The Wild World of Web Cams

Total Page:16

File Type:pdf, Size:1020Kb

Load more

02_129845 ch01.qxp 10/12/06 9:39 AM Page 1 The Wild World of Web Cams In This Book ᮣ What is a Web cam? ᮣ Looking at how people use Web cams ᮣ Becoming a Web cam video producer ᮣ Getting creative with Web cams eb cams enable you to share still images and Wvideo with anyone around the world. If you’ve ever wanted to see the person you’re chatting with on the Internet, send a snapshot of yourself to a friend, or broadcast live images from a specific location, a Web cam is for you. This handy book introduces you to many wonderful uses you can put your Web cam to and lists many helpful Web sites that show how people are using Web cams. Icons Used in This Book To help you navigate the info better, this book uses the following icons to highlight special points: This icon flags a shortcut or technique that can improve something you do with your COPYRIGHTEDWeb cam. MATERIAL 02_129845 ch01.qxp 10/12/06 9:39 AM Page 2 2 This icon flags some of the techie explanations of how Web cams and video work — if you’re into the innards of Web cams, this is for you. If not, um, you can skip it. What the Heck Is a Web Cam? A Web cam is nothing more than a tiny camera that con- nects to your personal computer. Unlike an ordinary still or video camera, a Web cam stores and displays images directly onto your computer screen so you can edit, save, or send these images to other people. Web cams (sometimes called “cams,” which is short for cameras) get their name because the cameras are most often used to send or display images on the World Wide Web. Web cams can display two types of images: ߜ Still images. Used for taking snapshots to send via e-mail to friends, family members, or anyone else in the world who has an e-mail account. ߜ Live video. Used for videoconferencing or chat- ting so you can see what the other person is doing. Essentially, your Web cam acts like a minia- ture movie camera so whatever you see through the Web cam is what’s really happening in real time. An alternative to real-time video is the use of time-lapsed still images, which displays images taken every few seconds or minutes. What People Are Doing with Web Cams To give you some ideas about what you can do with a Web cam, browse through this section to discover 02_129845 ch01.qxp 10/12/06 9:39 AM Page 3 3 some of the creative ways that people are currently using their Web cams. Although some people buy Web cams exclusively for business, others get a Web cam purely for their own amusement. Think of a Web cam as a new toy and start dreaming up different ways to take advantage of having a camera attached to your personal computer. One of the earliest and most popular uses of Web cams is to display views of interesting sites and ongoing events that people from other parts of the world may like to see. When something as monumental as a natu- ral or man-made disaster (such as a volcanic eruption or a riot) happens in another part of the world, some- one may connect a Web cam so that others can view those events live and free of bias, censorship, or filter- ing by the news media or government. By viewing images from these distant Web cams, you can peek into another world from the comfort of your home. Don’t overlook the excitement of events in your own backyard; training your Web cam on that bird nest right outside your window in the spring may be monumental to you and other bird lovers around the globe. Or how about interviewing your own star achiever for the benefit of long-distance family members when your child comes dashing in from winning the soccer game? Capturing a Movie with Your Web Cam In this section, you find out about all the creative ways that you can use your Web cam to capture video 02_129845 ch01.qxp 10/12/06 9:39 AM Page 4 4 images. In an ideal world, you could always display live video directly from your Web cam to your Web site, so that people all over the world could see exactly what your Web cam is capturing at that moment. Unfortunately, displaying live video through a Web cam may not be feasible, because you need a constant Internet connection so your Web cam can send a steady stream of images to your Web site. An additional challenge with live video is the bandwidth requirement. Bandwidth refers to the speed and amount of data a network connection (such as the Internet) can transfer at any given time. The bandwidth of your particular Internet connection can vary