Sundar Jagannath, MD

Total Page:16

File Type:pdf, Size:1020Kb

Sundar Jagannath, MD Noopur Raje, MD Sagar Lonial, MD Director, Multiple Myeloma Professor Program Vice Chair of Clinical Affairs Massachusetts General Hospital Department of Hematology and Medical Oncology Associate Professor of Medicine Winship Cancer Institute Harvard Medical School Emory University School of Medicine Boston, Massachusetts Atlanta, Georgia Advancements in Immunotherapeutics for Multiple Myeloma Raje: Hello, I am Noopur Raje, and I am here at the 50th Annual ASCO Meeting in Chicago. I am here with Dr. Sagar Lonial who is a professor at Emory University. Sagar, it is always a pleasure to have you. Lonial: Thank you. Raje: And, thank you for being here. You know, every year we kind of do this for myeloma, and it is amazing that every year I am more enthusiastic about the next year, which I think is fantastic. We have interesting data at this meeting, but what I was hoping you would be able to do was talk us through. Obviously monoclonal antibodies have been huge for myeloma. We have been trying to study them for years, but I think in the last couple of years we are actually now beginning to see some impact of these. You have done a lot of work with elotuzumab. There are a couple of others. Do you want to speak a little bit to where we are and where we are going with monoclonal antibodies? Lonial: You are right. I think both on investigator side, we are very excited and on the patient side, I know patients are very excited about the idea of immune-based therapy or monoclonal, which is probably the closest place we are right now. The challenge I think we have had for a long time is that we either did not have the right antibody, or immune function in myeloma patients was never adequate enough to really support an effective monoclonal antibody, and that is sort of the story we learned with elotuzumab a few years ago. By itself, it did not seem to do a whole lot, but that is because we learned that ELO is actually most effective when you have lots of NK cells and is ADCC dependent.1 So the addition of lenalidomide to elotuzumab gave us pretty neat data that said 33 months of progression-free survival in an early relapsed setting.2 We now have antibodies that appear to be less dependent on ADCC alone, have some CDC as an alternative mechanism, antibodies like daratumumab or the Sanofi monoclonal targeting CD38 (SAR650984), and both of those at this meeting appear to have single-agent activity, somewhere in the 30-40% range,3,4 and both of those antibodies are doing what ELO did which is combine with lenalidomide, and appears to again show a higher response rate in the combination, presumably because they have ©2014 MediCom Worldwide, Inc. some level of ADCC that is activated by NK cells.5,6 There are also other monoclonals that I think we are excited about that we are looking at either things in the microenvironment like the BAFF work that you have done.7,8 The denosumab (anti- RANL) is another antibody again targeting microenvironment9 and then things targeting CD138 for instance that are not unconjugated antibodies but are targeted with chemotherapy attached to them (eg, Indatuximab Ravtansine; GSK2857916), 10,11 much like gemtuzumab ozogamicin (Mylotarg) was years ago in leukemia. Those are actually showing synergy with lenalidomide as well.10 The field as we have it now with daratumumab, the Sanofi 38 antibody, elotuzumab, and others that are I think in early development really says that we are going to have exciting trials down the road, and the challenge is how do we incorporate these into our treatment paradigms? Raje: I think what is also very interesting are these monoclonal antibodies. The good news here is the frequency of how often we have to give them. What we have been able to learn over the last couple years is how to better treat some of those infusion-related reactions, and that has made a big difference, and incorporating them even in the upfront setting as we all are doing trials with say ELO for sure now has come up front, especially for the high-risk patient population.12 Talking about immune strategies, Sagar, this is something I think we have learned from our solid tumor colleagues. There is obviously a lot of interest in the PD-1 and PD-L1 pathway, situations or diseases like colon cancer and lung cancer have actually seen nice responses when you interfere with this pathway.13,14 What do you think or how do you think we are going to be able to study this pathway in the context of myeloma? Lonial: I think in all of oncology, it is really exciting area to work in, and that is because much of what we have done to try and modulate immune function through vaccines or through other cell-based approaches to treat cancer has likely been limited in some way by the tumor’s ability to hijack the immune system to protect itself, and these PD-1 and PD-L1 based approaches are attempts to reverse that hijacking, to no longer have the tumor under a cloaking device if you will, to unmask it and allow it to be susceptible to the things that we normally use. So, I think it is a very exciting time. Those trials are ongoing right now.15,16 The question is when is the best time to do that? At an end-stage refractory relapse patient, they may not have immune function or receptor density to really warrant that kind of an approach, whereas in a newly diagnosed or smoldering stage they may, and so I think we need to learn a little bit about this biology in myeloma, how it relates to genetic risk, which probably has something to do with some of this as well, and that will teach us how to best do it as opposed to a broad ‘everybody is going to get PD-1 antibody and we are going to see what is going to happen.’ Raje: Sure. These are more kind of specific, the monoclonal antibodies tend to be a little more targeted. You know for myeloma we have been toying with the idea of vaccination strategies for years. We have a couple of them, one of them which you and I have used in the smoldering setting is a tripeptide vaccine.16 Another one which we 2 have used in the myeloma setting as a fusion vaccine.17 Any thoughts on where that kind of more designer-specific vaccines are going? Lonial: Yes, I mean the targets for those vaccines are validated targets in myeloma. I think the challenge is, even in the MGUS setting, and I think this is data from your institution as well, suggests that immune responses to vaccine in MGUS and smoldering are not as good as a normal patient’s, a normal person. So that tells us that even at the earliest stages of the disease, we have to do something to augment immune function to allow responses to vaccines, and in the next iteration of that vaccine trial that you just mentioned, we are adding lenalidomide to try and do that. So, I think it is not just a matter of giving the vaccine. It is giving the tools to allow the vaccine to be effective, whether that is PD-1, PD-L1, or lenalidomide, that is really the key. Raje: I think having the IMiDs has really made a big difference because based on a lot of data over a lot of years and like you talked about, it is combining it with elotuzumab upregulating the NK system has made a big difference. So incorporating IMiD-based strategies with these vaccine strategies is probably what we would be doing in the future. We have even more open IMiDs coming along now. Your thoughts on the latest greatest newest IMiD now, pomalidomide? Lonial:I think pomalidomide is a really exciting new drug because in many ways it has got the best of both preexisting agents, thalidomide and lenalidomide. I think its potency is really quite striking, and while there has been a lot of talk about potentially using cereblon as a biomarker to predict response and I think Keith has some of that very nice data,18,19 there is something about pomalidomide that works even when lenalidomide has not worked before, and that is a great option for our patients.20 Whether we can make even pom better by adding other drugs to it I think is really the next step and that is what the antibody I think offers. Raje: Ability to be able to combine drugs and largely because all of these drugs are fairly well tolerated. Well, on that note Sagar, thank you so much. This has been interesting. Thanks. Lonial: Thank you. References: 1. Hsi ED, Steinle R, Balasa B, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14(9):2775- 2784. [PubMed/Full-Article] 3 2. Lonial S, Vij R, Harousseau JL, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol. 2012;30(16):1953-1959. [PubMed/Full-Article] 3. Martin TG, Hsu K, Strickland SA, et al. A phase I trial of SAR650984, a CD38 monoclonal antibody in relapsed or refractory multiple myeloma. J Clin Oncol. 2014;32:5s (suppl; abstr 8532). [Link to Abstract] 4.
Recommended publications
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • ADC (Antibody-Drug Conjugates
    Antibody-drug Conjugate All-sided compounds and intermediates to support novel biotherapeutics research and technology Antibody- drug Conjugate ADC Products Based on advanced technology and years of experience, Creative Biolabs offers a variety of customized ADC, linker-Toxin ANTIBODY-DRUG products, ADCs cytotoxin, ADCs linkers, Anti-drug Abs and Anti-Ab ADCs for your CONJUGATE ADC projects and promote your progress in ADC development. Comprehensive one-stop-shop for all aspects in ADC research and development Creative Biolabs Established in 2004, Creative Biolabs is a world-renowned service provider for antibody-drug conjugate (ADC) service and products. After years of pursuit for perfection, Creative BioLabs has established leadership in targeted immunotherapy and ADC development. Outline 01.Customized ADCs 02.Linker-Toxin 03.ADCs Cytotoxin 04.ADCs Linker 05.Anti-drug Abs Creative Biolabs provides a 06.Anti-Ab ADCs full range of ADC products to help your 07.Contact us ADC development . Antibody- drug Conjugate CUSTOMIZED ADCS Creative Biolabs offers a variety of customarily prepared ADC products to serve the course of ADC development and evaluation. Taken advantage of our large inventory of therapeutic antibodies, our scientists help create the custom ADC products by conjugating therapeutic antibodies against cancer surface antigens with different drug-linker complexes. APPLICATION ADCs have created a new paradigm for novel anticancer drug development. With both the specificity of the large-molecule monoclonal antibody and the potency of the small molecule cytotoxic drug, ADCs have tremendous potential to be part of the future of cancer precision medicine as well as cancer combination therapies. Customized ADCs Cat.
