Engineering The option to take a placement year will significantly • Hybrids and Sustainable Technology improve employability and future career direction. ASSESSMENT Assessment is appropriate to the needs of demonstrating achievement of each module’s learning outcomes, which relate to the higher-level learning outcomes of the Course and, in turn, to UK-SPEC, QAA guidelines and the requirements of the IET. Assessment is designed in the context of University policy, as outlined in the Standard Undergraduate Assessment Regulations and within the Faculty guidelines outlined below. The assessment package for a module can be a combination of in-course assessments and an end of module examination, or a variety of in-course assessments only. ENTRY REQUIREMENTS • A-Level; 280 points. Minimum of two 6-unit or one • Foundation Certificate in Engineering from Birmingham 12-unit A-Level (GCE or VCE) including AS Mathematics City University. grade C. • Advanced Diplomas with Mathematics. • National Diploma with Merit, Merit, Distinction. • GCSE Mathematics and English grade C or equivalent A Distinction in Mathematics for Technicians unit or must be offered. a Merit in Further Mathematics for Technicians unit. • Irish: 280 points in ILC. Scottish: 280 points from 4 Highers. IB: 29points (Including 8 Highers including Mathematics). BCC Adv. Highers including Mathematics. EMPLOYABILITY Our close links with business and the professions mean that our courses are always relevant, up-to-date and meet the exact needs of the current marketplace. Wherever possible, we involve employers in planning the curriculum, while many of our lecturers come from and maintain their links with industry, ensuring they are up to speed with the latest developments. Typically our graduates have gone can ontogo onto forge work in careers in as professional electronic engineers electronics examples include: design, research and development, Application Specific Integrated Circuit (ASIC) , Digital Signal Processing (DSP), Embedded, Communications, product manufacture and project management. Birmingham City University, For enquiries: Faculty of Computing, Engineering and T: +44 (0)121 331 5595 the Built Environment, Curzon Street, F: +44 (0)121 331 7994 Millennium Point, Birmingham, B4 7XG W: www.bcu.ac.uk/enquiries TEE-0914.
Recommended publications
  • Beng Electronic Engineering (12130008)
    University of Pretoria Yearbook 2017 BEng Electronic Engineering (12130008) Duration of study 4 years Total credits 568 Programme information All fields of study of the BEng degree have been accredited by the Engineering Council of South Africa (ECSA), and comply with the academic requirements for registration as a professional engineer. The programmes are designed in accordance with the outcomes-based model as required by the South African Qualifications Authority (SAQA). The learning outcomes and contents of the programmes have been compiled in accordance with the latest accreditation standards (PE-60 and PE-61) of ECSA, which also comply with the SAQA requirements, and which are summarised as follows: Learning outcomes of the BEng degree: A graduate in engineering should be able to apply the following skills on an advanced level: a. Engineering problem solving. b. Application of specialist and fundamental knowledge, with specific reference to mathematics, basic sciences and engineering sciences. c. Engineering design and synthesis. d. Investigation, experimentation and data analysis. e. Engineering methods, skills, tools and information technology. f. Professional and general communication. g. Awareness and knowledge of the impact of engineering activity on society and the physical environment. h. Work in teams and in multidisciplinary environments. i. An awareness and ability for lifelong learning. j. An awareness and knowledge of principles of professional ethics and practice. Learning contents of the BEng programmes: Six essential knowledge areas are included in the syllabi of the programmes. The typical representation of each knowledge area as a percentage of the total contents of an undergraduate programme is given in brackets ( ) in the list below.