depending on your location and the particular Internet service you use. For example, connecting to the Internet on weekends and weekday evenings can often take a while because other people are trying to connect at the same time. Conversely, using a small Internet service can often speed up your connection because fewer people are competing for its resources. America Online users occasionally have trouble connecting due to the mil- lions of America Online subscribers trying to connect simultaneously. When setting up a Web cam, keep your Internet connection capabilities in mind. Live video takes time to send, so trying to shove live video from your Web cam through a 56K modem Internet connection can be as frustrat- ing as trying to suck a watermelon through a straw. Until dial-up connections through telephone modems disappear and everyone has high-speed, always-on 02_129845 ch01.qxp 10/12/06 9:39 AM Page 5 5 Internet access through either cable or DSL modems, most people have to live with these technological limitations when using their Web cams. Instead of dis- playing live video, many people are choosing a less bandwidth-intensive method of capturing video images in a special video file. That way, they just have to send the one video file to their Web site, instead of sending a continuous stream of video images. Understanding movie file formats When you save video images to a file, you have to save them in a special video file format. The two most common video file formats are ߜ QuickTime ߜ Audio/Video Interleave (AVI) Although QuickTime is the native video file format for Macintosh computers, you can view QuickTime files on a Windows computer if you download and install the QuickTime for Windows program from Apple Computers (www.apple.com/quicktime). QuickTime files usually end with the .mov or .qt file extension. The AVI standard is the native video file format for Windows 98 SE and higher. Of course, Macintosh users can still view AVI files if they have the QuickTime player on their computers. Three additional movie file formats you may run across are RealVideo (ram file extension), Advanced Streaming Format (asf file extension), and MPEG (mpg file extension). To play RealVideo movies, you need the RealPlayer plug-in, available from the Real.com Web 02_129845 ch01.qxp 10/12/06 9:39 AM Page 6 6 site (www.real.com/playerplus). To play ASF files, you need the Windows Media Player. To play MPEG files, you can use QuickTime or the Windows Media Player. Capturing a video Capturing a video with your Web cam can be as simple as pointing your Web cam at an object and running your Web cam software. (Your software may have come with your Web cam or you may have bought your soft- ware separately.) When capturing a video, you can choose several options to modify its appearance. Some typical options that many Web cam programs offer include the following: ߜ File format. Many Web cam programs save files in AVI or QuickTime formats, but you may want to experiment with different file formats to see which one you think creates the smallest files with the best image quality. ߜ Frame rate. Typical frame rates for Web videos range between 12 and 30 frames per second, although you can specify higher (for higher image quality at the cost of larger file size) or lower (for lower image quality in return for smaller file size) frame rates. ߜ Resolution. Typical Web video resolutions are 320 x 240 or 160 x 120, although you can specify higher resolutions (such as 640 x 480), which create larger files, or lower resolutions (such as 128 x 96), which create smaller files. ߜ Color settings. The more colors you capture, the larger the file. Black-and-white images create smaller file sizes, whereas 24-bit color captures sharper images at the cost of creating larger files. 02_129845 ch01.qxp 10/12/06 9:39 AM Page 7 7 Although you may be perfectly happy aiming your Web cam at an object and capturing a video, you may want to get a bit more creative and try some of the techniques originally developed by Hollywood to create interesting visual effects, such as stop-motion animation and time-lapse photography. Touching Up Your Video After you create a video, you can post it on your Web site for others to download. But if you’re a perfection- ist, you may want to take a little time to edit your video by adding titles and sounds or touching up visual flaws (such as the infamous red eye effect).
Recommended publications
  • High Level Architecture Framework