    [Show full text]
  • Monoclonal Antibodies in Myeloma
    Monoclonal Antibodies in Myeloma Pia Sondergeld, PhD, Niels W. C. J. van de Donk, MD, PhD, Paul G. Richardson, MD, and Torben Plesner, MD Dr Sondergeld is a medical student at the Abstract: The development of monoclonal antibodies (mAbs) for University of Giessen in Giessen, Germany. the treatment of disease goes back to the vision of Paul Ehrlich in Dr van de Donk is a hematologist in the the late 19th century; however, the first successful treatment with department of hematology at the VU a mAb was not until 1982, in a lymphoma patient. In multiple University Medical Center in Amsterdam, The Netherlands. Dr Richardson is the R.J. myeloma, mAbs are a very recent and exciting addition to the Corman Professor of Medicine at Harvard therapeutic armamentarium. The incorporation of mAbs into Medical School, and clinical program current treatment strategies is hoped to enable more effective and leader and director of clinical research targeted treatment, resulting in improved outcomes for patients. at the Jerome Lipper Myeloma Center, A number of targets have been identified, including molecules division of hematologic malignancy, depart- on the surface of the myeloma cell and components of the bone ment of medical oncology, Dana-Farber Cancer Institute in Boston, MA. Dr Plesner marrow microenvironment. Our review focuses on a small number is a professor of hematology at the Univer- of promising mAbs directed against molecules on the surface of sity of Southern Denmark and a consultant myeloma cells, including CS1 (elotuzumab), CD38 (daratumumab, in the department of hematology at Vejle SAR650984, MOR03087), CD56 (lorvotuzumab mertansine), and Hospital in Vejle, Denmark.
    [Show full text]
  • Immunotherapies Shape the Treatment Landscape for Hematologic Malignancies Jane De Lartigue, Phd
    Feature Immunotherapies shape the treatment landscape for hematologic malignancies Jane de Lartigue, PhD he treatment landscape for hematologic of TIL therapy has been predominantly limited to malignancies is evolving faster than ever melanoma.1,3,4 before, with a range of available therapeutic Most recently, there has been a substantial buzz Toptions that is now almost as diverse as this group around the idea of genetically engineering T cells of tumors. Immunotherapy in particular is front and before they are reintroduced into the patient, to center in the battle to control these diseases. Here, increase their anti-tumor efficacy and minimize we describe the latest promising developments. damage to healthy tissue. This is achieved either by manipulating the antigen binding portion of the Exploiting T cells T-cell receptor to alter its specificity (TCR T cells) The treatment landscape for hematologic malig- or by generating artificial fusion receptors known as nancies is diverse, but one particular type of therapy chimeric antigen receptors (CAR T cells; Figure 1). has led the charge in improving patient outcomes. The former is limited by the need for the TCR to be Several features of hematologic malignancies may genetically matched to the patient’s immune type, make them particularly amenable to immunother- whereas the latter is more flexible in this regard and apy, including the fact that they are derived from has proved most successful. corrupt immune cells and come into constant con- CARs are formed by fusing part of the single- tact with other immune cells within the hemato- chain variable fragment of a monoclonal antibody poietic environment in which they reside.
    [Show full text]
  • Novel Targets in Multiple Myeloma
    · MULTIPLE MYELOMA · Novel Targets in Multiple Myeloma Douglas Tremblay, MD, and Ajai Chari, MD Abstract also being increasingly approved by the FDA as a part of combination Despite the availability of 6 classes of drugs for the therapy based on PFS extension of 3 to 6 months achieved in random- treatment of multiple myeloma (MM), the disease re- ized phase III studies. The goal of this review is to discuss the targets, mains incurable in most cases, with patients eventually mechanisms of action (MOA), safety, and efficacy of the novel agents relapsing on each of these agents. The benchmark for in MM that are currently have recently met or have the best chance of drug approval in heavily pretreated and multidrug-re- meeting these benchmarks. fractory patients is an overall response rate (ORR) of approximately 25% to 30% and progression-free Targets of Immunomodulatory Drugs survival (PFS) of approximately 4 months, but more Of note, there also have been developments in our understanding of recently in less heavily pretreated patients with relapsed the targets of immunomodulatory drugs (IMiDs). Until recently, it has disease after 1 to 3 lines of therapy, based primarily on been unclear how these oral medications achieve antimyeloma ben- an improvement in PFS of 3 to 6 months in random- efits without significant toxicity at the site of drug absorption in the ized phase III studies. This article reviews the targets, gut or other off-target organ toxicities. Recently, cereblon, a member mechanisms of action (MOA), safety, and efficacy of the of the E3 ubiquitin ligase family, was identified as the likely mediator recently approved agents in MM that have met one of of teratogenicity of IMiDs.