    [Show full text]
  • Electrical/Electronic Engineering Curriculum
    California State University, Chico Department of Electrical and Computer Engineering 2020/2021 Curriculum BS in Electrical/Electronic Engineering Freshman Year Sophomore Year Junior Year Senior Year Fall Spring Fall Spring Fall Spring Fall Spring Math 120 Math 121 Math 220 Math 260 MATH 350 Concurrent Analytic Analytic EECE 375 Analytic Elementary Intro to Permitted Geometry & Geometry & Fields and Geometry & Differential Probability Calculus Calculus Waves Calculus Equations & Statistics 4 Units (FS) 4 Units (FS) 3 Units (SP) Prerequisite 4 Units (FS) 4 Units (FS) 3 Units (FS) C- or higher req’d C- or higher req’d PHYS 204A PHYS 204B EECE 365 EECE 482 EECE 465 Chem 111 Physics for EECE 311 Restricted Physics for Signals, Control Digital General Engineering Linear EECE Engineering Systems, & System Signal Chemistry Mechanics Circuits II Elective Elec. & Mag. Transforms Design Processing 4 Units (FS) 4 Units (FS) 4 Units (FS) 4 Units 4 Units (FS) 4 Units (FS) 4 Units (FA) 4 Units (FA) C- or higher req’d EECE 211 & GE Area EECE 481 EECE 101 EECE 316 Restricted EECE 211L C1 or C2 EECE 315 Electro- Introduction Electronics EECE Linear 3 Units Electronics I Mechanical to ECE II Elective Circuits I 4 Units (FS) Conversion 3 Units (FA) 4 Units (SP) 4 Units 4 Units (FS) WI Suggested 4 Units (SP) CMST 131 EECE 237 EECE 490A EECE 144 CSCI 111 GE Area EECE 344 EECE 490B Speech Embedded Engineering Digital Program. & D1 or D2 Digital Engineering Comm. System Profession Logic Algorithms I 3 Units System Economics/ Fund. Devel. & Design Fund. 4 Units (FS) Design Implement.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Robotic and Electronic Engineering Technology Mntc General Education
    2020-2021 Technical Requirements .............57 Robotic and Electronic Engineering Technology MnTC General Education ..........15 Associate of Applied Science (AAS) Degree Total Credits ...............................72 Mechatronic Applications: Evaluate and determine that all Program Information • mechatronic equipment is in proper working condition, ensuring The Anoka Technical College Electronic Engineering Technology a safe, reliable manufacturing environment. (EET) program offers a 72-credit Robotic and Electronic Engineering • Safety Compliance: Participate in class in a professional manner, Technology Associate of Applied Science (AAS) degree that prepares by acting in compliance with documented safety procedures and students to work with mechatronics, robotics, automation and controls, appropriate industry standards. computer servicing/networking, and biomedical equipment. Course Prerequisites Students gain a thorough understanding of how computers and machines communicate as well as system level troubleshooting, plus Some courses may require appropriate test score or completion of a solid education in electronic engineering technology fundamentals. basic math, basic English and/or reading courses with a “C” or better. Students will also learn about: Graduation Requirements • Mechatronics All Anoka Technical College students seeking an Associate in Applied • Lasers and Optics Science (AAS), diploma, or certificate must meet the cumulative grade • Robotics point average (GPA) of 2.0 or higher. • Computer Troubleshooting A+ • Networking
    [Show full text]
  • LM118 Bachelor of Engineering in Electronic and Computer Engineering
    LM118 Bachelor of Engineering in Electronic and Computer Engineering Honours Bachelor Degree | Baitsiléir Innealtóireachta in Innealtóireacht Leictreonaic agus Ríomhaire COURSE INFO ENTRY REQUIREMENTS CAO Points 2015: 410 Applicants are required to hold at Graphics/Technical Drawing, Technology, Course Length: 4 Years the time of enrolment the established Biology, Agricultural Science, Applied Leaving Certificate (or an approved Maths. Course Contact: equivalent) with a minimum of six Dr Martin Hayes subjects which must include: A Special Mathematics Examination will Two H5 (Higher Level) grades and be offered at UL following the Leaving Tel: 00 353 61 202577 Four O6 (Ordinary Level) grades or four Certificate results for those students Email: [email protected] H7 (Higher Level) grades. Subjects must who did not achieve the Mathematics include Mathematics, Irish or another requirement. language, and English. Admissions: We welcome applications from mature Tel: 00 353 61 202015 In addition, applicants must hold a students. Mature applicants must apply minimum grade H4 in Mathematics through the Central Applications Office Email: [email protected] and a grade O6/H7 in any one of the (CAO) by 1 February. www.ul.ie/admissions following: Physics, Chemistry, Physics with Chemistry, Engineering, Construction Studies, Design & Communication Why study Electronic and What you will study problem. The project involves advanced Computer Engineering at UL? The first two years of the programme will design and implementation work, and provide you with a strong practical and builds confidence by putting into practice This new Electronic and Computer theoretical foundation in: computing and the skills and knowledge that you have Engineering degree has been developed programming languages, software, digital acquired throughout the course.