    High Level Architecture Framework

    Java Media Framework Multimedia Systems: Module 3 Lesson 1 Summary: Sources: H JMF Core Model H JMF 2.0 API Programmers m Guide from Sun: Architecture http://java.sun.com/products/java-media/jmf/2.1/guide/ m Models: time, event, data H JMF 2.0 API H JMF Core Functionality H JMF White Paper from IBM m Presentation http://www- 4.ibm.com/software/developer/library/jmf/jmfwhite. m Processing html m Capture m Storage and Transmission H JMF Extensibility High Level Architecture H A demultiplexer extracts individual tracks of media data JMF Applications, Applets, Beans from a multiplexed media stream. A mutliplexer performs the JMF Presentation and Processing API opposite function, it takes individual tracks of media data and merges them into a single JMF Plug-In API multiplexed media stream. H A codec performs media-data Muxes & Codecs Effects Renderers Demuxes compression and decompression. Each codec has certain input formats that it can handle and H A renderer is an abstraction of a certain output formats that it can presentation device. For audio, the generate presentation device is typically the H An effect filter modifies the computer's hardware audio card track data in some way, often to that outputs sound to the speakers. create special effects such as For video, the presentation device is blur or echo typically the computer monitor. Framework JMF H Media Streams m A media stream is the media data obtained from a local file, acquired over the network, or captured from a camera or microphone. Media streams often contain multiple channels of data called tracks.
  • Capabilities of the Horchow Auditorium and the Orientation

    Capabilities of the Horchow Auditorium and the Orientation

    Performance Capabilities of Horchow Auditorium and Atrium at the Dallas Museum of Art Horchow Auditorium Capacity and Stage: The auditorium seats 333 people (with a 12 removable chair option in the back), maxing out the capacity at 345). The stage is 45’ X 18’and the screen is 27’ X 14’. A height adjustable podium, microphone, podium clock and light are standard equipment available. Installed/Available Equipment Sound: Lighting: 24 channel sound board 24 fixed lights 4 stage monitors (with up to 4 Mixes) 5 movers (these give a wide array of lighting looks) 6 hardwired microphones 4 wireless lavaliere microphones 2 handheld wireless microphones (with headphone option) 9-foot Steinway Concert Grand Piano 3 Bose towers (these have been requested by Acoustic performers before and work very well) Music stands Projection Panasonic PTRQ32 4K 20,000 Lumen Laser Projector Preferred Video Formats in Horchow Blu Ray DVD Apple ProRes 4:2:2 Standard in a .mov wrapper H.264 in a .mov wrapper Formats we can use, but are not optimal MPEG-1/2 Dirac / VC-2 DivX® (1/2/3/4/5/6) MJPEG (A/B) MPEG-4 ASP WMV 1/2 XviD WMV 3 / WMV-9 / VC-1 3ivX D4 Sorenson 1/3 H.261/H.263 / H.263i DV H.264 / MPEG-4 AVC On2 VP3/VP5/VP6 Cinepak Indeo Video v3 (IV32) Theora Real Video (1/2/3/4) Atrium Capacity and Stage: The Atrium seats up to 500 people (chair rental required). The stage available to be installed in the Atrium is 16’ x 12’ x 1’.
  • (A/V Codecs) REDCODE RAW (.R3D) ARRIRAW

    (A/V Codecs) REDCODE RAW (.R3D) ARRIRAW

    What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format.
  • Compression for Great Video and Audio Master Tips and Common Sense

    Compression for Great Video and Audio Master Tips and Common Sense

    Compression for Great Video and Audio Master Tips and Common Sense 01_K81213_PRELIMS.indd i 10/24/2009 1:26:18 PM 01_K81213_PRELIMS.indd ii 10/24/2009 1:26:19 PM Compression for Great Video and Audio Master Tips and Common Sense Ben Waggoner AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Focal Press is an imprint of Elsevier 01_K81213_PRELIMS.indd iii 10/24/2009 1:26:19 PM Focal Press is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA Linacre House, Jordan Hill, Oxford OX2 8DP, UK © 2010 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions . This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this fi eld are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein.
  • Codec Is a Portmanteau of Either

    Codec Is a Portmanteau of Either

    What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format.
  • Format Support