    [Show full text]
  • Immunotherapy in Multiple Myeloma
    116 Review Article Immunotherapy in multiple myeloma Irene M. Hutchins, Levanto G. Schachter, Anuj K. Mahindra Scripps Clinic, La Jolla, CA, USA Contributions: (I) Conception and design: IM Hutchins; (II) Administrative support: None; (III) Provision of study material or patients: None; (IV) Collection and assembly of data: None; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Irene M. Hutchins, MD. Scripps Clinic, 10666 N. Torrey Pines Rd. MS312, La Jolla, CA 92037, USA. Email: [email protected]. Abstract: Therapeutic approaches in multiple myeloma (MM) are increasingly focused on restoring antitumor immunity. Immunomodulators have a variety of effects on the immune microenvironment, and are frequently incorporated into multidrug regimens. The monoclonal antibodies daratumumab and elotuzumab have been granted accelerated approval for use in the relapsed or refractory setting, and several other antibodies including immune checkpoint inhibitors are currently being evaluated for the treatment of MM. Antimyeloma vaccines have been developed, and may be useful in maintaining remission. The role of allogeneic stem cell transplantation continues to be an area of active research, as reduced intensity conditioning (RIC) regimens have significantly decreased treatment-related complications. Other immunotherapeutic approaches in development include marrow infiltrating lymphocytes, T cell receptor modified T cells (TCRts), and chimeric antigen receptor (CAR) T cells. Here we review the existing data on immunotherapy in MM, and discuss some promising areas of research which may impact the future of myeloma therapy. Keywords: Antibodies; monoclonal; immunotherapy; multiple myeloma (MM); receptors; antigen; T-cell; stem cell transplantation Submitted Nov 23, 2016.
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    INN Working Document 05.179 Update 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) © World Health Organization 2013 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int ) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected] ). Requests for permission to reproduce or translate WHO publications – whether for sale or for non-commercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html ). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Ep 3321281 A1
    (19) TZZ¥¥ _ __T (11) EP 3 321 281 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 16.05.2018 Bulletin 2018/20 C07K 14/79 (2006.01) A61K 38/40 (2006.01) A61K 38/00 (2006.01) A61K 38/17 (2006.01) (2006.01) (2006.01) (21) Application number: 17192980.5 A61K 39/395 A61K 39/44 C07K 16/18 (2006.01) (22) Date of filing: 03.08.2012 (84) Designated Contracting States: • TIAN, Mei Mei AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Coquitlam, BC V3J 7E6 (CA) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • VITALIS, Timothy PL PT RO RS SE SI SK SM TR Vancouver, BC V6Z 2N1 (CA) (30) Priority: 05.08.2011 US 201161515792 P (74) Representative: Gowshall, Jonathan Vallance Forresters IP LLP (62) Document number(s) of the earlier application(s) in Skygarden accordance with Art. 76 EPC: Erika-Mann-Strasse 11 12746240.6 / 2 739 649 80636 München (DE) (71) Applicant: biOasis Technologies Inc Remarks: Richmond BC V6X 2W8 (CA) •This application was filed on 25.09.2017 as a divisional application to the application mentioned (72) Inventors: under INID code 62. • JEFFERIES, Wilfred •Claims filed after the date of receipt of the divisional South Surrey, BC V4A 2V5 (CA) application (Rule 68(4) EPC). (54) P97 FRAGMENTS WITH TRANSFER ACTIVITY (57) The present invention is related to fragments of duction of the melanotransferrin fragment conjugated to human melanotransferrin (p97). In particular, this inven- a therapeutic or diagnostic agent to a subject.