    [Show full text]
  • Development of a Wireless Communications Course for Electronics Engineering Technology (EET) Curriculum
    Session 3548 Development of a Wireless Communications Course for Electronics Engineering Technology (EET) Curriculum Ahmed S. Khan DeVry Institute of Technology 1221 N. Swift Road Addison, IL 60101 E-mail: [email protected] Amin Karim DeVry Institute of Technology One Tower Lane Oakbrook Terrace IL, 60181 E-Mail: [email protected] Abstract Wireless communications is one of the most rapidly developing segments of the telecommunications industry. All segments of the wireless industry - cellular, personal communication services (PCS), paging, and specialized mobile radio (SMR) - are expected to grow at double-digit rates. In 1993, wireless services accounted for only $40 billion or 9% of the $640 billion telecommunications market, but by the year 2000, wireless is expected to control $200 billion or 18%, of an expected $1.1 trillion telecommunications market [1]. This phenomenal growth in wireless communications has put new demands on engineering technology curricula. Industry seeks graduates with appropriate background and training in wireless technologies. Electronics engineering technology (EET) graduates are not only expected to understand the theory of state-of-the-art wireless technologies, but also to exhibit hands-on analytical and problem solving skills. To address these changing industrial needs, it is imperative that new courses in wireless technologies be developed and incorporated into the Electronics Engineering Technology program. To help achieve this goal, a survey was conducted in the wireless industry to determine the required level of training for EET graduates. This paper describes a proposed wireless technology lecture/laboratory course implementing the future trends identified through feedback from the wireless industry. Page 2.149.1 Page Introduction “It is dangerous to put limits on wireless.” - Guglielmo Marconi (1932) [2] Nearly a century ago, Marconi transmitted the first radio signals.
    [Show full text]
  • Electrical Engineering Curriculum International Overview
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UPCommons. Portal del coneixement obert de la UPC 2008 Electrical Engineering Curriculum International Overview Josep Miquel Jornet, Eduard Alarcón, Elisa Sayrol International Affairs Office and Dean’s office – Telecom BCN UPC 14/07/2008 2 I. Overview of the Electrical Engineering Curriculum in some of the main universities in North America Massachusetts Institute of Technology http://www.eecs.mit.edu/ug/brief‐guide.html#bach http://www.eecs.mit.edu/ug/primer.html#intro http://www.eecs.mit.edu/ug/programs.html These are the degrees related to Electrical Engineering and Computer Science offered at MIT: Bachelors’ Degrees • Course VI‐1/VI‐1A: A four‐year accredited program leading to the S.B. degree Bachelor of Science in Electrical Science and Engineering. • Course VI‐2/VI‐2A: A four‐year accredited program which permits a broad selection of subjects from electrical engineering and computer science leading to the S.B. degree Bachelor of Science in Electrical Engineering and Computer Science. • Course VI‐3/VI‐3A: A four‐year accredited program leading to the S.B. degree Bachelor of Science in Computer Science and Engineering. Masters’ Degrees • Course VI‐P / VI‐PA: A five‐year program leading to the M.Eng. degree Master of Engineering in Electrical Engineering and Computer Science and simultaneously to one of the three S.B.'s. This degree is available only to M.I.T. EECS undergraduates. It is an integrated undergraduate/graduate professional degree program with subject requirements ensuring breadth and depth.