    Format Support

    Episode 6 Format Support FILE FORMAT CODEC Episode Episode Episode Pro EngineCOMMENTS Adaptive bitrate streaming Microsoft Smooth Streaming H.264 (AAC audio) O Windows OS only. Available with Episode Engine License. Apple HLS H.264 (AAC audio) O Available with Episode Engine License. Windows Media WMV, ASF VC-1 O O O WM9 I/O I/O I/O WMV7 and 8 through F4M component on Mac WMA I/O I/O I/O WMA Pro I/O I/O I/O Flash FLV Flash 8 (VP6s/VP6e) I/O I/O I/O SWF Flash 8 (VP6s/VP6e) I/O I/O I/O MOV/MP4/F4V Flash 9 (H.264) I/O I/O I/O F4V as extension to MP4 WebM WebM VP8 O O O Vorbis O O O 3GPP 3GPP AAC I/O I/O I/O H.263 I/O I/O I/O H.264 I/O I/O I/O MainConcept and x264 MPEG-4 I/O I/O I/O 3GPP2 3GPP2 AAC I/O I/O I/O H.263 I/O I/O I/O H.264 I/O I/O I/O MainConcept and x264 MPEG-4 I/O I/O I/O MPEG Elementary Streams MPEG-1 Elementary Stream MPEG-1 (video) I/O I/O I/O MPEG-2 Elementary Stream MPEG-2 I/O I/O I/O MPEG Program Streams PS AAC O O O MainConcept and x264 H.264 I/O I/O I/O MPEG-1/2 (audio) I/O I/O I/O MPEG-2 I/O I/O I/O MPEG-4 I/O I/O I/O MPEG Transport Streams TS AAC I O O AES I I/O I/O H.264 I I/O I/O MainConcept and x264 AVCHD I I I HDV I I/O I/O MPEG - 1/2 (audio) I I/O I/O MPEG - 2 I I/O I/O MPEG - 4 I I/O I/O PCM I I I Matrox MAX H.264 I/O I/O I/O QT codec (*output possible via QT), Requires Matrox MAX hardware - Mac OS X only MPEG System Streams M1A MPEG-1 (audio) I/O I/O I/O M1V MPEG-1 (audio) I/O I/O I/O Episode 6 Format Support Format Support FILE FORMAT CODEC Episode Episode Episode Pro EngineCOMMENTS MPEG-4 MP4 AAC I/O I/O I/O
  • How to Play Itunes Purchased and Rental Movies with XBMC

    How to Play Itunes Purchased and Rental Movies with XBMC

    How to Play iTunes Purchased and Rental Movies with XBMC What are XBMC Player Video Formats? XBMC is an open source media player software developed by XBMC team. With XBMC media player, you can view and watch any videos, music, podcasts on your local computer or from internet. XBMC is developed for Mac, Windows, iOS, Android platform now. So almost all of us can use this powerful media player app without obstacles. XBMC for Mac can be compatible with Mac OS X tiger or later. It supports playing 1080p video on Mac computer via software decoding on the CPU if it is powerful enough. And XBMC for Windows is compatible with Windows 7, Vista and XP. Even though it can run well on 64-bit machine, it is not yet optimized for that architecture so there is no performance gain when running on 64-bit Windows. Let's learn what formats does XBMC support at first. Video formats supported by XBMC: MPEG-1, MPEG-2, H.263, MPEG-4 SP and ASP, MPEG-4 AVC (H.264), HuffYUV, Indeo, MJPEG, RealVideo, RMVB, Sorenson, WMV, Cinepak. Audio formats supported by XBMC: MIDI, AIFF, WAV/WAVE, AIFF, MP2, MP3, AAC, AACplus (AAC+), Vorbis, AC3, DTS, ALAC, AMR, FLAC, Monkey's Audio (APE), RealAudio, SHN, WavPack, MPC/Musepack/Mpeg+, Shorten, Speex, WMA, IT, S3M, MOD (Amiga Module), XM, NSF (NES Sound Format), SPC (SNES), GYM (Genesis), SID (Commodore 64), Adlib, YM (Atari ST), ADPCM (Nintendo GameCube), and CD-DA. Can XBMC Play iTunes Downloaded Videos? The current software limitation on XBMC is that it can't play any DRM-protected music and videos, like audio files purchased from online music stores as iTunes Music Store, MSN Music, Audible.com, Windows Media Player Stores, and video files protected with Windows Media DRM, Fairplay DRM or DivX proprietary DRM.
  • Finding an Appropriate Codec -.:: GEOCITIES.Ws