    [Show full text]
  • Antibody-Drug Conjugates: Possibilities and Challenges
    Review Article Antibody-Drug Conjugates: Possibilities and Challenges Mohammad-Reza Nejadmoghaddam 1,2, Arash Minai-Tehrani 2, Ramin Ghahremanzadeh 2, Morteza Mahmoudi 1, Rassoul Dinarvand 1,3, and Amir-Hassan Zarnani 4,5,6 1. Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran 2. Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran 3. Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran 4. Department of Immunology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran 5. Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran 6. Immunology Research Center, Iran University of Medical Sciences, IUMS, Tehran, Iran * Corresponding authors: Abstract Rassoul Dinarvand, Pharm D., The design of Antibody Drug Conjugates (ADCs) as efficient targeting agents for tu- PhD., Nanotechnology Research mor cell is still in its infancy for clinical applications. This approach incorporates the Center, Faculty of Pharmacy, Tehran University of Medical antibody specificity and cell killing activity of chemically conjugated cytotoxic agents. Sciences, Tehran, Iran Antibody in ADC structure acts as a targeting agent and a nanoscale carrier to deliv- er a therapeutic dose of cytotoxic cargo into desired tumor cells. Early ADCs encoun- Amir-Hassan Zarnani, D.M.T., Ph.D., Reproductive Immunology tered major obstacles including, low blood residency time, low penetration capacity to Research Center, Avicenna tumor microenvironment, low payload potency, immunogenicity, unusual off-target Research Institute, ACECR, toxicity, drug resistance, and the lack of stable linkage in blood circulation. Although Tehran, Iran extensive studies have been conducted to overcome these issues, the ADCs based Tel: +98 21 64121014, 22432020 Fax: +98 21 66959052, 22432021 therapies are still far from having high-efficient clinical outcomes.
    [Show full text]
  • Antibody–Drug Conjugates for Cancer Therapy
    molecules Review Antibody–Drug Conjugates for Cancer Therapy Umbreen Hafeez 1,2,3, Sagun Parakh 1,2,3 , Hui K. Gan 1,2,3,4 and Andrew M. Scott 1,3,4,5,* 1 Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia; [email protected] (U.H.); [email protected] (S.P.); [email protected] (H.K.G.) 2 Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia 3 School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia 4 Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia 5 Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia * Correspondence: [email protected]; Tel.: +61-39496-5000 Academic Editor: João Paulo C. Tomé Received: 14 August 2020; Accepted: 13 October 2020; Published: 16 October 2020 Abstract: Antibody–drug conjugates (ADCs) are novel drugs that exploit the specificity of a monoclonal antibody (mAb) to reach target antigens expressed on cancer cells for the delivery of a potent cytotoxic payload. ADCs provide a unique opportunity to deliver drugs to tumor cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows and enhanced pharmacokinetic/pharmacodynamic properties. To date, nine ADCs have been approved by the FDA and more than 80 ADCs are under clinical development worldwide. In this paper, we provide an overview of the biology and chemistry of each component of ADC design. We briefly discuss the clinical experience with approved ADCs and the various pathways involved in ADC resistance.
    [Show full text]
  • INN Working Document 05.179 Update 2011
    INN Working Document 05.179 Update 2011 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 2011 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Essential Medicines and Pharmaceutical Policies (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) © World Health Organization 2011 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • IMSN Letter on Antibody-Drug Conjugates 2015 03 23
    March 23, 2015 Dr Raffaella G. Balocco Mattavelli Manager of the International Nonproprietary Name (INN) Programme Quality Assurance and Safety: Medicines Department of Essential Medicines and Health Products (EMP) World Health Organization CH 1211 GENEVA 27 - SWITZERLAND Dear Dr Mattavelli: This letter is in regards to nomenclature of antibody-drug conjugates • As you are aware, during the clinical trials of trastuzumab emtansine, deaths resulting from confusion with trastuzumab drew attention to the risks associated with International nonproprietary names (INNs) of such cytotoxic substances with a common part. • The International Medication Safety Network (IMSN) was quickly alerted to these risks, and proposed that a new substitute INN should be examined by the WHO INN Programme, the only international body in charge eventually changing an INN. A proposal for substitution of trastuzumab emtansine is expected to be submitted by Canadian Healthcare authorities according to the international procedure. • By studying the possibilities of preventing this type of error, the IMSN found that these risks of confusion apply to all antibody-drug conjugates. The IMSN is therefore calling on the WHO INN Programme to identify nomenclature that will reduce their potentially fatal similarities and define clear rules to help recognize products that include different substances, in order to make them safer. If necessary, the IMSN is ready to contribute to the assessment of this risk reduction and prevention strategy, essential but belonging to the sole authority of the WHO INN Programme. The trastuzumab emtansine case. In 2013 the confusion between trastuzumab and trastuzumab emtansine drew attention to the risks associated with the INNs of cytotoxic compounds with a common part.
    [Show full text]