    [Show full text]
  • Spring 2021 - Current Associate of Applied Science in Electrical/ Electronic Engineering Technology Degree Electomechanical Technology
    Spring 2021 - current Associate of Applied Science in Electrical/ Electronic Engineering Technology Degree Electomechanical Technology General Requirements Electronics Courses Students are responsible for adhering to all college and university requirements and policies as stated in the BGSU Undergraduate Catalog. Hrs Grade Prerequisites shown below are for reference only. 3 ECT 1910 Energy, Power, Instrumentation & Control 3 ECT 2400 Electric Circuts Communication 3 ECT 2410 Electronic Circuits WRIT 1120 and COMM are required. Based on placement scores, WRIT 1010 3 ECT 2490 Digital Electronic Components & Systems and/or WRIT 1110 may also be required. Automation & Design Care Hrs Grade 3 WRIT 1110 Seminar in Academic Writing 3 ECT 3100 Programmable Logic Controllers or 3 WRIT 1120 Seminar in Research Writing ECT 2480 Industrial Equipment and Controls 3 COMM 1020* Introduction to Communication or 3 ECT 2470 Electrical Measurements & COMM 3060 Interpersonal Communication for Instrumentation Non-Majors 3 ECT 3000 Electric Machinery and Controls 3 ENGT 1010 Design & Engineering Graphics I BG Perspective Curriculum 3 ENGT 1100 Basic Computer-Aided Design Choose two (2) courses from the following areas, with no more than one from each 3 ENGT 2200 Metallic Materials & Processes section. Select courses from the list of approved BG Perspective courses in the 3 ENGT 2300 Fluid Power Transmission BGSU Undergraduate Catalog 1 MFG 1260 Basic Metrology 3 QS 2650 # Introduction to Lean Processes/Systems BGP Elective (H or HI) BGP Elective (S or SI) ECON 2000* recommended Applications Core BGP Elective (C) Choose three (3) courses from those listed here. BGP Elective (N) PHYS 2010* 3 CS 1010* Introduction to Programming Mathematics and Sciences 3 CS 2010 Intro to Object-Oriented Programming MATH 1280 (or equivalent combinations).
    [Show full text]
  • Electrical & Electronic Engineering
    NEAR EAST UNIVERSITY FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING COURSE CATALOGUE CONTENTS 1. General information about the Electrical & Electronic Engineering Department 2. Official length of Programme 3. Profile of the Programme and Method of Education 4. Qualification Awarded 5. Access Requirement(s) 6. Qualification Requirements 7.Converting US College Credit Hours(Semester Credit Hours-SCH) to ECTS 8. Arrangements for Transfer from another Faculty (Recognition of Prior Learning) 9. Examination Regulations, Assessment and Grading 10. Grading Scheme and Grades 11. Occupational Profiles of Graduates 12. Programme Director 13. Key Learning Outcomes 14. Courses List with Near East University Credits and ECTS 15. Course Objectives and Contents 16. Sample Copy of Diploma Supplement This course catalogue is developed to give information about the Electrical & Electronic Engineering programme to all who are interested in the Near East University, Department of Electrical & Electronic Engineering eg. future students, parents, academics, universities and institutions, bodies abroad. The catalogue includes key information about the duration of the programme, mode of study, course description, credit and grading system etc. of the programme. We hope you can find the necessary information to your questions about the Department of Electrical & Electronic Engineering and the course programme. Sincerely Prof. Dr. Bülent Bilgehan Chairperson Electrical & Electronic Engineering (EEE) Programme 1. General Information about the Department of Electrical & Electronic Engineering The Department of Electrical and Electronic Engineering was founded by Prof. Dr. Şenol Bektaş, in 1990. The department started off with 25 students. Since the year of foundation, Theory of Circuit, Electronic, Electrical Measurement, Intelligent Circuits, Computer Applications, Physics and Chemistry laboratories have been established one after another and provided the students and lecturers with a fully equipped training environment.