    Finding an Appropriate Codec -.:: GEOCITIES.Ws

    1 Adobe Premiere Technical Guides Finding an appropriate codec Codecs are compression/decompression algorithms that are crucial for producing digital video and audio. Some codecs are more appropriate for certain kinds of work than others. Which codecs are available to you when editing digital video in Adobe® Premiere® 6.0 depends on your system and capture card. This choice is further constrained by the Editing Mode you choose in Premiere’s Project Settings dialog box. For example, in Windows the video codecs you can choose in Project Settings will be different if you choose Video for Windows as your Editing Mode than if you choose Quicktime. When you export digital video, the available codecs are determined by the File Type you choose in the Export Movie Settings dialog box. You can evaluate codecs by their intended uses, compression methods, and how they handle different kinds of pictures or sound. Video for Windows and QuickTime software are used for a wide range of video-related tasks, such as video conferencing, so they include many codecs which are not appropriate for video editing. Codecs intended for purposes other than video editing are identified in this section so that you can avoid them. If your video card provides hardware compression and its software is properly installed, its codec will appear in the Compressor menu in the Video Settings panel of the Project Settings dialog box. You can also access the codec in the dialog box for your video-capture hardware, which you can open by clicking the Video button in the Capture Settings panel of the Project Settings dialog box.
  • "Digital Video and Graphics for Planetaria and Exhibits" © Jeff Bowen

    "Digital Video and Graphics for Planetaria and Exhibits" © Jeff Bowen

    3924 Pendleton Way • Indianapolis, IN• 46226• 317-536-1283 www.bowentechnovation.com "Digital Video and Graphics for Planetaria and Exhibits" © Jeff Bowen. June 25, 2004 [email protected] Section 1.0 Workshop Synopsis As we are heading into an era in which all visual media in the planetarium will be digital, attendees will learn what are current and forthcoming visual file formats and production methodologies. What is MPEG...DVI...when do you import an avi or mov? What are SD files...is 16:9 HD? Why is editing MPEG a bad idea? How do you archive and access digital files? What formats will soon be obsolete and which new ones will stay? Which of the new DVD formats will stick around? Jeff Bowen will share his extensive experience in producing award-winning digital media for education, planetariums, exhibits and broadcast. Section 2.0 Qualification of Attendees Number who have worked with video editing? Number who have worked with Photoshop? Number who have worked with digital video editing? Number who use digital playback in the dome? Number who have worked with digital audio editing? Number who have worked with digital editing? Created by Jeff Bowen Page 1 7/6/2004 Section 3.0 Digital Video Terminology and Specs Analog Video is represented as a continuous (time varying) signal. Digital Video is represented as a sequence of digital images. NTSC Video- 525 scan lines per frame, 30 frames per second (or be exact, 29.97 fps, 33.37 msec/frame) Interlaced, each frame is divided into 2 fields, 262.5 lines/field.
  • From Hard Drive to Optimized Video File

    From Hard Drive to Optimized Video File

    March 10 2003 Strategies and Techniques for Designers, Developers, and Managers of eLearning THIS WEEK — DEVELOPMENT TECHNIQUES Repurposing Taped Video for e-Learning, Part 2: Video is an increas- From Hard Drive to Optimized ingly important part of e-Learning Video File and there are many BY STEPHEN HASKIN ways to deliver it to n Part 1 of this two-part series, we learned how to move the learner’s desk- video content from digital or analog tape onto a hard top. With the right Idrive. This is half the job of repurposing taped video. This tools, making use week, we’ll learn how to use Adobe Premiere to render digi- tized video to other media: the Web, CD-ROM, and DVD. of these delivery You’ve got the tape. You’ve got the computer. You’ve options is easy. grabbed the video. Now it’s in the computer and you have to This week, learn do something with it. A file in your comput- as the video if you want, or give it another how to move digi- er is nice, but it’s not going to get any train- name. Remember, the schema for naming ing done. So what do you do? files is yours and I can’t know what kinds of tized video to the file names your organization uses, so what- Setting up projects in Premiere ever you call the Premiere project is OK. Web, to CD-ROM, Let’s start with the video you just Last week, I didn’t explain what happens grabbed.
  • 20.1 Data Sheet - Supported File Formats