    [Show full text]
  • Lead Robotics Engineer Location : Heerlen, NL
    Position : Lead Robotics Engineer Location : Heerlen, NL About us Our work contributes to a world in which agriculture is done more efficiently and reduces the impact on our planet. We build sensors and analytics software for scientists, breeders and farmers around the world to better understand and manage their crops – any time and any environment. We help to automate the hardest jobs in plant science, plant breeding and in agriculture with solid and elegant solutions. We are an international team coming from diverse backgrounds in plant science, agriculture, physics, computer vision and business and we love to solve challenging problems. Working as a Lead Robotics Engineer at Phenospex You will be part of our ambitious R&D team and be responsible for leading an exciting new program that sits at the intersection of machine vision and robotics in agriculture. This new project has tremendous potential to help farmers all over the world and will have a major impact on today’s farming practices. Your overall goal is to deliver an agricultural robot for the European market. Responsibilities • Design, test and build a safe and economical agricultural robot while using CAD systems • Technically lead a Software Developer, Technician as well as an external Mechanical Designer • Manage the project schedule, budget and risk • Define electrical and mechanical interfaces • Conduct lab and field tests in cooperation with pilot customers • This position will require you to travel approx. 40 days a year Qualifications • Bachelor’s or Master’s degree
    [Show full text]
  • Electrical & Electronic Engineering Careers
    ELECTRICAL & ELECTRONIC ENGINEERING A FUTURE IN ELECTRICAL & ELECTRONIC ENGINEERING WHAT IS ELECTRICAL AND ELECTRONIC ENGINEERING? In a world where virtually nothing can be done without flicking a switch or pushing a button, electrical and electronics engineers hold the keys to progress. Electrical engineers control the diverse power systems that provide energy for all aspects of daily life, while electronics engineers create and maintain the vast array of electronic systems and devices used by individuals and industry. The breadth of activity and opportunity in this field is genuinely exciting. Engineers can be designing components for mobile phones or medical devices, researching circuitry for the development of robots, implementing systems that maintain huge power stations or constructing energy efficient lighting structures for towns or sporting stadiums. Electrical and electronics engineers have an understanding of the whole process of the production of systems and devices, from planning, research, development, manufacture and testing, to implementation and maintenance. As such they will need to be highly competent project managers, communicators and innovators, as well as multi-skilled technicians. Do you like looking behind exteriors to see what makes stuff work? Are you interested in making systems more efficient and effective? Are you good at Physics, Maths and Technology? Do you like hands-on practical activity? If so, a career in electrical and electronic engineering is definitely for you. OUTLOOK AND TRENDS In recent years there has been a big move to software as opposed to hardware. Software modelling technology is now so advanced that actual manufacture has become secondary in the production process. Software technology is at the basis of the microcontroller, which runs virtually every electronic product, and design and maintenance in this area is constantly developing.
    [Show full text]
  • Electrical and Electronic Engineering Technicians Help Turn Ideas Into Reality
    S c i e n c e , Technology, Electrical and Electronic Engineering & M a t h Engineering Technicians (STEM) C l u s t e r Electrical and electronic engineering technicians help turn ideas into reality. Assisting engineers or scientists, or working on their own, they use their technical skills to come up with practical solutions to a variety of problems. If you are interested in using your technical skills to assist engineers, a career as a electrical and electronics engineering technician may be for you. Electrical and electronic engineering technicians use math, science and engineering skills to work on a variety of projects Planning, in a wide range of fields. They have less responsibility than managing and engineers and their work is more hands on. providing scientific Are You Ready To...? research and • Work in a lab professional • Travel to plants or construction sites and technical • Work as part of a team services (e.g., • Keep up with new technology and equipment physical • Work carefully and accurately science, social • Handle potentially dangerous equipment or chemicals science, Salary and Opportunity engineering) It Helps To Be... in the Austin-area including Someone who likes building things laboratory and and solving problems. This is a great Median Hourly Wage: $33.03 testing career if you like discovering how things work and how to make them That comes out to more than services and $68,702 a year. research and better. development In 2016, we had 2,792 Electrical and Electronic services. A Day In The Life... Engineering Technicians. • Analyze engineering test data, By 2026, we’ll need 3,209.
    [Show full text]