    20.1 Data Sheet - Supported File Formats

    20.1 Data Sheet - Supported File Formats Target release 20.1 Epic Document status DRAFT Document owner Dieter Van Rijsselbergen Designer Not applicable Architecture Dieter Van Rijsselbergen QA Assumptions Implementation of Avid proxy formats produced by Edge impose a number of known Avid-specific conversions. Avid proxies are under consideration and will be included upon binding commitment. Implementation of ingest through rewrapping (instead of transcoding) of formats with Avid-supported video and audio codecs are under consideration and will be included upon binding commitment. Implementation of ingest through transcoding to Avid-supported video codecs other than DNxHD or DNxHR are under consideration and will be included upon binding commitment. Limecraft Flow and Edge - Ingest File Formats # File Codecs and Variants Edge Flow Status Notes Container ingest ingest 1 MXF MXF OP1a Deployed No P2 spanned clips supported at the Sony XDCAM (DV25, MPEG moment. IMX codecs), XDCAM HD and Referencing original OP1a media from Flow XDCAM HD 422 AAFs is possible using AMA media linking in also for Canon Avid. C300/C500 and XF series AAF workflows for P2 are not implemented end-to-end yet. Sony XAVC (incl. XAVC Intra and XAVC-L codecs) ARRI Alexa MXF (DNxHD codec) AS-11 MXF (MPEG IMX/D10, AVC-I codecs) MXF OP-atom Deployed. P2 (DV codec) and P2 HD Only (DVCPro HD, AVC-I 50 and available AVC-I 100 codecs) in Edge. 1.1 MXF Sony RAW and X-OCN (XT, LT, Deployed. Due to the heavy data rates involved in ST) Only processing these files, a properly provisioned for Sony Venice, F65, available system is required, featuring fast storage PMW-F55, PMW-F5 and NEX in Edge.
  • Input Formats & Codecs

    Input Formats & Codecs

    Input Formats & Codecs Pivotshare offers upload support to over 99.9% of codecs and container formats. Please note that video container formats are independent codec support. Input Video Container Formats (Independent of codec) 3GP/3GP2 ASF (Windows Media) AVI DNxHD (SMPTE VC-3) DV video Flash Video Matroska MOV (Quicktime) MP4 MPEG-2 TS, MPEG-2 PS, MPEG-1 Ogg PCM VOB (Video Object) WebM Many more... Unsupported Video Codecs Apple Intermediate ProRes 4444 (ProRes 422 Supported) HDV 720p60 Go2Meeting3 (G2M3) Go2Meeting4 (G2M4) ER AAC LD (Error Resiliant, Low-Delay variant of AAC) REDCODE Supported Video Codecs 3ivx 4X Movie Alaris VideoGramPiX Alparysoft lossless codec American Laser Games MM Video AMV Video Apple QuickDraw ASUS V1 ASUS V2 ATI VCR-2 ATI VCR1 Auravision AURA Auravision Aura 2 Autodesk Animator Flic video Autodesk RLE Avid Meridien Uncompressed AVImszh AVIzlib AVS (Audio Video Standard) video Beam Software VB Bethesda VID video Bink video Blackmagic 10-bit Broadway MPEG Capture Codec Brooktree 411 codec Brute Force & Ignorance CamStudio Camtasia Screen Codec Canopus HQ Codec Canopus Lossless Codec CD Graphics video Chinese AVS video (AVS1-P2, JiZhun profile) Cinepak Cirrus Logic AccuPak Creative Labs Video Blaster Webcam Creative YUV (CYUV) Delphine Software International CIN video Deluxe Paint Animation DivX ;-) (MPEG-4) DNxHD (VC3) DV (Digital Video) Feeble Files/ScummVM DXA FFmpeg video codec #1 Flash Screen Video Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Forward Uncompressed Video Codec fox motion video FRAPS: